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PREDATOR-PREY MODELS WITH COMPETITION, PART III:

CLASSIFICATION OF STATIONARY SOLUTIONS

HENRI BERESTYCKI AND ALESSANDRO ZILIO

Abstract. For a stationary system representing prey and N groups of compet-
ing predators, we show classification results about the set of positive solutions. In
particular, we show that if the number of components N is too large or if the com-
petition between different groups is too small, then the system has only constant
solutions, which we then completely characterize.

To Luis Caffarelli, with admiration and affection.

1. Introduction

In this article, we consider the set of classical non-negative solutions v = (w, u)
of the following system of elliptic semilinear equations in a bounded smooth
domain Ω ⊂ R

n,






−d∆wi =
(

−ω + ku − β ∑j 6=i wj

)

wi in Ω

−D∆u =
(

λ − µu − k ∑
N
i=1 wi

)

u in Ω

∂νwi = ∂νu = 0 on ∂Ω.

(1.1)

Here N = #{i : wi ≥ 0 and wi 6≡ 0} stands for the number of non-zero compo-
nents of the vector w, and we denote w = (w1, . . . , wN).

This system models the interaction between a prey (spatially distributed as the
density u) and N groups of competing (β > 0) predators (the densities wi) in an
environment Ω ⊂ R

n. We recently introduced this model in [4, 2, 3] with the aim
to describe the ecological impact of territorial behaviors for predatory animals.
The aim was to shed light on the basic mechanisms from which territoriality
emerges, and to understand what are the consequences of these behaviors at
the scale of the environment and the total populations of predators and prey.
From a mathematical viewpoint, in [4] we have shown existence and uniqueness
results of the parabolic version of (1.1), explored the asymptotic limit when the
competition β is very large, and we have obtained results about the existence of
non-constant stationary solutions in the special case of N = 2 number of groups
of predators. Then, in [2] we have shown that the solutions of (1.1) are uniformly
bounded in Hölder norm, independently of the value of β and N (see Theorem
2.1 below). This has allowed us to strengthen our conclusion about the asymptotic
limit of large competition that we derived in [4].
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System (1.1) adapts to the present context the classical model of Lotka and
Volterra for predators and prey [19]. In this model, the interaction of two popula-
tion is represented by the product of their densities. For Lotka, the motivation for
this term came from the law of mass action in chemistry. Volterra’s approach was
to derive the interaction from the probability of encounter between individuals of
the two populations. This probability, in turn, can be shown to be approximately
proportional to the product of the densities. We keep this interaction between
prey and predators in the terms kuwi in (1.1). Following this idea, we introduce
the new terms βwiwj in (1.1) to represent the hostile interaction between different
groups of predators.

In the mathematical literature, competition systems have been considered rather
recently. To our knowledge, the study of strong competition can be traced back
to the pioneering work of Dancer and Du [11]. There, the authors considered
a system of only two competing densities, without the distinction between prey
and predators. They establish compactness results for the set of solutions, inde-
pendently of the strength of the competition (in our model, this corresponds to
the parameter β). Then, by means of a topological argument, they showed that
their compactness results lead to existence and multiplicity results for the original
model with strong but finite competition. This idea was developped further, and
more precise results about the asymptotic behavior of solutions as the competi-
tion diverges were obtained by Conti, Terracini and Verzini in [9]. More recently
Soave and Zilio [17] were able to cover the case of uniform Lipschitz estimates. It
is known that solutions cannot be uniformly continuous first derivatives, making

these estimates optimal in the class of Ck,α spaces.
On the other hand, the study of the limit problem, that is, the one obtained

in the limit of infinite competition, was first considered by Conti, Terracini and
Verzini in dimension two [10]. There, the authors showed that limit configura-
tions are made of segregated densities (that is, densities whose supports have dis-
joint interior), and the interfaces between different densities have a rigid and reg-
ular structure. These questions were later addressed in any dimension, including
the parabolic case, by Caffarelli, Karakhanyan and Lin [6, 7]. The original proofs
in dimension two relied on the geometry of the plane. The articles of Caffarelli,
Karakhanyan and Lin [6, 7] introduce some deep original ideas. In particular, in
their proofs we find delicate applications of the classical Alt-Caffarelli-Friedman
monotonicity formula [1], the Caffarelli monotonicity formula [8] and the im-
provement of flatness technique developped by Caffarelli. Later, Dancer, Wang and
Zhang clarified even further the segregation phenomenon (that is, the limit of
strong competition) and gave also an account on the speed of convergence of the
densities [12].

More recent developments include the study of non-local diffusion operators
by Verzini and Zilio [18] and non-local competition in a work of Caffarelli, Patrizi
and Quitalo [5]. The interest in these problems is twofold. On the one hand,
many models are non-local in the original formulations. On the other hand, in
the non-local framework many techniques of the standard local formulations are
not available any longer. This has lead to the development of new approaches to
these problems.

In this paper, we are concerned with the set of solutions of (1.1) in two extreme
cases: small competition (β small and N arbitrary) or large number of competing
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groups of predators (N large and β arbitrary). In a sense, this is a dual scenario
with respect to N bounded and β very large, which was the main framework
considered in [4]. We establish here that solutions are necessarily constant and
unstable if β is small or N is large:

Theorem 1.1. There exist β̄ > 0 and N̄ ≥ 1 such that if β ∈ [0, β̄) or N ≥ N̄, then the
set of solution of (1.1) consists only of the constant solution

w1 = . . . wN =
λk − µω

µβ(N − 1) + Nk2
, u =

λβ(N − 1) + ωkN

µβ(N − 1) + k2N
.

These solutions are (strongly) unstable if and only if N 6= 1 and β > 0.

The previous result bears consequence for the ecological interpretation of the
model. Indeed, let us consider the total population of predators (the densities wi)
that reside in the domain Ω. Then, if β is small or N is large enough, we find that
its value is given by

WN =
∫

Ω

N

∑
i=1

wi =
(λk − µω)N

µβ(N − 1) + Nk2
|Ω|.

If the population has only one pack, that is, with no inter-specific competition,
we have

W1 =
(λk − µω)

k2
|Ω|.

Hence, for β small or N large, the division into packs without formation of terri-
tories (constant solution) is always less advantageous in term of the total size of
the population.

Let us briefly describe the strategy of the proof of Theorem 1.1. We first show
some asymptotic results (Propositions 4.1 and 5.1) which state that if β is small or
N is large, then the solutions are uniformly close to constant solutions. Then we
show that close-to-constant solutions are necessarily constant. The main difficulty
in the proof of these results is that the number of component N (and in some cases
also the competition strength β) may be unbounded, and all the estimates need
to be uniform in the parameters.

Many questions regarding the solutions of this system remain open that we
think are worthy of further investigations.
Open problem 1. The thresholds β̄ and N̄ of Theorem 1.1 are not explicit. It
would be very relevant for modeling issues to have some estimates on these two
quantities.
Open problem 2. Under which conditions do there exist non-constant solutions,
outside of the region of Theorem 1.1? We answered this question [4] in dimension
one and in higher dimension in rectangular domains. Also we have partial results
in this direciton for the case of general domains in higher dimension for the case
two groups of predators. More general existence results are known for similar
systems that only involve competing preys (or predators with a given constant
resource) [11, 13, 14]. But it is open in general for system (1.1).
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Figure 1. Pictorial description of Theorem 1.1.

Open problem 3. Solutions of (1.1) are the stationary solutions of the parabolic
system







∂twi − d∆wi =
(

−ω + ku − β ∑j 6=i wj

)

wi in Ω × (0, T)

∂tu − D∆u =
(

λ − µu − k ∑
N
i=1 wi

)

u in Ω × (0, T)

∂νwi = ∂νu = 0 on ∂Ω × (0, T)

wi(x, 0) = wi,0(x), u(x, 0) = u0(x) on Ω × {0}.

Under which conditions do solutions of the parabolic system converge to station-
ary solutions for large time T? An answer to this question together with Theorem
1.1 could imply that the set N ≤ N̄ attracts the dynamics for large time.
Open problem 4. We use the structure of the system in several steps of the proof
of Theorem 1.1. In particular, our method relies on the fact that the coefficients in
the equation of the predator densities (that is, d, ω and k), are independent of the
density. It is an interesting an open problem to know whether or when the same
type of classification results hold for the more general system







−di∆wi =
(

−ωi + kiu − β ∑j 6=i aijwj

)

wi in Ω

−D∆u =
(

λ − µu − ki ∑
N
i=1 wi

)

u in Ω

∂νwi = ∂νu = 0 on ∂Ω.

(1.2)

Assuming, for instance, that di, ωi, ki and aij are only close to values that are
independent of i and j. is it true that the only solutions of β small or N large are
constant?

Acknowledgements: This work has been supported by the ERC Advanced Grant
2013 n. 321186 “ReaDi – Reaction-Diffusion Equations, Propagation and Mod-
elling” held by Henri Berestycki, and by the French National Research Agency
(ANR), within project NONLOCAL ANR-14-CE25-0013. Part of this work was
completed while the first author was visiting the Hong Kong University of Sci-
ence and Technology Jockey Club Institute of Advanced Study whose support he
gratefully acknowledges.

2. Preliminary results

We start by stating here some already known results that will be useful in the
following. First, we recall that positive solutions of (1.1) are uniformly bounded
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independently of β ≥ 0 and N. More precisely, in [2] we have shown the follow-
ing estimate.

Theorem 2.1. Let Ω ⊂ R
n be a smooth domain. Let β ≥ 0 and N ∈ N. We consider

a non negative (bounded) solution v = (w1, . . . , wN, u) = (w, u) of the system (1.1).
Then all components of v are uniformly bounded in L∞(Ω) with respect to β > 0 and
N ∈ N, and there exists C = C(Ω) > 0 (that, in particular, is independent of β and N)
such that

0 ≤ u ≤ λ

µ
, and 0 ≤

N

∑
i=1

wi ≤ C.

Moreover, for any α ∈ (0, 1) there exists Cα = C(α, Ω) (again independent of β and N)
such that

‖u‖C2,α(Ω) ≤ Cα

and

max
i∈{1,...,N}

‖wi‖C0,α(Ω) +

∥
∥
∥
∥
∥

N

∑
1=1

wi

∥
∥
∥
∥
∥

C0,α(Ω)

≤ Cα

∥
∥
∥
∥
∥

N

∑
1=1

wi

∥
∥
∥
∥
∥

L∞(Ω)

.

Actually, the result in [2] is more general that the one stated here. For instance,
in [2] we did not assume that the coefficients in the equations are independent of
the index i.

In [2], we have also conducted a first asymptotic analysis of the solutions for β
large, which we recall.

Theorem 2.2. There exist β̂ > 0 and N̂ ∈ N sufficiently large, such that if β > β̂ and
vβ = (wβ, uβ) is a solution of (1.1) then

• either at most N̂ components of wβ are strictly positive and the others are zero

(that is N ≤ N̂);
• or, in case N > N̂, the solution is such that

max
i=1,...,N

‖wi,β‖C0,α(Ω) + ‖uβ − λ/µ‖C2,α(Ω) = oβ(1)

for every α ∈ (0, 1).

3. Stability properties of constant solutions

We start now with the core arguments of the paper. First of all, we analyze the
constant solutions of (1.1) and investigate their stability. The results contained
in this section follow rather straightforward computations, but are fundamental
in our argument. Thus we detail them. Specifically, we show that (1.1) has only
constant solutions if β = 0 (this is a generalization of [4, Lemma 3.2]). These are
unstable if N = 0 and stable if N ≥ 1. If β > 0, constant solutions are uniquely
determined by the number of their non-zero components. Furthermore, in this
case they are strongly linearly stable if N = 1 and (strongly) linearly unstable
otherwise. Thus, this section contains a generalization of [4, Lemma 3.3], which
was stated in the case N ≤ 2.

We begin this section by recalling a result of Mimura [16, Theorem 1]. It con-
cerns the solutions of the classical predator-prey model with Neumann boundary
conditions, and it states that these are necessarily constant. Here we give a short
and more precise proof of this useful result.
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Lemma 3.1. The non-negative (bounded) solutions of system






−D∆H = (−ω + ku − βH)H in Ω

−d∆u = (λ − µu − kH)u in Ω

∂ν H = ∂νu = 0 on ∂Ω

are all constant. In particular, they are

(H, u) = (0, 0),

(

0,
λ

µ

)

or

(
λk − µω

k2 + µβ
,

ωk + λβ

k2 + µβ

)

.

The result holds true even if β = 0 or µ = 0.

Proof. We can apply the comparison principle to the equations in H and u sep-
arately. It follows that either the corresponding component is 0 or it is strictly
positive. In case one component is 0, we readily deduce that the other one must
be constant. The only two possibilities are (H, u) = (0, 0) or (H, u) = (0, λ/µ).

Thus we only need to consider the case of strictly positive solutions. Let

h =
λk − µω

k2 + µβ
, u =

ωk + λβ

k2 + µβ
.

Observe that (h, u) is a solution of the system. In particular, we have the following
identities

h =
λ − µu

k
, u =

ω

k
+

β

k
h.

We use these identities and the equations in the system to compute the integral

I =
∫

Ω

(

1 − h

H

)

D∆H +
(

1 − u

u

)

d∆u.

We find

I = −
∫

Ω

(

1 − h

H

)

(−ω + ku − βH) H +
(

1 − u

u

)

(λ − µu − kH) u

=
∫

Ω
βH2 − 2βhH + βh2 + µu2 − 2µuu + µu2

=
∫

Ω
β [H − h]2 + µ [u − u]2 ≥ 0.

On the other hand

I = −h

∫

Ω
D
|∇H|2

H2
− u

∫

Ω
d
|∇u|2

u2
≤ 0.

Combining the two estimates, it follows that both u and H must be positive and
constant. From the system we find that H = h and u = u. This concludes the
proof. �

We can use the previous result in order to completely classify the solutions of
(1.1) in the case β = 0.

Lemma 3.2. Assume β = 0. Then all solutions v = (w, u) of (1.1) are constant. If
w = 0, then the corresponding solution is unstable. On the other hand, if at least one
component of w is positive, then w can be any vector of non negative components such
that

N

∑
i=1

wi =
λk − µω

k2
, and u =

ω

k
.
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These solutions are weakly linearly stable.

Proof. We consider the function H = ∑
N
i=1 wi. Summing all the equations in wi,

we find the reduced system






−d∆H = (−ω + ku) H in Ω

−D∆u = (λ − µu − kH) u in Ω

∂νH = ∂νu = 0 on ∂Ω.

As by Lemma 3.1, (H, u) must be constant, and it has to be one of the following
three solutions

(H, u) = (0, 0),

(

0,
λ

µ

)

or

(
λk − µω

k2
,

ω

k

)

.

We can easily verify that the first two solutions are strongly linearly unstable (this
follows also from [4, Lemma 3.3]). In the third case, we find that each component
wi of w is solution to

{

−d∆wi =
(
−ω + k ω

k

)
wi = 0 in Ω

∂νwi = 0 on ∂Ω.

Thus, w is made of positive constant functions whose sum is (λk − µω)/k2. We
observe that in this case, the solutions form an open and non empty simplex. By
reasoning as in [4, Lemma 3.3] we deduce that they are weakly linearly stable. �

We now consider the case β > 0.

Lemma 3.3. Let β > 0. For any N ∈ N∗ there exists a unique positive constant solution
v = (w, u) of (1.1), given by

w = w1 = . . . wN =
λk − µω

µβ(N − 1) + Nk2
, u =

λβ(N − 1) + ωkN

µβ(N − 1) + Nk2
.

This solution is linearly stable if N = 1, and strongly unstable if N ≥ 2. In the latter
case, the linearized system at v writes as follows







−∆

(

dW

DU

)

= Aβ

(

W

U

)

in Ω

∂νW = ∂νU = 0 on ∂Ω,

where the matrix Aβ is

Aβ =












0 −βw −βw . . . −βw kw
−βw 0 −βw . . . −βw kw
−βw −βw 0 . . . −βw kw

...
...

...
. . .

...
...

−βw −βw −βw . . . 0 kw
−ku −ku −ku . . . −ku −µu












.

The eigenvalues of Aβ are {βw, Λ1, Λ2}, where
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• βw has multiplicty N − 1, and its eigenspace is given by the vectors V =
(W, U) ∈ R

N+1 such that

N

∑
i=1

Wi = 0, U = 0;

• Λ1 and Λ2 have strictly negative real part.

Observe that, since d 6= D, the knowledge of the spectrum of Aβ in general
does relate to the stability/instability of the solutions. However, in this case the
unstable directions are given by constant functions, thus we can infer the stability
properties of the solutions from the spectrum of Aβ.

Proof. One can easily verify that the function v in the statement is a solution to
(1.1). The uniqueness of the solution follows from the fact that the matrix of
the corresponding linear system is invertible. A direct computation yields the
following formula for the characteristic polynomials of Aβ:

det(Aβ −γId) = (βw−γ)N−1
[

γ2 + γ(µu + (N − 1)βw) + ((N − 1)βµ + Nk2)uw
]

.

Therefore, Aβ has eigenvalues βw, whose multiplicity is N − 1, and the remain-
ing eigenvalues are complex conjugate and have strictly negative real part. The
eigenspace of βw is spanned by the vectors V = (W, U) such that

{

β ∑
N
i=1 Wi = kU

k ∑
N
i=1 Wi = −µU

=⇒
{

∑
N
i=1 Wi = 0

U = 0.

We see that at least one component of W is negative. �

4. Asymptotic results of positive solutions for β small

We now turn our attention to the study of general positive solutions and ana-
lyze the behavior of the solutions of system (1.1) as a function of the parameter
β and N. To start with, we first consider the case of small β > 0. Our first aim is
to show that every solution of (1.1) is close to the constant solutions in a strong
sense, which we describe in the following proposition. This is a generalization of
[4, Proposition 3.14]. However, note that since the number of components N is
not a priori fixed, but is here a free parameter, this is a quite delicate extension
and requires new ingredients in the proof.

Proposition 4.1. For any ε > 0 there exists βε > 0 such that for any v = (w, u)
solution of (1.1) with β ∈ [0, βε] and any N ≥ 1, the following estimates hold

∥
∥
∥u − ω

k

∥
∥
∥

C2,α(Ω)
≤ ε

max
i=1,...,N

∥
∥
∥
∥

wi −
λk − µω

Nk2

∥
∥
∥
∥

C2,α(Ω)

≤ ε

N
.

Letting H = ∑
N
i=1 wi, this entails that

∥
∥
∥
∥

H − λk − µω

k2

∥
∥
∥
∥

C2,α(Ω)
≤ ε.

Before proceeding, we provide a technical lemma that will be of use later on.
The proof is straightforward and is left to the reader.
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Lemma 4.2. Let w = (w1, . . . , wN) ⊂ C0,α(Ω) be a vector of non negative functions.
Then ∥

∥
∥
∥
∥

N

∑
i=1

w2
i

∥
∥
∥
∥
∥

C0,α

≤
(

max
i=1,...,N

‖wi‖L∞ + 2 max
i=1,...,N

|wi|C0,α

)
∥
∥
∥
∥
∥

N

∑
i=1

wi

∥
∥
∥
∥
∥

L∞

.

Finally we recall that, if β > 0, the solutions satisfy the following rigidity
property with respect to ordering.

Lemma 4.3. Assume β > 0. If there exists i 6= j such that wi ≥ wj in Ω, then wi ≡ wj

or wj ≡ 0.

This simple lemma is very useful in many of our arguments. It will allows
us to show that the components w of the solutions have all similar behaviors.
Extending this property to model the more general framework of system (1.2)
would essentially allows us to establish Theorem 1.1 in the greater generality.
This lemma extends a result of [4, Proposition 3.14] stated and proved in the case
N = 2 to the case of N components. For completeness, we give here a short proof.

Proof. We consider a solution of (1.1) and we assume that there exist i 6= j such
that wi ≥ wj ≥ 0 and wi 6≡ 0. We look at the equations satisfied by wi and wj. By
letting

g = βwiwj ≥ 0

We have






−d∆wi =
(

−ω + ku − β ∑h 6=i,j wh

)

wi − g in Ω

−d∆wj =
(

−ω + ku − β ∑h 6=i,j wh

)

wj − g in Ω

∂νwi = ∂νwj = 0 on ∂Ω.

(4.1)

Thus wi and wj are two solutions of the same linear elliptic equation. An integra-
tion by parts and Green’s formula show that:

∫

Ω
g(wi − wj) = 0.

Hence, wj ≡ 0 (in which case g ≡ 0) or wi ≡ wj. �

Proof of Proposition 4.1. Let vn = (wn, un) be any sequence of solutions of (1.1)
defined for βn > 0 and βn → 0. Before deriving the behavior of each component
of the vector wn, we first start with an estimate of the sum Hn. We first show that

lim
n→+∞

∥
∥
∥
∥

Hn −
λk − µω

k2

∥
∥
∥
∥

C2,α

+
∥
∥
∥un −

ω

k

∥
∥
∥

C2,α
= 0.

By Theorem 2.1, we already know that the sequence (Hn, un) is uniformly

bounded in C0,α × C2,α(Ω). Thus, up to a subsequence, (Hn, un) converges to
a limit profile (H, u). We now derive a limit system for (H, u) and show that

necessarily (H, u) = ((λk − µω)/k2, ω/k). The identification of a single possible
limit then implies that the whole sequence converges to it.

First, we have that (Hn, un) are solutions of






−d∆Hn = (−ω + kun − βnHn) Hn + βn ∑
Nn
i=1 w2

i,n in Ω

−D∆un = (λ − µun − kHn) un in Ω

∂ν Hn = ∂νun = 0 on ∂Ω.
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The components of wn being non-negative, we know that

0 ≤
Nn

∑
i=1

w2
i,n ≤

(
Nn

∑
i=1

wi,n

)2

= H2
n.

Since βn → 0 and Hn is uniformly bounded, ∆Hn is uniformly bounded in

C0,α(Ω) for any α ∈ (0, 1) (see Lemma 4.2). By standard elliptic regularity, Hn is

uniformly bounded in C2,α(Ω) for any α ∈ (0, 1). Exploiting this information, we

also obtain that un is uniformly bounded in C2,α(Ω) for any α ∈ (0, 1). Thus, up

to striking out a subsequence, we get that (Hn, un) → (H, u) in C2,α(Ω) for any
α ∈ (0, 1). By passing to the limit in the equation, we see that (H, u) is a solution
of







−d∆H = (−ω + ku) H in Ω

−D∆u = (λ − µu − kH) u in Ω

∂νH = ∂νu = 0 on ∂Ω.

Hence, by Lemma 3.1, we conclude that (H, u) must be constant. Thus we have
three possibilities

(H, u) = (0, 0), or

(

0,
λ

µ

)

or

(
λk − µω

k2
,

ω

k

)

.

Our goal is to prove that only the last one can occur.
We first show that, necessarily, u > 0. Indeed, assume by contradiction that

the component un converges (uniformly) to 0. Then, there exists n0 ∈ N such
that un0 < ω/k. But then the maximum principle, when applied to the equation
for Hn0 , implies that necessarily Hn0 ≡ 0, that is wn0 ≡ 0, a contradiction with
the assumption Nn ≥ 1 for all n ∈ N.

We now show that u < λ/µ. Reasoning again by contradiction, we assume
that u → λ/µ (uniformly). We consider the normalized function

H̄n =
Hn

‖Hn‖L∞
.

This new sequence of functions verifies
{

−d∆H̄n = (−ω + kun − βnHn) H̄n + βn

(

∑
Nn
i=1 w2

i,n

/
‖Hn‖L∞

)

in Ω

∂ν H̄n = 0 on ∂Ω.

Once more by the uniform estimates in Theorem 2.1, we find that the sequence

{H̄n}n is uniformly bounded in C0,α(Ω) and, by the previous equation, we also
derive that {H̄n}n is uniformly bounded in C2,α(Ω) for any α ∈ (0, 1). As a result,

up to a subsequence, {H̄n}n converges to a non-negative function H̄ ∈ C2,α(Ω)
solution of

{

−d∆H̄ =
(

λ
µ k − ω

)

H̄ in Ω

∂ν H̄ = 0 on ∂Ω

with ‖H̄‖L∞ = 1. Owing to the assumption that λk > ωµ, we must have H̄ ≡ 0,
a contradiction.

Thus u = ω/k and, necessarily, H = (λk − µω)/k2. Therefore, we find that the

whole sequence (Hn, un) converges to ((λk − µω)/k2, ω/k).
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To conclude the proof, we only need to show that each component of wn

converges to the same (scaled) constant. First, by letting

w̄i,n =
wi,n

‖wi,n‖L∞

we have that
{

−d∆w̄i,n = (−ω + kun − βnHn + βnwi,n) w̄i,n in Ω

∂νw̄i,n = 0 on ∂Ω.

We recall that Hn is uniformly bounded in C2,α(Ω) for any α ∈ (0, 1), and wi,n is

uniformly bounded in C0,α(Ω). Moreover by assumption βn → 0. By the same
reasoning as before, up to a subsequence, the sequence w̄i,n converges to a non

negative function w̄i ∈ C2,α(Ω) such that ‖w̄i‖L∞ = 1 and
{

−d∆w̄i = (−ω + ku) w̄i = 0 in Ω

∂νw̄i = 0 on ∂Ω,

therefore w̄i ≡ 1. Now, assume that there exists ε > 0 and n̄ large such that

‖win,n‖L∞ < (1 − ε)‖wjn,n‖L∞

for any n ≥ n̄ and indexes in, jn ∈ {1, . . . , Nn}. Then there exists n large enough
such that win,n < wjn,n. By Lemma 4.3, since βn > 0, this yields win,n ≡ 0, a
contradiction. Thus, we have that

lim
n→+∞

sup
i,j∈{1,...,Nn}

‖wi,n‖L∞

‖wj,n‖L∞
= 1 and lim

n→+∞
sup

i,j∈{1,...,Nn}

∥
∥
∥
∥
∥

wi,n

‖wj,n‖L∞
− 1

∥
∥
∥
∥
∥

C2,α

= 0.

(4.2)
From the first limit it follows that there exists a sequence εn → 0 such that

(1 − εn) sup
j=1,...,Nn

‖wj,n‖L∞ ≤ wi,n(x) ≤ (1 + εn) inf
j=1,...,Nn

‖wj,n‖L∞

for all n ∈ N, i = 1, . . . , Nn and x ∈ Ω. Summing up in i we find

(1 − εn)Nn sup
j=1,...,Nn

‖wj,n‖L∞ ≤ Hn ≤ (1 + εn)Nn inf
j=1,...,Nn

‖wj,n‖L∞ .

Combining this inequality the second limit in (4.2), we find

lim
n→+∞

Nn sup
i=1,...,Nn

∥
∥
∥
∥

wi,n −
λk − µω

Nnk2

∥
∥
∥
∥

C2,α

= 0.

This concludes the proof of the Proposition. �

5. Asymptotic results of positive solutions for N large

In the preceding section, we have studied asymptotic results of positive so-
lutions when β is close to 0 (independently of N). We now investigate what
happens when N is large (independently of β > 0). We will show that the system
has similar behaviors in both cases. We first prove in this section that if N is
large enough, independently of the value of β, then all solutions are close to the
constant solutions of Lemma 3.3, in a sense to be specified. In the last section, we
will show that solutions are actually constant. To prove this, an essential step is
to prove that solutions are close to constants.
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We now state the precise result in the following proposition which is the ana-
logue of Proposition 4.1 in the case of N large.

Proposition 5.1. For any ε > 0 there exists Nε ∈ N such that for any v = (w, u)
solution of (1.1) with N ≥ Nε and any β > 0, we have

∥
∥
∥
∥

u − λβ(N − 1) + ωkN

µβ(N − 1) + k2N

∥
∥
∥
∥

C2,α(Ω)

≤ ε

and

max
i=1,...,N

∥
∥
∥
∥

wi −
λk − µω

µβ(N − 1) + Nk2

∥
∥
∥
∥

C2,α(Ω)

≤ ε

N(1+ β)
.

In particular, letting H = ∑
N
i=1 wi, this implies

∥
∥
∥
∥

H − N
λk − µω

µβ(N − 1) + Nk2

∥
∥
∥
∥

C2,α(Ω)

≤ ε

1 + β
.

The proof of this proposition is rather involved, and it will be divided into
several intermediate results. Our first aim is to show that if N is large, then all
components of any solution w are small in the uniform norm. Then, we will
derive a uniform estimate on the sum of all the components of w, showing in
particular that it converges to zero if β is large. Collecting all these intermediate
steps, we will be able to conclude that the solutions converge to constant solutions
for N large, independently of β. As was the case in the previous section with
respect to the dependence in N, the main difficulty here is that we want to obtain
estimates that are uniform in β.

We start by showing that if N becomes large, all the components of w converge
to 0.

Lemma 5.2. For any ε > 0 there exists Nε ∈ N such that for any v = (w, u) solution
of (1.1) with N ≥ Nε and β > 0, we have

sup
i=1,...,N

‖wi‖L∞(Ω) ≤ ε.

Proof. We argue by contradiction and assume that there exists a sequence of so-
lutions (wn, un) of (1.1), a constant δ > 0 and a sequence {in : 1 ≤ in ≤ Nn} such
that Nn → +∞ and

‖win‖L∞ ≥ δ.

We consider the function Hn = ∑
Nn
i=1 wi,n. By the uniform estimates, we recall

Theorem 2.1, we know that, up to a subsequence, Hn = ∑
Nn
i=1 wi,n converges in

the C0,α(Ω) norm to some limit function H. Moreover, since Nn → +∞, by

Theorem 2.2 we find that βn ≤ β̂. Thus we can extract yet another subsequence

and assume that βn → β, with β ∈ [0, β̂].
Again from the uniform bounds of Theorem 2.1 and the assumption that Nn →

+∞, it follows that there exists at least a sequence {jn : 1 ≤ jn ≤ Nn} such that
‖wjn,n‖L∞ → 0. Indeed, assume that this is not the case. Then there exists η > 0

such that ‖wi,n‖L∞ ≥ η for all i and n. Exploiting the uniform C0,α(Ω) bounds,
we can find a sequence {xi,n} ⊂ K and a radius r > 0 such that wi,n(x) ≥ η/2 for



PREDATOR-PREY (III): CLASSIFICATION 13

all x ∈ Br(xi,n) ∩ Ω. Thus, by Lemma A.1 (see Appendix A), for any n ∈ N we

know that there exists a point xn ∈ Ω such that

Nn

∑
i=1

wi,n(xn) ≥ Cr Nn
η

2

for a positive constant Cr > 0. We find a contradiction with uniform L∞ bound
in Theorem 2.1.

Up to a relabelling, we assume that in ≡ 1 and jn ≡ 2, so that w1,n → w1 6≡ 0

and w2,n → 0 in the C0,α(Ω) topology for all α < 1. Considering the equations
satisfied by w1,n, we have

{

−d∆w1,n = (−ω + kun + βnw1,n − βnHn)w1,n in Ω

∂νw1,n = 0 on ∂Ω.
(5.1)

From this equation we infer that w1,n is bounded in C2,α(Ω) for all α ∈ (0, 1)
(recall that the sequence βn is bounded), and thus w1,n → w1 in C2,α(Ω). We can
pass to the limit in the equation and find

{

−d∆w1 = (−ω + ku − βw1 − βH) w1 in Ω

∂νw1 = 0 on ∂Ω.
(5.2)

Since w1 ≥ 0 and by assumption w1 6≡ 0 (indeed ‖w1‖L∞ ≥ δ), by the maximum
principle we find that w1 > η in Ω for some positive constant η. As a conse-
quence, for n large enough we have that w1,n > η/2 in Ω. On the other hand,
since w2,n → 0 uniformly in Ω, for n large enough we find w2,n < η/2 in Ω. But
then there exists n̄ > 0 such that w1,n̄ > w2,n̄, and by Lemma 4.3 this implies
w2,n̄ ≡ 0, a contradiction. �

Next we show that the sum of all components is bounded and decays for β
large.

Lemma 5.3. There exist N̄ ∈ N and C > 0 such that, for any v = (w, u) solution of
(1.1) with N ≥ N̄, we have

‖H‖L∞(Ω) ≤
C

1 + β
.

Proof. We argue by contradiction and assume that there exists a sequence vn =
(wn, un) of solutions such that Nn → +∞ and βn‖Hn‖L∞(Ω) → +∞. We already

know by Theorem 2.1 that the sequence Hn is bounded in C0,α(Ω), thus we infer
that βn → +∞. We consider the following alternative.
Case 1) There exists η > 0 such that

sup
i=1,...,Nn

‖wi,n‖L∞ ≥ η‖Hn‖L∞ .

Up to a relabeling, we can assume that ‖w1,n‖L∞(Ω) ≥ η‖Hn‖L∞(Ω). Let us intro-

duce the scaled functions and sequence

w̄i,n =
wi,n

‖Hn‖L∞
, β̄n := βn‖Hn‖L∞(Ω).
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Thus β̄n → +∞. The vector w̄n is bounded in C0,α(Ω) by Theorem 2.1. Then w̄n

solves






−d∆w̄i,n =
(

−ω + kun − β̄n ∑j 6=i w̄j,n

)

w̄i,n in Ω

−D∆un =
(

λ − µun − k ∑
Nn
i=1 wi,n

)

un in Ω

∂νw̄i,n = ∂νun = 0 on ∂Ω

for β̄n and Nn large. In particular we have β̄n > β̂ and Nn > N̂, where β̂ and N̂
are the thresholds in Theorem 2.2. By the assumption, w̄1,n converges to a non
zero limit. By the same reasoning as in [4, Theorem 6.4] (see also [2, Theorem 1.5]
for the version of the proof in the case N a priori unbounded) we get that β̄n is
bounded, a contradiction.
Case 2) There exists a sequence εn such that εn > 0, εn → 0 and

sup
i=1,...,Nn

‖wi,n‖L∞ ≤ εn‖Hn‖L∞ .

By continuity of Hn, we can consider a sequence xn ∈ Ω such that

Hn(xn) = ‖Hn‖L∞ .

Since, moreover, the sequence Hn is uniformly bounded in C0,α(Ω), there exists
r > 0 such that, for n large enough,

Hn(y) >
1

2
Hn(xn) for all y ∈ Br(xn) ∩ Ω.

We now consider the equation satisfied by Hn. By summing all the equations in
wn, we find

{

−d∆Hn = (−ω + kun − βnHn) Hn + βn ∑
Nn
i=1 w2

i,n in Ω

∂ν Hn = 0 on ∂Ω.

By assumption we have that for all y ∈ Br(xn) ∩ Ω

Nn

∑
i=1

w2
i,n(y) ≤ sup

i=1,...,Nn

‖wi,n‖L∞(Ω)

Nn

∑
i=1

wi,n(y) ≤ εn‖Hn‖L∞(Ω)Hn(y).

Thus Hn solves
{

−d∆Hn ≤
(

λk−µω
µ − 1

2 (1 − 2εn)βn‖Hn‖L∞

)

Hn in Br(xn) ∩ Ω

∂ν Hn = 0 on Br(xn) ∩ ∂Ω.
(5.3)

If the right hand side is negative, then ∆Hn > 0 in Br(xn) ∩ Ω. As xn is the
maximum of Hn, we find a contradiction with the maximum principle if either
xn ∈ Ω or xn ∈ ∂Ω, since ∂ν Hn = 0 on Br(xn) ∩ ∂Ω. Consequently, it must be the
case that

βn‖Hn‖L∞ ≤ 2(λk − µω)

µ(1 − 2εn)
.

Again we reach a contradiction. This concludes the proof of Lemma 5.3. �

We now show a last technical estimate.
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Lemma 5.4. For any ε > 0 there exists Nε ∈ N such that if v = (w, u) is a solution of

(1.1) with β > 0, N ≥ Nε and H = ∑
N
i=1 wi, then

∥
∥
∥
∥
∥

∑
N
i=1 w2

i

H

∥
∥
∥
∥
∥

L∞(Ω)

≤ ε

1 + β
.

Proof. Thanks to Lemma 5.2 we already know that for any ε > 0 there exists
Nε ∈ N such that if β > 0 and N ≥ Nε, then

(1 + β)

∥
∥
∥
∥
∥

∑
N
i=1 w2

i

H

∥
∥
∥
∥
∥

L∞

≤ (1 + β) sup
i=1,...,N

‖wi‖L∞ ≤ (1 + β)ε.

Thus, if β is bounded then the conclusion follows by taking ε sufficiently small
(and thus Nε sufficiently large).

Let us now consider the case β large. From Lemma 5.3 we know that there
exists C > 0 such that

(1 + β)

∥
∥
∥
∥
∥

∑
N
i=1 w2

i

H

∥
∥
∥
∥
∥

L∞

≤ (1 + β)‖H‖L∞

supi=1,...,N ‖wi‖L∞

‖H‖L∞
≤ C

supi=1,...,N ‖wi‖L∞

‖H‖L∞
.

We first show that for any ε > 0 there exist β̄ > 0 and N̄ ∈ N such that if β > β̄
and N ≥ N̄, then

sup
i=1,...,N

‖wi‖L∞ ≤ ε‖H‖L∞ . (5.4)

Again, we argue by contradiction, and assume that there exist a constant η > 0
and a sequence vn = (wn, un) of solutions with βn → +∞ and Nn → +∞ such
that,

sup
i=1,...,Nn

‖wi,n‖L∞ > η‖Hn‖L∞ .

Up to a relabeling, we can assume that ‖w1,n‖L∞(Ω) = supi=1,...,Nn
‖wi,n‖L∞(Ω).

We introduce the scaled densities

w̄n :=
wn

‖Hn‖L∞
and H̄n :=

Hn

‖Hn‖L∞
.

We want to show that ‖w̄n‖L∞ → 0 as n → +∞ and reach a contradiction. The
sequences of functions (w̄n, un) and H̄n solve the systems







−d∆w̄i,n =
(
−ω + kun + β̄nw̄i,n − β̄nH̄n

)
w̄i,n in Ω

−D∆un = (λ − µun − kHn) un in Ω

∂νw̄i,n = ∂νun = 0 on ∂Ω

(5.5)

where β̄n := βn‖Hn‖L∞ . By Lemma 5.3, we already know that the sequence
β̄n is bounded, and thus, up to striking out a subsequence, it converges to a
non negative constant β̄. By Theorem 2.1, the functions (w̄n, un), Hn and H̄n

are uniformly bounded in C0,α(Ω). Since the coefficients in each equation are

bounded uniformly in the C0,α norm, the sequence (w̄n, un) is also uniformly

bounded in C2,α(Ω). Up to extracting a further subsequence, we find that any
limit (w̄, ū) and H̄ solves







−d∆w̄i =
(
−ω + ku + β̄w̄i − β̄H̄

)
w̄i in Ω

−D∆u = (λ − µu − kH) u in Ω

∂νw̄i = ∂νu = 0 on ∂Ω

(5.6)
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By the maximum principle, we find that, for any i, either w̄i > 0 or w̄i ≡ 0 in

Ω. To reach a contradiction, i view of our choice of relabeling, we are going to to
exclude w̄1 > 0.

We claim that if w̄1 > 0, then w̄i > 0 for all i. We adopt the same strategy as
in Lemma 5.2. This just follows from Lemma 4.3 by arguments we have already
used.

We strengthen the claim and now show that there exists δ > 0 such that

inf
x∈Ω

w̄i,n(x) > δ for all i and n. (5.7)

Suppose this is not the case. Then, infx∈Ω w̄in(x) → 0 for a sequence in ∈
{1, . . . Nn}. Up to a relabeling, we can assume that in ≡ 2. Since the densi-

ties are uniformly bounded, we see that the sequence w̄2 converges in C2,α to a
solution of either (5.5) or (5.6) that has a strictly positive maximum and is zero at

some point of Ω, in contradiction with the strong maximum principle. This prove
the inequality (5.4).

We can now complete the proof of Lemma 5.4. By construction we know that
H̄n ≤ 1. Passing to the uniform limit we find H̄ ≤ 1, which is incompatible with
the uniform estimate (5.7), since we have Nn → +∞. Lemma 5.4 thus follows. �

We are in a position to prove Proposition 5.1.

Proof of Proposition 5.1. We first show that from any sequence vn of (1.1) defined
for Nn → +∞ we can always extract a subsequence such that

lim
n→+∞

(1+ βn)

∥
∥
∥
∥

Hn − Nn
λk − µω

µβn(Nn − 1) + Nnk2

∥
∥
∥
∥

C1,α

+

∥
∥
∥
∥

un −
λβn(Nn − 1) + ωkNn

µβn(Nn − 1) + Nnk2

∥
∥
∥
∥

C2,α

= 0

for all α ∈ (0, 1). Observe that in the statement we choose a C1,α norm of the
component Hn which is weaker than the C2,α norm. We will improve the estimate
at the end of the proof. We have to distinguish two cases, depending on the
behavior of the sequence βn.
Case 1) βn contains a bounded subsequence. In this case we follow closely the
proof of Proposition 4.1. Up to striking out a subsequence, we can assume that
βn → β ≥ 0. We consider the system satisfied by Hn and un,







−d∆Hn =

(

−ω + kun − βnHn + βn
∑

Nn
i=1 w2

i,n
Hn

)

Hn in Ω

−D∆un = (λ − µun − kHn) un in Ω

∂νHn = ∂νun = 0 on ∂Ω.

(5.8)

By Lemma 5.4 we see that all the terms in the right hand side of this system
are uniformly bounded in the L∞ norm. Thus the sequence Hn is uniformly

bounded in C1,α(Ω), and therefore the sequence un is uniformly bounded in

C2,α(Ω). Up to striking out a subsequence, these two sequences converge to

some limits H ∈ C1,α(Ω) and u ∈ C2,α(Ω) that are weak solutions of






−d∆H = (−ω + ku − βH) H in Ω

−D∆u = (λ − µu − kH) u in Ω

∂ν H = ∂νu = 0 on ∂Ω.
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From Lemma 3.1 we deduce that all solutions to the previous system are constant.
More precisely, from this lemma we know that

(H, u) = (0, 0), or

(

0,
λ

µ

)

or

(
λk − µω

µβ + k2
,

λβ + ωk

µβ + k2

)

.

We can exclude the first two possibilities. Indeed, if un → 0 uniformly, then, for
n large enough, we have un < ω/k − δ for some δ > 0. But then, by Lemma 5.4,
Hn solves

{

−d∆Hn < (−kδ + εn) Hn in Ω

∂ν Hn = 0 on ∂Ω

where εn > 0 is a sequence that converges to 0. Thus, it follows that for n large
enough Hn ≡ 0, a contradiction. We can also exclude the second possibility. In-
deed, assume that Hn → 0 and un → λ/µ. Let us renormalize Hn, by introducing

the sequence H̄n := Hn/‖Hn‖L∞(Ω) which is bounded in C1,α(Ω). Up to striking

out a subsequence, we can passing to the limit and find that the sequence H̄n

converges in C1,α(Ω) to a positive solution of

{

−d∆H̄ = λk−µω
µ H̄ in Ω

∂ν H̄ = 0 on ∂Ω

and we find a contradiction. Thus, if the sequence βn contains a bounded subse-
quence, we finally obtain that, at least along a subsequence,

lim
n→+∞

(1 + βn)

∥
∥
∥
∥

Hn −
λk − µω

µβ + k2

∥
∥
∥
∥

C1,α

+

∥
∥
∥
∥

un −
λβ + ωk

µβ + k2

∥
∥
∥
∥

C2,α

= 0.

Case 2) βn → +∞. We consider again system (5.8). From Lemma 5.3 we infer
that Hn converges uniformly to 0. We then consider the rescaling

Ĥn := βnHn

which, by Lemma 5.3, is bounded in L∞(Ω). The functions Ĥn and un are solu-
tions of







−d∆Ĥn =

(

−ω + kun − Ĥn + βn
∑

Nn
i=1 w2

i,n
Hn

)

Ĥn in Ω

−D∆un =
(
λ − µun − k/βnĤn

)
un in Ω

∂ν Ĥn = ∂νun = 0 on ∂Ω.

Observe that by Lemma 5.4, the coefficients of the right hand side of the system

are all uniformly bounded in L∞(Ω). Once again, we find that Ĥn and un are

uniformly bounded in C1,α(Ω) and, up to striking out a subsequence, they con-

verge to some limits Ĥ and u that belong to C1,α(Ω). These limit functions are
solutions of the system







−d∆Ĥ =
(
−ω + ku − Ĥ

)
Ĥ in Ω

−D∆u = (λ − µu) u in Ω

∂ν Ĥ = ∂νu = 0 on ∂Ω.

(5.9)
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By the maximum principle, we see that u is constant, and then Ĥ is constant as
well. More precisely we have three possibilities

(H̄, u) = (0, 0), or

(

0,
λ

µ

)

or

(
λk − µω

µ
,

λ

µ

)

.

Reasoning exactly as in Case 1), we can exclude the first two possibilities. Thus
in the case βn → +∞, we get

lim
n→+∞

∥
∥
∥
∥

βnHn −
λk − µω

µ

∥
∥
∥
∥

C1,α

+

∥
∥
∥
∥

un −
λ

µ

∥
∥
∥
∥

C2,α

= 0.

and our original claim follows easily.
We now analyze the single components of wn. We consider once again the

functions

w̄n :=
wn

‖Hn‖L∞
.

We can exchange the elements of each vector w̄n in such a way that the first
one has the largest L∞ norm, ‖w1,n‖L∞ = supi=1,...,Nn

‖wi,n‖L∞ for all n. Each

component of w̄n solves the equation
{

−d∆w̄i,n =
(
−ω + kun − βnHn + β̄nw̄i,n

)
w̄i,n in Ω

∂νw̄i,n = 0 on ∂Ω.

where β̄n := βn‖Hn‖L∞ → (λk − µω)/µ. Since the coefficients of the previous

equation are uniformly bounded in C0,α(Ω) by Theorem 2.1 and using the con-
vergence of βnHn that we have previously shown, the sequence w̄i,n is uniformly

bounded in C2,α(Ω). Passing to the limit along a suitable subsequence, we obtain

that w̄1,n converges in C2,α(Ω) to a non negative function w̄1, solution of
{

−d∆w̄1 = λk−µω
µ w̄2

1 in Ω

∂νw̄1 = 0 on ∂Ω.

Since λk > µω, we see that w̄1 ≡ 0 and thus we find

lim
n→+∞

supi=1,...,Nn
‖wi,n‖L∞

‖Hn‖L∞
= 0.

We now go back to the original sequence of function wn. Each component solves
{

−d∆wi,n = (−ω + kun − βnHn + βnwi,n) wi,n = qi,nwi,n in Ω

∂νwi,n = 0 on ∂Ω.

where, by the previous discussion, ‖qi,n‖C0,α(Ω) → 0 for n → +∞. By considering

the renormalization

ŵi,n =
wi,n

‖wi,n‖L∞

we see that any subsequence with Nn → +∞ has to converge to the constant 1 in

C2,α(Ω). But then, reasoning as in Proposition 4.1, we have that

lim
n→+∞

sup
i,j∈{1,...,Nn}

‖wi,n‖L∞

‖wj,n‖L∞
= 1.
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First, we thus find that

lim
n→+∞

sup
i,j∈{1,...,Nn}

∥
∥
∥
∥
∥

wi,n

‖wj,n‖L∞
− 1

∥
∥
∥
∥
∥

C2,α

= 0.

Second, there exists a sequence εn → 0 such that

(1 − εn) sup
j=1,...,Nn

‖wj,n‖L∞ ≤ wi,n(x) ≤ (1 + εn) inf
j=1,...,Nn

‖wj,n‖L∞

for all n ∈ N, i = 1, . . . , Nn and x ∈ Ω. Summing up in i and multiplying by
(1 + βn) we find

(1− εn)Nn(1+ βn) sup
j=1,...,Nn

‖wj,n‖L∞ ≤ (1+ βn)Hn ≤ (1+ εn)Nn(1+ βn) inf
j=1,...,Nn

‖wj,n‖L∞ .

Combining these inequalities we obtain

lim
n→+∞

Nn(1 + βn) sup
i=1,...,Nn

∥
∥
∥
∥

wi,n −
λk − µω

µβn(Nn − 1) + Nnk2

∥
∥
∥
∥

C2,α

= 0.

To conclude, it only remains to observe that the previous limit implies also

the convergence of (1 + βn)Hn to its constant limit in C2,α(Ω). The proof of
Proposition 5.1 is thus concluded. �

6. Classification results of positive solutions for β small or N large

We now show that, when β is small or N is large, the solutions are not only
close to constant, but are actually constant. Thus we derive the exact form of the
solutions in these regimes. This is Theorem 1.1, which we repeat here for the
readers’ convenience.

Theorem 6.1. There exist β̄ > 0 and N̄ ≥ 1 such that if either 0 ≤ β ≤ β̄ or N ≥ N̄
then the only solutions of (1.1) are the constant solutions.

We emphasize that the constant β̄ does not depend on N and, likewise, N̄
does not depend on β. In particular, this result provides a generalization of [4,
Proposition 3.14]. Indeed, the result here is quite different from [4, Proposition
3.14] in that the number of non-zero components of v is now a free parameter.

Proof. We assume, by contradiction, that there exists a sequence of solutions vn =
(wn, un) of (1.1) with parameters βn and Nn, with either βn → 0 or Nn → +∞

such that vn has at least one non constant component. Let (Wn, . . . , Wn, Un) with

Wn :=
λk − µω

µβn(Nn − 1) + Nnk2
, Un :=

λβn(Nn − 1) + ωkNn

µβn(Nn − 1) + k2Nn

be the unique constant solution of system (1.1) corresponding t the parameters β
and N. In view of Propositions 4.1 and 5.1, we know that

lim
n→∞

[

(1 + βn)
Nn

∑
i=1

‖wi,n −Wn‖C2,α + ‖un − Un‖C2,α

]

= 0. (6.1)

We first show that the components of wn are all equal for n large enough. To
prove this, we make use of the structure of the system as we did in Lemma 4.3.
We assume by contradiction that there exist two sequences of indexes in 6= jn ∈
{1, . . . , Nn} such that the densities win,n 6= wjn,n for all n ∈ N. Up to a relabelling,
we can assume that in ≡ 1 and jn ≡ 2.
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Let us define the sequence of functions

ϕn :=
w1,n − w2,n

‖w1,n − w2,n‖L∞(Ω)
.

Observe that these functions are well defined, since by assumption w1,n 6= w2,n

for all n ∈ N. Using Lemma 4.3, we find that each ϕn necessarily changes sign
in Ω. Moreover, by definition, we have ‖ϕn‖L∞ = 1 for all n ∈ N. As a result we
have

max
Ω

|ϕn| = 1 and min
Ω

|ϕn| = 0

for all n ∈ N. These functions ϕn solve the equations
{

−d∆ϕn = an ϕn in Ω

∂ν ϕn = 0 on ∂Ω.

where an : Ω → R is defined as

an := −ω + kun − βn ∑
h≥3

wh,n.

We claim that an → 0 in C2,α(Ω). Indeed

‖an‖C2,α =

∥
∥
∥
∥
∥
−ω + kun − βn ∑

h≥3

wh,n

∥
∥
∥
∥
∥

C2,α

=

∥
∥
∥
∥
∥
∥

−ω + kUn − βn(Nn − 1)Wn
︸ ︷︷ ︸

=0

+k(un − Un)− βn ∑
h≥3

(wh,n − Wn) + βnWn

∥
∥
∥
∥
∥
∥

C2,α

≤ k ‖un − Un‖C2,α + βn ∑
h≥3

∥
∥wh,n − Wn

∥
∥

C2,α + βn|Wn|.

The last term converges to 0 by (6.1) and the definition of Wn.

From the equation, we then infer that ϕn is uniformly bounded in W2,p(Ω)
for all p < ∞. Hence, bootstrapping the regularity of ϕn, we find that ϕn is also

uniformly bounded in C2,α(Ω) for all α ∈ (0, 1). Passing to the limit in n, up to

striking out a subsequence, we get a function ϕ ∈ C2,α(Ω) such that max
Ω
|ϕ| = 1,

min
Ω
|ϕ| = 0 and ϕ is a solution of

{

−d∆ϕ = 0 in Ω

∂ν ϕ = 0 on ∂Ω.

This implies that ϕ must be a constant, and we have thus reached a contradiction.
Hence, for n large enough, we see that

wi,n ≡ wj,n =: wn for all i, j ∈ {1, . . . , Nn}.

Exploiting this new information, from the system verified by (wn, un) we can
then extract a reduced system of two equations satisfied by (wn, un). It reads







−d∆wn = (−ω + kun − βn(Nn − 1)wn) wn in Ω

−D∆un = (λ − µun − kNnwn) un in Ω

∂νwn = ∂νun = 0 on ∂Ω.



PREDATOR-PREY (III): CLASSIFICATION 21

The pair (wn, un) falls under the assumptions of Lemma 3.1, and this entails that
wn and un are necessarily the constant solutions Wn and Un. The proof is thereby
complete. �
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Appendix A. An estimate about compact sets

We prove a useful estimate about compact sets of R
n. It can be interpreted as

a continuous version of the Pigeonhole Principle.

Lemma A.1. Let K ⊂ R
n be a compact set. We consider N ∈ N open balls Br(xi) of

centers xi ∈ K and radius r > 0. There exists a point x ∈ K that belongs to mx = ♯{i :
x ∈ Br(xi)} of such balls, where mx is bounded from below by

mx ≥ N

( √
2r

2r + diam K

)n

.

Here diam K = max{‖x − y‖ : x, y ∈ K} is the diameter of K.

Proof. For want of a reference, we give here a short proof. We consider the set

Br + K = {x1 + x2 : x1 ∈ Br, x2 ∈ K}, of diameter 2r + diam K. By Jung’s theorem
[15], there exists a ball BR of radius

R = (2r + diam K)

√
n

2(n + 1)

such that Br + K ⊂ BR. Let CN,r ∈ N∗ be the largest number of balls Br(xi) that
have a common non-empty intersection

CN,r = max
x∈K

♯{i : x ∈ Br(xi)}.

We can estimate the volume of BR from below observing that any point in BR

belongs to at most CN,r balls. We find

N

∑
i=1

|Br(xi)| ≤ CN,r|BR| =⇒ |BR| ≥
1

CN,r
ωnNrn,

where ωn = |B1| is the volume of the ball of radius 1. On the other hand, we have

|BR| = ωnRn = ωn (2r + diam K)n
(

n

2(n + 1)

) n
2

.

Combining the two estimates, we conclude

CN,r ≥ N

(
r

2r + diam K

)n [

2

(

1 +
1

n

)] n
2

≥ N

( √
2r

2r + diam K

)n

. �
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École des Hautes Études en Sciences Sociales, PSL Research University Paris, Centre
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8 place Aurélie Nemours, 75205, Paris CEDEX 13


	1. Introduction
	2. Preliminary results
	3. Stability properties of constant solutions
	4. Asymptotic results of positive solutions for beta small
	5. Asymptotic results of positive solutions for N large
	6. Classification results of positive solutions for beta small or N large
	Appendix A. An estimate about compact sets
	References

