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ANALYTIC NORMAL FORMS FOR PLANAR RESONANT SADDLE
VECTOR FIELDS

LOIC TEYSSIER

AssTracT. We give essentially unique “normal forms” for germs of a holomorphic
vector field of the complex plane in the neighborhood of an isolated singularity
which is a p : g resonant-saddle. Hence each vector field of that type is conjugate,
by a germ of a biholomorphic map at the singularity, to a preferred element of an
explicit family of vector fields. These model vector fields are polynomial in the
resonant monomial.

This work is a followup of a similar result obtained for parabolic diffeomor-
phisms which are tangent to the identity, and solves the long standing problem of
finding explicit local analytic models for resonant saddle vector fields.

Acknowledgement. The author is partially supported by the bilateral Hubert-Curien
Cogito grant 2021-22.

1. INTRODUCTION AND STATEMENT OF THE RESULTS

The general question of finding a simpler form, or ultimately “the” simplest
form, of a dynamical system through changes preserving its qualitative properties
is central in the theory. A simpler form often means a better understanding of the
behavior of the system, or of its analytic properties. This article is concerned with
finding simple models for holomorphic dynamical systems given by the flow of a
p : q resonant-saddle vector field (eigenratio —#/q) near the origin of C2. (Precise
definitions are given later in the introduction.) We use intensively the appellation
normal form for vector fields brought into these forms. Although the latter do not
satisfy algebraic properties usually required in normal form theory, its usage is
nonetheless spreading to refer to preferred forms which are essentially unique (say,
up to the action of a finite-dimensional space).

It is possible to attach to a vector field Z := A% + B(% two dynamical systems:

the one induced by the flow, and the underlying foliation. In the former setting
the objects of study are the trajectories of Z and their natural parameterization
by the time, i.e. maximally-continued multivalued solutions of the autonomous
differential system with complex time

x(t) =Ax(t),y(t)
p(t) =B(x(£),p(t)

while in the latter only their images are of interest: the leaves of the foliation Fz
are the integral curves of Z regardless of how they are parameterized. Save for

(1.1)
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vertical leaves, they correspond to the graphs of solutions of the nonautonomous

ordinary differential equation (since % = %)

Alxy(x)y'(x) = B(xy(x).

Therefore two vector fields induce the same foliation when they differ by the mul-
tiplication with a nonvanishing function (a holomorphic unit).

1.1. A brief survey of the normal form problem for planar resonant singular-
ities. Being given a (germ of a) holomorphic vector field, we seek to simplify its
components by use of local analytic changes of coordinates. At first one would
try and simplify the vector field using formal power series, and for planar vector
field this process leads to polynomial formal normal forms | , ] Yet
this formal approach does not always preserve the dynamics, as is particularly the
case in the presence of resonances where divergence of the formal normalization
is the rule.

Analyzing the divergence of these formal transforms provides many an infor-
mation about the dynamics or the integrability (in the sense of Liouville) of the
system. The theory of summability was used successfully by J. MarTINET and ].-
P. Ramis [ , ] to perform this task for saddle-node and resonant vector
fields, ultimately yielding a complete set of functional invariants that classifies
the foliation (called here the orbital modulus). However, their construction did
not yield normal forms except in very exceptional (integrable) cases. Some years
later the complete modulus of resonant and saddle-node vector fields (eigenratio
0) was described in [ , , | by appending to the orbital modulus
another functional invariant, called here the temporal modulus and accounting for
the multiplicative units that give rise to different vector fields while keeping the
same foliation. Still no normal form was proposed. Analytic normal forms were
announced in [ ] but no proof was subsequently published.

Building on an earlier work of P. ELizarov [ ], a prenorrmal (nonunique)
form is presented in [ ] that allows to decide in some cases whether two vec-
tor fields (or foliations) are not conjugate. At about the same time F. Loray | ]
performed a cleverly simple geometric construction that yielded normal forms for
codimension-1 saddle-node foliations, but only in the nongeneric case where half
the orbital modulus is nontrivial (convergent saddle-nodes, admitting two analytic
separatrices through the singularity). Loray’s normal forms generalized the ones
stated by J. EcarLE in | | (see the paper by D. Savzin | ] for precise state-
ments and proofs regarding the resurgent approach to saddle-node classification).
In Ecalle’s terminology, convergent saddle-nodes are called unilateral, and save for
that case no general normal forms were given. Later, Ecalle refined his theory and
techniques to propose a way of building a preferred representative in the analytic
class of a given resonant vector field [ |, the canonical-spherical synthesis. Al-
though uniqueness is reached, this approach does not provide an explicit family
of vector fields that can be written down.

In joint work with R. SCHAFKE, an altogether different approach was used in |
to recover Loray normal forms, while extending them from foliations to vector
fields and generalizing them to higher-codimension saddle-nodes. Based on a
holomorphic fixed-point method, it was later reused with C. Rousseau to encom-
pass the parametric case in | ], in order to provide normal forms for conver-
gent saddle-node bifurcations, while at the same time Loray’s construction was



ANALYTIC NORMAL FORMS FOR PLANAR RESONANT SADDLE VECTOR FIELDS 3

ported to parametric families. Yet it was not possible to drop the nongeneric as-
sumption regarding the “unilaterality” of the orbital modulus. The reason behind
this difficulty is explained later, let us for now simply state that the remedy lies
in introducing a parameter, playing the same role as Ecalle’s twist in the twisted
resurgent monomials that serve as building blocks for the canonical-spherical syn-
thesis. The trick was already used in | ] to provide normal forms for general
germs of a parabolic line biholomorphism which is tangent to the identity. The lat-
ter paper was written with the clear aim of overcoming the problem and porting
the technique to general planar resonant vector fields, and I encountered Ecalle’s
work on twisted monomials during the final stage of its redaction.

The present paper is a blend of holomorphic fixed-point and twist parameter,
and it achieves the task of finding a general explicit normal form family for reso-
nant planar saddle vector fields.

1.2. Statement of the main result. Consider a planar holomorphic vector field Z
near some isolated stationary point (or singularity), which we conveniently locate
at (0,0) so that Z(0,0) = 0. Its Jacobian matrix at that point admits two eigenval-
ues, A; and A,, at least one of which we assume nonzero (the origin is a nondegen-
erate singular point of Z), say A, = 0. The eigenratio A := % encodes an important
part of the dynamics. It is well known for instance that if A ¢ R, then there exists
a local biholomorphic mapping ¥ : (CZ,O) — (Cz,O), a property that we write

Ye Diff((Ez, O), such that the pullback vector field
W'z :=DW¥ ! (ZoW)

is linear: W*Z (x,y) = Alxa% + /\zya%. We say that Z is analytically conjugate to its
linear part (or analytically linearizable).

Of course when A € R it may happen that Z is not analytically linearizable but
if A >0, then Z is analytically conjugate to a polynomial vector field [ ]. The
difficult cases arise when A < 0, and the really difficult cases (the ones that still

seem out of reach) occur when A is a negative irrational. In the sequel we suppose
that A € Q<0.

Definition 1.1. We describe the class of resonant vector fields Z and their under-
lying resonant foliations Fz, assuming none of which can be put in a linear form
by conjugacy. We say that Z admits a p : q saddle singularity at that point (Z is a
p : q resonant vector field) if its eigenratio is A = —;—7 for coprime positive integers

p and g. If A =0 then Z is a saddle-node vector field.

Remark 1.2. There exists a deep link between resonant saddles and saddle-nodes,
as we explain in Section 1.5.

The pioneering works of H. Poincarg and H. DuLac eventually yield the formal
classification of all p : g resonant vector fields: a codimension-k vector field Z, for
k € Z., is always formally conjugate to one of the formal normal forms P (1) X,
where u := x9yP is called the resonant monomial, P is a polynomial of degree at
most k in the variable u with P (0) # 0, and

- d d d
. k k FU—
(1.2) Xo(x,p) = u xax+(1+yu )(/\x s yay), necC.
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By this we mean that there exists an invertible formal power series W = (W}, V),
with W; € C[[x,y]], such that W*Z = PX,. This form is unique up to the action
of linear changes of variables (x,y) — (ax, fy) € GL,(C) with (aqﬁp)k = 1. The
couple (k, p) is the formal orbital modulus coming from the Dulac-Poincaré nor-
mal form | ], while P is the additional formal temporal modulus obtained
by A. Bruno | ]. The formal modulus (k, y, P) is left unchanged under formal
changes of variables on Z: it is a (complete) formal invariant.

We introduce the functional space of germs of a holomorphic function in two
complex variables u and y:

n=1

2k
Cluleariylso = {yZu”fn(y) :fnGC{y}},

where C{y} is the algebra of germs of a holomorphic function at 0 € C. Consider
for every parameter ¢ > 0 (Ecalle’s twist) the polynomial vector field

(1.3) Xo(x,p):= ukx(%+(c(1—uzk)+yuk)Y(x,y)

where
d d
Y(xp):= “pxo-+ qya—y.

This is the main result of the article.

Normalization Theorem. Let Z be a p : q resonant vector field with formal modulus
(k, u, P). There exist:

e a bound c(Z) > 1 and, for each choice of the twist ¢ > c(Z),
o two germs G,R € Clu]y; (v} »

e a local holomorphic change of coordinates \V € Diff((Ez, 0),

such that
(1.4) W7 Zopie —b X
‘ TR pGTR
XR = X0+RY.

Moreover any two Zg g and Zg g are analytically conjugate near (0,0) if and only if
they are conjugate by some (x,v) — (ax, fy) € GL1 (C) with (oﬂ/jp)k =1

Remark 1.3.

(1) The reader should be aware at that point of a slight abuse of notation.
When plugging the variables (x,v) in the expression above, the monomial
u should be substituted with u (x,y). For instance if y = 0, then

d d d
— Pk, qk+1 _ 2qk 2pk\ [ _ .. Y v
Xo(x,9) =yP*x 8x+c(1 x“y )( pxax+qyay).

(2) The proof actually asserts that the 2k functions y  f, (v) appearing in R
and G are holomorphic and bounded on the disc {y : )y| < 2}.

Remark 1.4.
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(1) In [ ] it is proved that any germ of a saddle foliation at (0,0) with
eigenratio A can be defined in a convenient local analytic chart by a vector
field of the form

P) P
xaﬂ(f(y)ﬂc)ya—y , fel+yCly}.

Clearly this form is very simple, but it is not unique. The link between
this form and the normal forms presented here is unclear.

(2) In| ] a methodological approach for “canonical spherical synthesis”
of e.g. resonant foliations is proposed. Unfortunately it is not possible to
directly extract from it an explicit form for the synthesized vector fields.

(3) The form of R and G is satisfying and seems optimal in the sense that there
is as many free (2k) components in R (resp. G) than there is in the orbital
modulus (resp. temporal modulus). Although the mapping

modulus +—— normal form

is certainly not as simple as in the case of unilateral moduli described
in [ ], where it is “triangular” and computable, the works of Ecalle
may provide a path to find an explicit expression for it.

Definition 1.5. We use the notations introduced in the Normalization Theorem.

(1) The vector field Zg  is called an analytic normal form of Z.
(2) The vector field Xy is called an analytic orbital normal form of Z. The
name is justified by the fact that 77 is analytically conjugate to Fx,.

1.3. Outline of the construction and structure of the article. The proof of the
Normalization Theorem is done in three steps and relies on Martinet-Ramis orbital
classification of resonant planar foliations | ], which is summarized in Sec-
tion 3. That general scheme has already been used successfully in | , 1
although the technical intricacies differ from one case to the other and require spe-
cific arguments. In particular in the present situation we rely on results that have
recently been obtained in | | for the realization of analytic class of parabolic
germs. (Of course the link between the class of a saddle foliation and its holonomy
is well known, but here we do not directly invoke such arguments.)

Orbital realization Being given the Martinet-Ramis modulus associated to a res-
onant vector field Z, we build a vector field X in normal form within
the same formal class and with the same orbital modulus. This is
done in Section 4 by a fixed-point method involving a Cauchy-Heine
transform solving a nonlinear Cousin problem associated to a secto-
rial decomposition of the (u,y)-space (Section 2). The trickiest part in
the construction is to find a model vector field X, whose orbit space
in the intersection of consecutive sectors can be controlled. More pre-
cisely, by increasing the twist parameter ¢ we are able to shrink the
size of the orbit spaces so that they become adapted to the given or-
bital modulus. This is explained in Section 3. Without the introduc-
tion of the twist parameter it seems very dubious to provide normal
forms: if one tries by another mean to reduce the size of the orbit
space in one intersection to make it fit within the disc of convergence
of a component of the modulus, then the size increases in the next in-
tersection and may spill out of that of the corresponding component.
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The notable exception comes from unilateral moduli, where only one
out of two components are nontrivial and the same strategy as | ]
would work for resonant saddle vector fields.

The process yields a vector field Xg where R is holomorphic on some
«hollow» domain, which is not a neighborhood of the origin but con-

tains the tube C x {1 < |y| < 2}. By studying the growth of x — R(x,p)

for fixed y we deduce that R has a polynomial form Zﬁ’;l u"f, (v),
while the shape of the hollow domain forces each f, to extend holo-
morphically to the whole disc {‘y| < 2}.

Temporal realization So far we have found an analytic change of coordinates
bringing Z to some UXyr with U(0,0) = 0. Sending UXg to Zgr =
ﬁXR is done by solving the cohomological equation Xz - T = % -
% — G, where Xg - T is the Lie (directional) derivative of the function
T along Xp. Being given U and P, there is a unique choice of G in
normal form such that the equation has an analytic solution T. To
understand this we need to exhibit an explicit cokernel for the deriva-
tion Xg, by providing a section of the period operator associated to Xg.
Here again the main tool is the Cauchy-Heine transform (although it
does not need to be iterated). This study is performed in Section 5
but we give more details in Section 1.4 to come, since knowing the
cokernel is worthwhile and carries a lot of useful applications.

Uniqueness of the realization So far the family of vector fields {Z g} has been
proved versal, thus it is natural to describe the automorphisms of
the family to study its universality. Once the diagonal action (x,v) —
(a, By) with (aq/ﬂp)k =1 has been factored out, it remains to prove that
the only automorphism which is tangent to the identity is the identity
itself. According to the discussion in the previous item, the function
G is unique for a given orbital class Xg, therefore we must prove that
if two foliations in normal form Fyx, and Fx, are conjugate by some
W then W = Id. First, we show that W can be assumed to preserve
the resonant monomial, i.e. W = (xe’PN ,yeqN ) for some holomorphic
germ N, then we relate the condition W*Fx, = Fx, to a cohomological
equation involving N. The latter has only trivial solutions, thanks to
the description of the cokernel that we have done. We give a full proof
of the uniqueness statement in Section 6.

1.4. Cohomological equations, period operator and its natural section. Because
[Xo, Y] = 0 we can follow the strategy laid out in [ ].

e Xy is (formally/analytically) conjugate to Xy if and only if there exists a
(formal/analytic) solution of the cohomological equation

Xg-N = -R.

In that case a conjugacy is obtained as } : (x,7) > (xexp (—-pN (x,7)),yexp (gN (x,))),
the flow at time N of the vector field Y.
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e UXy is (formally/analytically) conjugate to V Xy if and only if there exists
a (formal/analytic) solution of the cohomological equation
1 1
Xg-T = —-=.
K u v
. . . T
In that case a conjugacy is obtained as @y, .
Such equations are called cohomological equations. The obstructions to solve
formally or analytically these equations reasonably provides us with invariants of
classification.
Cohomological Theorem. Let Xy be an orbital normal form.

(1) Consider the cohomological equation Xg - F = G with G € C{x,}.

(a) There exists a formal solution F € C[[x,y]] if and only if the Taylor ex-
pansion of G at (0,0) does not contain terms u" for n € {0,...,k} (in that
case F is unique). We write C{x, v}, the space of all such germs, and we
assume in the following that G belong to that space.

(b) There exists a neighborhood Q of (0,0) on which G is holomorphic and
bounded, a covering of Q\{xy =0} into 2k “sectors” IO, for j € Zikz
and § € {+—,—+), together with 2k bounded holomorphic functions iFt e
Holob(jQﬁ), such that Xp - iFf = G.

(c) The difference JEt=—Jp-+* (resp. J*YE=+ _JF+~) is constant on the leaves
of Fx, and tends to 0 on {xy = 0}, therefore it defines a holomorphic func-
tion 1f~ e C{%LO (resp. I f* € C{h),) of the leaf coordinate h € C.

(2) We call period operator of Xy the linear mapping

. . 1 xk
. Jf- gt -
TeiGeCluply — (F0f7) € (a:{h}>0 xC{h}>0) .
(a) The formal solution F given in 1.(a) is a convergent power series if and
only if Tr (G) = 0.
k
(b) The period operator is surjective. More precisely, being given f € (C{%LO X (E{h}>0)><
there exists a unique G € Clu] .y {y},( such that Tr(G) = f.

Definition 1.6. The operator Sy : f +— G defined in 2. of the Cohomological
Theorem is called the natural section of the period operator of Xg.

We may reformulate algebraically the previous theorem by saying that the fol-

lowing sequence of linear maps is exact:
cst Xg- TR
C “—— Clyl — Clyly —= (€[t xClhh)”
with a similar exact sequence at a formal level
cst Xgr* I,
C — Clxyl] — Cllxy]] —= Cluly’

where Iy @ ), ez, o &nmX" 9" > Lok gqg,pgu‘; is the canonical projection coming

from the power series expansion. We deduce from this theorem the following
interpretation of the different moduli involved (see Corollary 5.6).

e The obstruction to solve formally X - T= % is located in P :=TI; (U) and
that gives the formal temporal modulus of Bruno.
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e The obstruction to solve analytically Xz - T = % — 1 is embodied the pe-

riod Tg (% - 1%) and that gives the temporal modulus (¢-shift) of Grintchy-
Voronin.

e The obstruction to solve analytically Xg - N = —R is the period Tk (-R) and
that provides the logarithmic form of Martinet-Ramis orbital modulus.

Partial results pertaining to the Cohomological Theorem (namely, 2. (a)) were al-
ready obtained in [ ].

Remark 1.7. Due to the particular structure of the leaf space of Fx,, the period

xk
operator is not onto the whole space of germs (C{%LO xC{h}>0) . Indeed, by

taking a smaller neighborhood of (0, 0) the size of the leaf space in the intersection
of consecutive sectors does not shrink to a point. To realize a given element of
that space as a period of Xj it is probably necessary to take a larger ¢ (and thus
another R while staying in the same orbital class). Precise statements are given in
Theorem 5.7.

As an application of the Cohomological Theorem, the same reasoning as the one
produced in [ ] (that uses the natural section of the period operator) allows
to generalize a result of M. BerrHier and F. Touzer | , Proposition 5.5] to
resonant saddle foliations: a resonant saddle foliation admits a Liouvillian first-
integral if and only if its orbital normal form Xy is a Bernoulli vector field, that
is R(u,v) = y?r(u) for some d € Z- and r € uC[u],,. We leave details to the
interested reader.

1.5. Summability and divergence. The Cohomological Theorem offers in 1.(b)
“sectorial” sums to the (generally) divergent power series F. As will be made
clear in Section 5, the divergence is concentrated in the resonant monomial. This
property was already underlined in | | for the orbital problem. In fact, when
G € C{u,y},; one can prove that the iF% come from holomorphic functions in the
variable (u,v) € jVﬁx{)y| < 2} where u is replaced by u (x,y) and / V¥ is a traditional
sector in the u-variable. From Ramis-Sibuya’s theorem (see e.g. [ ]), we can
deduce that F =) . f, (v) u" where the f, are holomorphic and bounded on the
disc D := {|y’ < 2} with ||fullp = O(B” (n!)l/k), i.e. that F is transversely k-summable
in the variable u.

All these facts can also be deduced from corresponding properties already known
for saddle-node vector fields. One may indeed observe that the resonant saddle
vector fields we obtain as normal forms do come from saddle-node vector fields
in the variables (u,y). This is made apparent by considering the foliation Fx, as
integrating the distribution of dual differential 1-forms:

2k
uFxdy + [c(l - uzk) +uuk +y Zu”fn (y)] (pxdy + qydx).

n=1

Recalling that u = x7yP, we deduce that fXR also integrates the distribution given
by

2k
(1.5) wg (1,v) == uF*1dy +y[c(1 —uzk)+yuk +9 Zu"fn (y)]du.

n=1
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This is exactly a saddle-node in the variables (u,y) with formal invariant (k, p).
This correspondence is well known for formal normal forms (R := 0), and we just
established it at an analytical level.

2. NOTATIONS AND BASIC TOOLS

Since a lot of objects of different natures mix up (germs at (0,0) of holomorphic
objects, sectorial objects, Banach spaces of functions efc.), we must introduce nu-
merous notations. This section provides the reader with a glossary of notations
and conventions we stick to throughout the article.

e It will be convenient to follow the convention
0t':=0 and 07':=c0.

e We fix a pair (p, q) of coprime positive integers and we define the associ-
ated resonant monomial

u(x,p):=xyP.

e Most constructions take place in the variables (u#,y) and are pullbacked in
the variables (x,y) through the canonical embedding

L (xy)— (u(x),7).

In order to keep notations as light as possible, we write u, to stand for the
value of u (x,y) in expressions containing x and y, in order to distinguish
it from the usage of u as a standalone symbol. We use a similar notation
for functions. For instance starting from f : (u,y) — f (1,7) we write f, to
stand for the function I"f = f o s:

for (0p) = f(u(x),9).

2.1. Sector-related notations. We fix k € Z., . Undoubtedly the biggest source
of notational heaviness comes from the decomposition of the (x,y)-space and u-
space into 2k sectors. This decomposition is classical yet we wish to introduce
notations that both contain all necessary contextual information and embodies
the underlying dynamical structure. The vast majority of objects we introduce are
collections O of 2k sectorial objects JO*® indexed by j € Z/kz and e € {+,—,+—,—+}.
Here is the list of the conventions that are always used in the rest of the article:

e jis some (arbitrary) element of Z/kz ;
e the symbol f§ is some (arbitrary) element of {+—, —+};
. . . _(iot
e we simply write the collection O = ( ) )jeZ/kz,ﬁe{+—,—+} as

0 = (10%)

and the collection O = as

( jo* )jeZ/kz,*e{—,+}

o = (Jo%).
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oy +-

Ficure 2.1. The sectorial decomposition near 0 in the case k = 3
(left) or k =1 (right).

Definition 2.1. This should be read with the figure 2.1 in mind.

(1) The sectorial decomposition of the u-space is the collection of 2k open,
infinite sectors (j Vﬁ) defined as

. 2j+1| 5
Tyt .= {uiO: argu —m ]2;; <8—7]:},
. 2j+1| 5
vt o= {uiO: argu + 7 ]2-;; <£}

(2) The intersection of pairwise successive sectors is either one of the follow-
ing sectorial domains (if k > 1)

iv==ivtniv,
jyt.= Hly=tniy+,

We extend this definition for k = 1 by considering the two connected com-
ponents V=~ and °V* of °V*~n 9V ~* under the condition that °V* con-
tains +IR.

(3) Let us define:

= ::{(u,y)e(IJ2 vl <2 ue jV+‘}
Jyt= {(u,y)e(E2 t1<y[<2, ue fV‘+},

as well as the corresponding intersections /V* build in a similar fashion
as in 2. The notation V denotes the full collection (j Vﬂ) "

(4) We pull-back these sectors by defining '
ij =1 (jVﬂ) = {(x,y) eC? : 1(x,) € 7Vﬁ},

and form the filled union

V. :=int val‘ .
it
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Remark 2.2. The domain V, is the disjoint union of |J; 4 iV# on the one hand and
{(x,v) €V, : xy =0} on the other hand. It is not a neighborhood of (0,0), and each

ij is not connected whenever (p,q) = (1,1).

2.2. Function spaces. We write C|z];., the algebra of polynomials in z of degree
at most d and valuation at least v. We omit to write v whenever it equals 0. The
field C may also be replaced with other commutative rings.

Definition 2.3.

(1) Let D c C" be a domain. We denote by Holo (D) the algebra of functions
holomorphic on D.

(2) We define the Banach algebra Holoy, (D) of all C-valued bounded holomor-
phic functions on D with continuous extension to the closure D, equipped
with the norm:

Ifllp = suplf(z).
zeD

(3) Being given a finite collection D := (7Di) of 2k domains of €2, we denote

by Holoy, (D) the product Banach space []; . Holob(jDJ—') equipped with
the product norm

f=UF) Wl o= max||[7f]]

(4) Let D* c IP; (C) be a domain containing 0*!. We define the Banach al-
gebra Holoy, (D)’ of all C-valued bounded holomorphic functions on D,
admitting a continuous extension to the closure D and vanishing at 0*1,
equipped with the norm

Il = sup LN
"

zeD

If D is a star-shaped domain centered at 0*!, then IF 1, < IIfMp -

2.3. Vector fields.

e 7 is a resonant-saddle or saddle-node vector field near (0,0). The notation
X is in general reserved for vector fields with a trivial temporal compo-
nent.

e Z - F stands for the Lie derivative along Z, acting on F € C[[x,y]] or on

F e C{x,v}.

We let @é (x,v) be the flow at time t of Z, i.e. the local holomorphic so-

lution of 1.1 with initial condition (x,y). It is locally holomorphic in the

variables (x,7, t) taken sufficiently close to (0,0, 0).

A first-integral H of Z is a holomorphic function such that Z - H = 0.

(k, u) € N5 x C is the formal orbital modulus of Z while P € C[u]_; with

P(0) # 0 is its formal temporal modulus. The complete formal modulus

is (k, p, P).
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e The formal orbital normal form associated to the formal modulus (k, p, P)
is the polynomial vector field depending on the twist parameter ¢ > 1:

(2.1) Xo(x,9):= ufx%+(c(1—u3k)+yuf)Y(x,y)

d d
Y(x,v):= “pxo -+ qya—y.

3. MARTINET-RAMIS ORBITAL MODULUS OF A RESONANT SADDLE

Finding formal models for the dynamics of 2-dimensional vector fields is easy
enough. When these formal normalizations fail to be analytic, one must perform
a finer study to obtain the analytical classification. In the orbital case, i.e. that
of foliations, this amounts to endowing the leaf space with a holomorphic struc-
ture and describing the analytic diffeomorphisms between these manifolds. The
now-classical strategy for resonant foliations is to build adapted sector-like areas
whose closure is a neighborhood of the singularity, and to find normalizing secto-
rial maps conjugating the dynamics with that of the formal model F,.

For expository reasons, in this section we briefly explain how both tasks are
achieved for 1 : 1 foliations, following the ideas of J. MarTINET and J.-P. Ramis |

] and introducing some material needed later on. In Section 4.4 we stress the
slight modifications that are needed to make the general theory for p : g resonant
foliations work.

3.1. Study of the formal model and making of the sectors. Here we investigate
the global dynamical properties, for a fixed value of ¢ > 0, of the vector field X
given by (2.1). We are particularly interested in describing its orbit space, which
can be achieved through the study of the Liouvillian first-integral

H(u,v):=vH (u),
c(u’k + uk)
k

By letting X,- stand for the Lie directional derivative along X, an elementary
computation yields

(3.1) H(u):=uFexp

Xo-H, =0.

(In fact X is built as the dual vector field of the rational 1-form dﬁH) This identity
tells us that level sets of H, coincide with trajectories of X,. That is, an equation
of a leaf of F, is given by

H, (x,y) = cst.

Yet, because H is multivalued when u & Z, some care needs to be taken; in the
sequel we use the determination of the argument of u on C\IRy, to compute the
actual value of u™#: when crossing the boundary from °V=* to °V*~ the value of
u™* is multiplied with e 2"#, We wish to distribute evenly this change over all
sectors /1 V¥,

Definition 3.1. Set
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We define the model (sectorial) first-integrals as éHﬁ where:

' 2j if = +-
6Hﬁ(u,y) =o'y x H (1) with n:= 2j-1 iff=—+andj>0.
2k—1 iff=—+andj=0
The third item of the next lemma is the key property that allows the rest of the
construction to be worked out. The vector field X; has been designed so that it
holds.
Lemma 3.2.

(1) LetV beasmall domain containing (0,0) and take M, M eVniVE The identity
{)HE( M) = {)Hﬂ( ) holds if and only if there exists a leaf L of the restricted
foliation Fx |,n iy such that M € L and MeL.

(2) {)Hﬁ(jyﬁ) =C*

(3) éHﬁ(jVi) is a punctured neighborhood of 0*'. More precisely, there exists
A=Ak, p) >0 and c(k, u) > 0 such that if ¢ > c(k, p), then:

e
' ( 67‘(’1) - <Ae Tk
jy+
Proof. Most of the assertions can be found in | ]. Especially 1. is proved
in [ , p593, p598] for the usual first-integral Hy (x, ) := yu. " exp#:*/k of the

standard model 5(8 (see (1.2)). Using the fact that the critical points of uk - uk 4+

u~¥ lie on the unit circle in the u-variable, we deduce our claim by requiring that
the size of V be so small as to ensure ||u|l,, < 1. Item 2. comes from the fact that
u € V¥ — H (u) admits an essential singularity at 0 while the values reached by
u* + 4~ cover a punctured neighborhood of 0.

The estimates appearing in 3. follow from elementary calculus. In | ,
Corollary 4.5] a value for c¢(k, p) is determined and a bound ”ﬁ“fét < me 7* is
proved for some explicit m = m(k, u). The cited paper deals with the case k = 1
and the factor u~# is slightly different, but the general case follows from what has

been carried out there; details are left to the reader. If |y| >1and u € C, then

|
]Hﬁuy

|y||o”H W[ <l |H @), nefo,...,2k-1.

A similar bound can be established when |y( < 2 and u € C since |{)Hﬁ(u,y)| =
|y( |0”I’-I\(u)‘ <2|o|" |H | for some n €{0,...,2k — 1}. The proof is complete. O

We can interpret 1. of the Lemma by saying that the values h of {)HE provide a

natural coordinate on the sectorial orbit space of X near (0,0), and that 2. makes
the sectorial orbit space a punctured sphere C\ {0, co}. The discarded values 0 and
oo correspond to the two separatrices {xy = 0}\{(0,0)}. Taking 3. into account,
we deduce that the orbit space of X, outside {xy = 0} is obtained by identifying
the 2k successive spheres about their poles by linear maps, since the choices of
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determination of H we made over the intersections /V* imply:
(V(x,y) € jV[) f)H;*_ (x,v) =0 x 6H:+ (x,7),

j i1, - P
(Y(xp) e Vi) T H (ny) =0 x HIT ().

J. MarTINET and ].-P. Ramis called this configuration the chapelet de sphéres (rosary
of spheres), which we prefer to call the orbital necklace of Fx, as in [ ]. The
orbital modulus of Martinet-Ramis is obtained in the case of a general resonant fo-
liation by replacing the linear polar identifications with nonlinear perturbations.

3.2. Sectorial normalization and sectorial first-integral. Start with a 1:1 res-
onant vector field Xz = Xy + RY with R holomorphic and R(0,0) = 0 (follow-
ing | , ] any 1 : 1 resonant saddle foliation can be brought into that
form by choosing suitable local analytic coordinates). According to | , Theo-
rem 6.2.1], there exists a neighborhood V of (0,0) and a collection of functions

N = (j./\/ﬂ) with IN# € Holob({(x,y)) eV :uc jVﬁ}) such that, if one defines
AV q)lj,Nu, then

(7w#) Xo = Xg.

Remark 3.3. This result is a byproduct of Martinet-Ramis synthesis theorem. We
do not need it in our present study, we simply invoke it for the purpose of our
exposition of their classification. We revisit this assertion in Section 5 by providing
it with a more geometric flavor.

Because X {)HB = 0 we have XR-({)HE o j\Ifﬁ) =0, where {)HE is the first-integral

of the formal model X, defined in Section 3.1. Let us describe in more details
these sectorial first-integrals of Xy, since they provide a natural coordinate on the
sectorial leaf space of Fy,,.

Lemma 3.4. The functions inNt satisfy the following properties.
(1) {)HB 0wt = {)HEexp iNt,
(2) Xg-IN#=-R.

(3) If X is in normal form then IN# = iN? for some sectorial function in (u,y)-
space.

Proof.

(1) Because j\I’ﬁ(x,y) is given by the flow of Y starting from (x,y) and with
time / AV# (x,7), we have:

Wk (x,9) = (xexp (- N (x,9)), vexp (TN (x,7))).

In particular u o AV u, which gives the conclusion.

(2) From the identities
Y-u
Y-y =

Il
o
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we derive the fact that Y - {)Hg = {JHE. Since Xj - {)HE = 0 we conclude, by
taking logarithmic derivatives:

jXﬁ-{VHﬁ

. fxﬁ.(log{)Hh f'N”)
NHE

R+Ix*.IN*F =0

as required.
(3) See Corollary 4.7 1.

Hence, we are led to give the following definition.

Definition 3.5.

(1) Define the Banach space of functions in the variables (1, y):
ik = Holoy, (jVﬁ),

as well as the product algebra A:=]J; i AF,
(2) Let N € A be a collection of 2k sectorial, bounded and holomorphic func-
tions. We define

{\,Hn = {)Hﬁxexijﬁ.

The collection (f\,HB) is called the canonical sectorial first-integral asso-
ciated to N.

Because of the choices made for {)Hﬂ, we have
| H* € Holo (/V¥).

It is straightforward to show that the conclusions of Lemma 3.2 hold for these first-
integrals but for the presence of the perturbations /N¥. For the sake of brevity, the
next proposition is only written down for foliations in normal form (1.4), but it
can be adapted in a straightforward manner to encompass the case of a general
resonant vector field Xy + RY. We leave the details to the reader.

Proposition 3.6. Let N € A.

(1) Let V be a small domain containing (0,0) and take M,M eV nIiVk Assume
that N comes from a resonant foliation Fx, as in Lemma 3.4. The relation

{VHE (M) = ;\]HE (Z\Z) holds if and only if there exists a leaf L of the restricted
foliation Fxpljys such that M € L and M € L.

(2) NHH(IVE)=C.

(3) éHﬁ(jVJ—') is a punctured neighborhood of 0*'. More precisely, there exists
A=Ak, p) >0 and c(k, u) > 0 such that if ¢ > c(k, p), then:

. +1
R

jy*
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Ficure 3.1. An orbital necklace.

3.3. Orbital necklaces and Martinet-Ramis orbital modulus.

Definition 3.7.

(1)

(3.2)

An orbital necklace of order k is the manifold (in general, non-Hausdorff)
obtained by gluing 2k Riemann spheres C near their poles 0 and oo by
members of a collection of transition maps (j l,bi), consisting in 2k germs
of a diffeomorphism near 0*!, one after the other in the circular order on
the indices given by Definition 2.1.

We can choose a linear coordinate on each sphere in such a way that each
Jip* is tangent to the identity but the last one *~1¢*, which in turn is tan-
gent to a linear map h > €27} for some a € €/7. Let us call a the residue
of the necklace.

The Martinet-Ramis orbital modulus of (a germ of) a 1 : 1 resonant foli-
ation Fis the orbital necklace defined by (fz,bi) obtained in the following
way. Choose a neighborhood V of (0,0) on which Fadmits a holomorphic
representative. Pick a point M € /V*; depending on the considered in-
tersection /V* or /17, and according to Proposition 3.6, there exist unique
corresponding values h*~,h™" € C of the respective sectorial first-integrals.
Set

Iy~ (W) =k or Ip* (h*):=h~*.

Remark 3.8.

(1)

(2)

By making another choice of the spherical coordinates we may assume that
this residue is distributed evenly between all transition mappings / l,bﬁ, as
explained below for Martinet-Ramis modulus.

Following Proposition 3.6 1., the mapping h > /¢* (h) coming form a res-

onant foliation is injective on the domain ;\]Hﬁ ( j VJ—'). Moreover, the choice
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of the leaf coordinate {)Hﬂ (and of the nonzero number o) made in Defini-
tion 3.1 implies

(3.3) Jp*(h) = h(o +O(h))
T~ (h) = h(o +O(Vn),

so that p is the residue of the corresponding orbital necklace and it is dis-
tributed evenly.

By construction if O is an orbital necklace, then Diff (O) ~ GL; (C) x Z/kz x Z/2z.
Indeed, once the obvious action of Z/kzxZ/2z by translation of the indices j > j+0
and exchange of polarity + < — is factored out, an element i € Diff (O) must
define an automorphism of each sphere fixing both poles. Each such mapping
takes the form h — ah, and the nonzero constant a must be the same on each
sphere for the global conformal structure to be preserved. We are now ready to
state the following fundamental classification theorem upon which the present
work is based.

Martinet-Ramis Theorem | |- The space of all equivalence classes (up to local
analytic changes of coordinates) of germs of a 1 : 1 resonant saddle foliation belonging
to a given formal class (k, p), is isomorphic to the space of orbital necklaces of order k
and residue p up to the action of GL; (C) X Z/kz x Z/2z.

4. BUILDING A RESONANT SADDLE WITH PRESCRIBED ORBITAL NECKLACE

With hindsight, the heuristic for building the orbital modulus as an orbital
necklace seems rather natural: the analytic class of a foliation is determined by
the conformal structure of its leaf space. What is less intuitive to grasp is how
to solve the inverse problem (or synthesis problem, or realization problem) for
foliations.

Problem. Being given an (abstract) orbital necklace, to prove that it comes from a
p : q resonant foliation.

What J. MarTiNeT and J.-P. Ramis did to solve the orbital inverse problem was
to use a powerful geometric black-box, Newlander-Niremberg theorem, at the ex-
pense of loosing their grip on an explicit realization. We propose here a process
which is rather explicit and use simple analytic ingredients. Before delving into
the details of the construction, let us first outline how it is performed by follow-
ing the strategy used in [ , ] and how the twist parameter intervenes as
in | |- Here again we perform the construction for 1 : 1 resonant saddles, the
minor differences with the general p : g case are being explained in Section 4.4.

First, we express the transition maps provided by an orbital necklace (jll)i) as

a collection of logarithmic data (j (pi) consisting in 2k germs of a holomorphic

function near 0*! such that:

(4.1) Ip*(h) = chexplop*(h) ,Tp*(0*')=0.

Then the gluing conditions (3.2), that are written over /V* as:
g\,HJ'_(u,y) =0ox ;;,H* (u,v) on 1V,

ng_Jr (u,9) =0 x i,HJr_(u,y) on 1V,
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amounts to solving the nonlinear Cousin problem
{jN+—_J'N—+ = j(P_O;yH_+

(%) . . ,
JHIN-t_INt- = ](P+ ° ;\]H+_

where N := (jNﬁ) € A (Definition 3.5) is an unknown collection of sectorial func-

tions. By solving (*) we realize the abstract necklace dynamics as transitions be-
tween canonical first-integrals, yet still abstract at this stage. The fact that these
sectorial first-integrals do come from a concrete holomorphic foliation is guaran-
teed by the following lemma.

Lemma 4.1. Let a logarithmic data @ of an orbital necklace be given. Then there exists
co =co(k, u, @) > 0 such that for all ¢ > co the following assertions hold. Assume that
N solves () on the sectorial decomposition V as in Definition 2.1.

(1) Each vector field

is holomorphic on iV and admits ;VHE for first-integral.
(2) The collection (]Xﬁ) is the restriction to sectors of a 1 : 1 resonant vector field
X holomorphic on the domain V,.
Once this vector field X is synthesized we recognize it is actually in the required
normal form by bounding its growth as u — oo for fixed y, see Corollary 4.7.

Proof. Define

<
i

in
gt .= __Xo/Ne
1+Y.Nf
Taking c big enough ensures that /R¥ is holomorphic on vt by forcing H Y. iNf v

1, so that ixt = Xo+ iRt XY is holomorphic on ij too. The claim is discussed in
Corollary 4.7 1.

(1) This is the same proof as that of Lemma 3.4 2.

(2) Because of Riemann’s removable singularity theorem, each iR# (which is
locally bounded near points of {xy = 0}, see Corollary 4.7 1) is the restric-
tion of a function R holomorphic on V, if and only if JR*= = IR * on jV[
and /*!R~* = JR*~ on /V7. On the one hand, since &H;* is a first-integral
of /X~*, we have:

XA HET = olxT (;VH—+ explp o Q,Hf) =0,
while on the other hand we compute directly (after taking logarithmic
derivatives):
X HT = WM (X INFT IR x (14 Y INET)),

as indeed X - {)HB =0and Y- éHE = {,Hg. Both identities considered to-
gether imply that Xo-/N;~+/R™* ><(1 +Y- ij‘) =0, which can be rewrit-

ten as /R*~ = JR™* on /V,. The proof in the other intersection is similar.
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d

Solving (%) requires a refinement of the Cauchy-Heine transform in order to
recover functions /N whose pairwise difference in consecutive sectors is precisely
Jp*. Yet this statement is imprecise since the collection N itself determines the

first-integral ;\]Hﬁ that must be used to evaluate the right-hand side /¢* o {\,Hﬂ.
The solution of the problem must therefore be obtained as a fixed-point.
In order to prove that this fixed-point method is well defined, and to ascertain

its convergence, we need to control the size of the neighborhoods ;\]Hﬁ ( i VJ—') of 0*!

so that they fit within the disc of convergence of the corresponding j(pﬁ and that
everything takes place in a Banach space. This control is gained through the twist
parameter ¢ > 0, as follows from the estimates of Lemma 4.5 and Proposition 4.6.
This fact can already be surmised from the bounds of Proposition3.6 3.

The rest of the section regards giving precise proofs and statements leading to
the resolution of (x), and Section 4.3 concludes this section by providing a proof
of the orbital part of the Main Theorem.

4.1. Cauchy-Heine transform.

Definition 4.2. We name V the collection of sectors (]'Vﬁ) in the variables (u,p) as
in Definition 2.1. Let ¢ > c(k, p) be given as in Lemma 3.2.

(1) A collection A = (in) of 2k star-shaped domains of IP; (C) will be called
admissible if:
° {A* is a star-shaped domain centered at 0,
e /AT is a star-shaped domain centered at co.
(2) We say that N = (jNﬁ) € A (Definition 3.5) is adapted to an admissi-
ble collection A if /A* contains a disk centered at 0*! of radius at least
24 exp NIy
Here is the cornerstone of the construction.

Theorem 4.3. There exists a constant ¢y = cq(k, ) = c(k, u) such that the upcoming
statements hold for every fixed ¢ > cy. Let A be an admissible collection as well as

some N € A adapted to A. Take any collection f = (jfi) € Holoy, (A)'. There exists a

constant K = K (k, u) > 0, as well as a unique collection ¥ (N, f) = (jEﬁ) € A such that
the following properties hold.

(1) Forall j € Z/kxz we have
Hly=t iyt = ifto ;‘\,HJ" on IV,
Ipt Iy = JfTo\HTT on IV
(2) f > X(N,f)isalinear continuous map with

K 4
IEON Al < S Il

we recall that V is the collection of sectors (jVﬁ).
(3) /% (u,p) = O( Vi) as u — 0.
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(4) Moreover, with obvious notations:

Y K ON
7= el elINIy g
u < 2 |f A (1 + [|lu ” HV),
K ON
e IINllv( _H )
< e 1+ ,
Hy H c? |f A Y lly

Proof.

(1) and 2. Here the y-variable plays the role of a parameter and is supposed
to be fixed. The functions (fzﬁ) are built by integrating / f* o ;\]Hﬁ against
some kernel we describe below and along half-lines IT# bounding the sec-
tors /V* that are provided with the orientation 0 — oo, as in Figure. 4.1.
For the sake of simplicity we only deal with the case k = 1 (and drop the in-
dex j altogether), the general case resulting from an immediate adaptation
of what has been done in [ , Theorem 2.5].

Being given f = (f*, f7) meeting the hypothesis, we define

(4.2) (u,p) = Vu udz

2im Vz(z—1u)
oy f* o N1 (2y)
2 Jre zlz—u)
onH
(43) “(u,9) = ;Q %dz

Vu f TonH" (2,9)
2im r \/Z(z u)
Clearly these integrals are:
; +1
e well defined since N is adapted to A and M\,Hﬁ (z,y)‘ < Ac exp||N|| if
ze V%
e absolutely convergent because of the flatness of the exponential term
coming from f*o NH“, since f*(h)=O(h).

dz.

Properties 1. and 2. have been established in | , Proposition 4.11].
The main point of the argument is the following: if (u,y) € V¥, then the
Cauchy formula yields
_ fo Z,9)
() -5 ) =t LN BN,

2im --Iy \/E(Z—M)

L Vu fTonH" (29)
217I I‘+ I+ \/E(Z—u)
\/_f+ (z9)

\/ﬁ

dz

—0+217-c><

=f"o NH+ (u,y),

with a similar identity involving f~ when u € V~. Of course one must
apply the Cauchy formula on a compact contour and take a limit, but the
flatness of the integrand ensures the process actually works out nicely.
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Analogous details are dealt with in | , Theorem 2.5].

3. Because ;\,Hﬁ is 1-flat at 0 and oo, the contribution of % to the integral

is irrelevant: we would have shown that the integral without that term is
bounded. Hence ¥ is O(\/ﬂ)
We deduce from this asymptotic bound the fact that ¥ is unique. Indeed
if ¥ € A is another collection satisfying 1. and =0 (\/E), then for fixed y
the sectorial functions /C¥ : u — /¥ (u,v)— iyt (u4,) coincide on consec-
utive intersections, hence are sectorial restrictions of a holomorphic func-
tion C on C*. Since C is bounded it extends to an entire function thanks
to Riemann’s theorem on removable singularity, thus a constant accord-
ing to Liouville’s theorem. But this constant vanishes because ¥ and ¥ are
O(\/ﬂ), therefore ¥ = Y.

4. These estimates follow in exactly the same manner as their counterpart
in [ , Theorem 2.5].

O

Yy —+

Ficure 4.1. Contours used for the Cauchy-Heine transform.

Remark 4.4. The choice of the normalizing factor Vi in the definition (4.2) of ik

vz
has been done to ensure a “nice” behavior under the involution 7 : u — % This
has been discussed in | , Section 4.3, Proposition 4.11], and we get back to

that fact in Section 6.
4.2. The fixed-point method. Let ¢ := (f(pﬁ) be the logarithmic data associated
to an orbital necklace and let A be an admissible collection of open discs centered

at 0*! such that JAf lies in the domain of convergence of j(p“. Consider the partial
map built from Theorem 4.3:

A:=3(e,¢) : N+—X(N,q),
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which is defined on the space of all functions N adapted to A. Starting from the
collection Ny := (0) € A, which is of course adapted to A if c is large enough, we
can compute Nj := A(Ny) € A. We wish to iterate that map to obtain a sequence
(Ny),, lying in the Banach space A.

Lemma 4.5. Let B be the unit ball of A. There exists c; = ¢y (k, p, @) = co (k, p) such
that for all ¢ > ¢y, every element of B is adapted to A and A is a self-map of B.

This lemma ensures that the sequence (N,,),, is well defined and lies in B.

Proof. Let 0 < p be less than the minimum of all the radii of convergence of /¥,
We need to ensure that, for all c and all N € B:

2A
w7 PNy <p,

where V is the collection of fibered sectors (jVﬁ). Assume that
INlly <1,
so that N is adapted to A whenever

2A
c>kln (—)
ep
Because of Theorem 4.3 2. one has

Ke ,
ANy < —5 llelly-

By taking ¢ > \/Ke||¢@||}, we therefore ensure that ||A (N)]|,, <1, as expected. Hence

we may define ¢y := max{w/KeH(per;kln(%)}' -

Proposition 4.6. There exists c; = ¢, (k, 4, @) = c1 such that, for all ¢ > ¢, the mapping
A is a $-contracting self-map of B. In particular, the sequence (N,,),, converges towards
the unique fixed point N of A|g.

Proof. The existence of this bound follows immediately from [ , Proposition
4.13]. Although the cited result is for the nonparametric version of Theorem 4.3
(i.e. for y := 1), it gives the conclusion here too since )y| takes values bounded by
2. O

4.3. Proof of the orbital realization. Let us summarize what we have done so
far. Starting from an orbital necklace in a formal orbital class (k, u), we consider
its logarithmic nonlinear part ¢ = (j(pﬁ). By taking ¢ > ¢, as in Proposition 4.6, the
sequence (A°"(0)),s, converges towards a fixed-point N of A, i.e. a solution in A
of (%). In order to complete the orbital realization and recover Xy in the expected
class, we wish to apply Lemma 4.1 and next to prove that R € C,, where

2k
C, := {F : F(x,z/)=1/Z”ffn(y) ) fneHolob({|l’|<2})}'
n=1

For this we need the following corollary, which settles the orbital realization for
1:1 resonant saddles.
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Corollary 4.7. There exists co = co (k, u, @) = ¢, such that for all ¢ > cg the following
assertions hold.

(1) Each function /R% := — X0 JI\I]\] belongs to Holo(]Vf) Moreover this function
1+Y-

is locally bounded near {xy = 0}.
(2) These functions are actually the restrictions to sectors of a function R € C,.

Proof. Firstnotice that by construction /N¥ € Holoy, (fVﬁ X Dﬂ),where D+ = {y : ‘y| < 2}

and D™F = {y 1< |y| < 2}. The intersection of the latter domains is the annulus

C ::{1 < |y| <2}.
For the sake of readability let us drop all indices. Observe that
oN, JON
x— -y =uor(u(xy),y)
oN, _ON ON
Yoy (%) =u—-(u(xy),9)+ En (1u(x,9),9).
In particular Y - N, = (y%—N) and X, - N, ( A aN +y(1 + pu ) aN)

(1) Since ||N]}y <1 (Lemma 4.5), the estimates of Theorem 4.3 4. imply that

b, ke,

g,

If c is large enough, then the right-hand side is smaller than £ so that

b5z

Therefore Y - N, has a V,-norm less than % and 1+ Y - N, cannot vanish

on ij. Moreover the latter modulus is bounded from below by %, which
gives the conclusion.

(2) The fact that the sectorial functions /R¥ glue to some R € Holo(V,) has
been explained in Lemma 4.1. The construction makes clear that R = Q,
where

k+1 dN 2k k)., oN
u a4+ o1 —u )+ put )y
Qi=— " (el . o)y € Holo(C x C).
1+ ya—N
y

Let us bound the growth of u — Q(u,v) as u — oo with y € C fixed. We
have:

|Q(w,p)| < 2[ul* |u N(uy)

0
2]t = )y 5 )
< |u|k 2Ke |

2 +C(1+|u|2k)+|/,t||uk|.

As a conclusion u — Q(u,p) is O( 2") hence Q e Holo [u]<2k

So far we have reached the point where R(x,v) =) ;- Ofn " for some
functions f,, € Holoy, (C). But the construction actually ylelds a function
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R which is holomorphic on V,, and this domain contains in addition to
C x C a part corresponding to {(x,y) eV, : |y| <2andue jV+‘}. For in-
stance if we fix x := 1 then R(1,y) is holomorphic on the sector Vj :=

{0 <ly| <2,
and bounded on C U V;. But as x := el for 6 € [0,27t] moves along the
unit circle, we deduce that y — R (eie,y) and thus each f,,, is holomorphic
2]+1

]+1

< 5“}. In particular each f, is holomorphic

< 5"} whose union

on every sector Vg := {O < |y| <2,
covers {O < |y) < 2}. As a conclusion f,, is holomorphic and bounded on the

whole punctured disc {O < |y( < 2} therefore f,, € Holoy, ({|y| < 2})

Because R = =Xy - N, (Lemma 3.4) and since £+ (u y) = O(y) in the sector
OV +=xD*~ (see 4.2), we may take v := 0 for ﬁxed u to conclude Q(u,0) =0,

which shows f, (0) =
N
In a similar fashion we wish to evaluate Q(0,y) = Cli;‘y’N (0,y). But from
9

Theorem 4.3 3. we have y%—g (u,9) = O(\/ﬁ) as u — 0, which finally gives
Q(0,y) = 0. This completes the proof.
O

4.4. The caseof a p : gresonant saddle. The general case of a p : g saddle foliation
follows exactly the same steps as for 1 : 1 saddles, and most of the necessary results
hold verbatim. The main modification is the necessity to use a convenient version
of the model first-integral, namely:

C(Mik + le)

Huy) =y uexp —o

u, = xIyP.

The fact that H is multivalued in the y-variable is not an obstacle since the pull-

#

back sectors /) are simply connected.
All subsequent arguments work in the same way.

5. PERIOD OPERATOR AND ITS NATURAL SECTION

This section is devoted to the proof of the Cohomological Theorem. From now
on we work within the domain ¥, := Cx {y : )y| < 2} on which we consider a holo-
morphic vector field in normal form

d
Xr = u*a—+(1+,uu*+R)Y

build in the previous section (Corollary 4.7). We denote by
iyt .= {(x,y) eU, : u(x,y)

<2}

the corresponding sectors and their pairwise intersections /U*. We also let 73
stand for the induced holomorphic foliation on .
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Being given a germ G of a holomorphic function at (0,0), that is G € C{x, y}, we
outline how to solve

(5.1) Xg-F = G

in order to provide the sectorial normalization of Lemma 3.4 with a more geomet-
rical flavor, since the functions 'N # involved in the sectorial normalization of X R
are solutions of the equation X - N =—R.

Theorem 5.1. Consider the cohomological equation (5.1) with G € C{x, p}.

(1) There exists a formal solution F € C[[x,y]] if and only if the Taylor expansion
of G at (0,0) does not contain terms u" for n € {0,...,k}. We write C{x,p},,
the space of all such germs.

(2) There exists a neighborhood () of (0,0) on which G is holomorphic and bounded,

such that to each (x,y) € QN iU* one can attach a path
iyt (x,9) t [0,+00[— QN i
tangent to Xg that starts at (x,y) and accumulates on (0, 0).
(3) The parametric integral JF# := ijg G% is convergent and defines a holomor-
phic function 1F% € Holoy, (Q N fuﬁ) solving (5.1) if and only if G € C{x, p},,.

The proof of this result is given in Section 5.1.

Remark 5.2. We wish to underline that 3. is another instance of a phenomenon
observed in | | for saddle-node vector fields: if 1 is a meromorphic time-
form of a vector field X (that is 77 (X) = 1), then integrals of Gy along asymptotic
paths converge if and only if X - F = G admits a formal solution F. We do not
know if it is true when X is a quasi-resonant saddle (irrational eigenratio) or has a
nonreduced singularity at (0, 0).

The difference of two consecutive sectorial solutions /F# is a first-integral of
Xg over the pairwise intersections of the corresponding sectors, and the fact that
they do not agree measure how far they are from being the restriction of a holo-
morphic function on Q. (Indeed if those bounded functions were to agree on all
intersections, then we would apply Riemann’s theorem on removable singularity.)

#

Besides, each such pairwise difference factors through ;\]H*, as explained below.

Lemma 5.3. Any first-integral ¢ € Holo(Q N jui) of XR factors through ;\]Hfir there
exists f € Holo(in) such that

¢ = foNHT,
where 1A* := {\,Hf?r (Q N jui). Moreover if ¢ is bounded, then f also is.

Proof. The function ¢ is constant on the leaves of 7 and therefore defines a holo-
morphic function on its space of leaves. The conclusion follows from the fact that
f\,H:—'J—f is a coordinate on the corresponding sectorial leaf space, as guaranteed by
Lemma 3.4 (maybe at the expense of reducing the size of Q). O

Therefore one can build a linear operator

Te:GeCluyly — (If*)
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such that
Jpt-_Jipt = jf_og\]H:Jr
itlp—+ _jpt— _ ] J g
JRFTT-IFT = IftoHIT.
Definition 5.4. The previous operator Ty is called the period operator associated

to XR-

Remark 5.5.
(1) The value of the pe‘riod jT;—; (G)(h) is obtained by computing the integral
ffyi(h) Q%, where /y* (h) is an asymptotic cycle obtained by the concate-
nation of the asymptotic tangent paths described in Theorem 5.1 2. pass-

ing through (x,v) € /i{* and such that h = %,Hﬂ (%, ).

(2) As it has been already pointed out above, the formal solution of Xz-F =G
converges if and only if T (G) = 0.

(3) When p := 0 resp. x := 0, the formal solution F (x,0) resp. F(0,y) is simply
given by integrating —pcx%F(x,O) = G(x,0) resp. qcya%F(O,y) =G(0,v),

hence it is analytic on {xy = 0}. As a consequence / f* (Oil) =0.

Corollary 5.6. Let a formal class (k, u, P) be given. The complete modulus (jlpi, ffi)
of Zg g can be expressed as periods along Xg, namely:

(jﬁoi) =Tr(-R)
11
0)-11(5-3)
where J1p* = oldexp / pF.
Proof. This is a direct consequence of what has been explained previously. g

The technique used to carry out the realization of an orbital necklace in Sec-
tion 4 actually allows us to show that Tr admits an explicit section. This is done
by reusing the refined Cauchy-Heine transform presented in Theorem 4.3.

Theorem 5.7. Consider the admissible collection A defined by ({\,HJ—”—r (fZ/[J—')) and let a

collection f = (jfi) € Holoy, (A) be given. Then there exists Sg (f) € C, (the function
space is defined in Section 4.3) such that

Tr(SR(f) = f.
The proof of this result is postponed until Section 5.2.

Remark 5.8. In particular Tx : C, — Holoy, (A) is an isomorphism of Banach
spaces, with inverse its natural section Si. The estimates given in Theorem 4.3
allow to give explicit bound on their norms.

We finally are able to establish the temporal realization of the Main Theorem.

Corollary 5.9. Let U be a holomorphic unit. Every vector field UXy is analytically
conjugate to a unique Zg g with G €C,.



ANALYTIC NORMAL FORMS FOR PLANAR RESONANT SADDLE VECTOR FIELDS 27

Proof. Let U be given and consider the temporal normalizing equation Xg - T =
% - P%, which admits a formal solution if P, is given by the projection of the Taylor
series of U on the space C[u,];. According to the previous theorem, we can find
G € C, such that Tz (G) = TR(% - P%) Then the cohomological equation Xg- T =

% - % admits an analytic solution T, where % = 1% + G, and that implies UXy, is

analytically conjugate to VXg = Zg . O

5.1. Cohomological equations and their sectorial solutions: proof of Theorem 5.1.
Let us consider equation (5.1).

(1) Because Y - (x”yb) = (bq—ap)x“yb and Xp = ukx(% + (1 +yuk +R)Y, no
terms u” may belong to the image of Xy if n < k. Conversely, the coef-
ficients of F can be computed recursively by looking at larger and larger
homogeneous degrees a+ b of monomials x“y? appearing in the Taylor ex-
pansion of G. Details are left to the reader.

(2) Let (x,,v.) be fixed in a sector iY¥. 1t is well know that the holonomy
of Fx,, computed on {y = .} and obtained by lifting the path (0,y(t)) =
(O, y*e“) into the leaves of the foliation, is a nonlinearizable parabolic germ

tangent to x > e?™ix, Starting close enough to 0, its forward or back-
wards orbit (the direction t — oo depending on the sector /U~ or /U ~)
accumulates on 0. The tangent path that is obtained this way can be de-
formed within its supporting leaf £ to land on (0,0). Indeed on a suf-
ficiently small domain Q > (0,0), the leaf £ N Q is very close to the set

Cx:qu:kp

of level h :=y,exp ——— of yexp
inverted as

—k . .. .
C“k , and that implicit relation can be

y(t)—ﬂ/q
h kg~
(£1og565)

Each time y(t) makes a turn around 0, the amplitude |x(¢)| is multiplied

with a factor of order about ﬁ By letting )y(t)) goes to 0 in a slower

fashion than y(¢) winds around 0, we obtain a path that accumulates on
(0,0), e.g. by choosing 0 < a < plk and setting

x(t) =

v(t) =, (1+1)%el.
Hence

x(t) ~i e CSEX t—ap/q—l/kqe—itp/q

U (F) ~tse0 cstx 75,
One easily checks that the image of the lifted path y remains in the given

u-sector since
T

g
(3) According to the previous computations, we know that along the tangent
path y we have

1
argu (t) = _E arg(cst+aln(l +1t)—it) —; 0

du
uk+1

*

~t 500 CSt X AT
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Integrating a monomial x?y? along this path therefore yields the estimate

. du Uap-bg)-=2  _igtlap—
4 (xayhukn)Nt—m est x £ 1 P0G eiatlap-ba) gy,

There are two cases to consider.
e Either ap = bg, that is x*y" = u", and y* (x“yb u‘% ) ~eo 7% which is
integrable if and only if n > k. In that case the integral is absolutely

convergent.

e Orap #bgand y” (x“yb ﬂi{l ) is conditionally integrable by Dirichlet’s

test.
Therefore /F¥(x,, v.) is a convergent integral if and only if G € C{x,p};.
It is clearly locally analytic in (x,,7.). The fact that it is holomorphic on
Q N /i4* comes from the fact that if Q is small enough, then every leaf
of Fx,ljzs is simply connected according to the incompressibility result of
eg. | , Proposition 3.1]. O

5.2. Natural section of the period operator: proof of Theorem 5.7. We use The-
orem 4.3 by taking N as the sectorial normalizations of Xz and f = (jfﬁ) e A:

we obtain sectorial functions (jFﬂ) :=X(N, f) solving the period Cousin problem.
Define now

G := Xg-/F%
We conclude the proof by invoking the same arguments as in the proof of Corol-
lary 4.7 2.

e Because by construction the difference of consecutive /F# is a first integral
of Xg, the function G is independent on the sector.

e It is moreover locally bounded near {xy = 0}, so that it extends to a func-
tion holomorphic on V, by Riemann’s removable singularity theorem.

e Then for every fixed y € {1 < (y| < 2} we have G(x,v) = O(qu) as u — oo,
ie. G(xy)=Yikou"fu ()

e Moreover f; () = 0 because /F¥ is O(\/ﬁ) asu — 0.

e Each function f,, extends holomorphically to the disc {|y| < 2} because of
the shape of V,.

Therefore G € C, as expected. ]

6. ISOTROPY OF RESONANT FOLIATIONS AND UNIQUENESS OF THE NORMAL FORM

As an application of the material introduced previously, we explain how we
deduce from the description of the cokernel of the period operator that the vector
fields obtained in the Normalization Theorem are essentially unique in a given
analytical class. Said differently, we wish to prove that the automorphisms of
the versal family {Z; r : G,R €C,} are only given by the linear mappings (x,y) —
(ax, By) with (oﬂﬂp)k = 1. We mainly rely on the following structure theorem,
which describes the isotropy group of resonant foliations.

Theorem 6.1. Take two vector fields Z = U (X + RY) and Z= Ij(XO +§Y), not nec-
essarily in normal form. If W is a conjugacy between Z and Z, say W*Z = Z, then it
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can be factored as
W=AoNoT
where:
o A (x,9)— (ax,By) with (aqﬂp)k =1;
o the diffeomorphism N € Diff(Cz,O) preserves the resonant monomial, that is
N =0 = (xe—PN,ye’iN)for some germ N at (0,0) of a holomorphic function;
e the diffeomorphism T € Diff((Ez,O) sends a leaf of F7 within itself (it is a
tangential isotropy of ), that is T = <DZT for some holomorphic germ T.

We prove this result in Section 6.1 below.

Remark 6.2.

(1) Even without applying the Normalization Theorem, it is known since Du-
lac’s works | , ] that any resonant saddle vector field can be
written U (Xg + RY) in a convenient local analytic chart about (0, 0).

(2) A similar result was obtained in | ], although the foliations were
presented in a different fashion and the fixed fibration was {x = cst} instead
of the singular fibration {u = cst} considered here.

In order to deduce the uniqueness statement of the Normalization Theorem

from Theorem 6.1, we only need to show that V' =7 =1d when Z = Z5  and
Z = Zz gareinnormal form. There exists U a holomorphic unit such that Xgro NV =

UXz- N. Let us write this relation in the basis (ukx%, Y):

uk+1 :U><le+1
c(1-u)+ puk + R(1,9e7N) = Ux(c(1-u?*)+pu* + R(u,p)+ Xg-N)’

We deduce from this system that U = 1 on the one hand, while on the other hand
we have

Xz N= R(u,yeqN)—yﬁ(u,y) =: L.
Proposition 6.3. N € yC{y}.

We postpone the proof of this result till Section 6.2; in the meantime it tells
us that L € Clu].,; {v},,- Since N is holomorphic we can assert that Tg(L) = 0
according to Cohomological Theorem 2.(a). But the item 2.(b) of the same theorem
implies that L = 0, which in turn implies N = cst and R = R, as expected.

To conclude the uniqueness of the normal form, we apply again the previous
argument: since Zgr and Zgy are conjugate by 7, there exists a holomorphic
germ T such that Xp-T =G - GeC [u]<ox {¥)sg, sO that G = G. This concludes the
proof of the Normalization Theorem.

6.1. Proof of Theorem 6.1. Since A can be read in the linear part of W (which
must be diagonal thanks to the form of X;), we may as well assume that W is

tangent to the identity. Let (j‘lfﬁ) resp. (j‘ffﬁ) be the collection of sectorial nor-

malizations of X := Xy + RY resp. X := Xo + RY given in Lemma 4.3. By assump-
tion W induces the identity between the orbital necklaces of F; and F;, hence

c—~no—1 .
(J‘I’ﬁ) o JWH = A/ does not depend on the sector, and therefore extend as an
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element N € Diff((Ez,O) such that A*X = X. But by construction N fixes the
monomial u.

Consider now 7 := N°7! o W, which is a conjugacy between (U o V') Xz and
UXE, that sends a leaf of 75 into itself. Following the arguments of | ] we
deduce that 7 has the expected form. O

6.2. Proof of Proposition 6.3. The argument takes place in the variables (u,p).
Indeed, as it has been remarked in Section 1.5, the foliations Fy, and Fx corre-
spond to foliations Fand Fin (u,y)-space given by the differential 1-forms wg and
wg defined in (1.5). Because N fixes the resonant monomial, it induces an orbital
conjugacy @ : (u,v) — (4,v¢(u,v)) between wg and wg. Using a construction 4
la Mattei-Moussu (path-lifting technique), ® extends holomorphically to a neigh-
borhood of {y = 0} = C. The key point is to extend it to a neighborhood of IP; (C)
by using a suitable compactification.

The foliations Fand Fcan be extended to IP; (C)xD, where D is the disc {|y| < 2}.

In the chart (z,v) = (%,y), the 1-form wpg is written

75 ldy -y (c(l - z‘2k) +puz k4 R(z‘l,y))z‘zdz,

which becomes holomorphic after multiplication with z2k+2;

wg+(z,9) = zk+1dy+y(c(1 —zzk)—yzk+R*(z,y))dz

where
R* (Z,}}) _ ZkR =y an 2k7n.

The singularity of Fand F at (co,0) is again a saddle-node, with formal orbital
class (k,—p). The diffeomorphism @ induces a conjugacy between their weak
holonomies computed on a transversal {u = cst} close to {co} x D, but unlike for
the case of resonant saddles this does not automatically imply that Fand F are
®-conjugate on a full neighborhood of (o0, 0). Fortunately that fact is guaranteed
by the construction of the normal form, as already hinted at in Remark 4.4.

Lemma 6.4. Consider the involution T of Z/kzx{+,—} defined by T (j, %) := (k-1 -},¥),

and let it act on collections (]f+).

in the natuml way. Then we have
j€Z/kz

TR* (R*) = —T*TR (R)

Proof. The action of 7 on the indices (j, +) corresponds to the actionof T : u — %

on the sectors in the u-variable, i.e. the sector / V*T is sent to K17/ y¥* = crrivh
by the transform. For every component I' of 3/ V# we compute:

ff—oN ﬂz,wdz_va If* o\ (2,9)

=-— d
2ir Jr Vz(uz—1) z

2171

=|>—‘
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and perform the change of variable w := 7(z). This change of variable reverses the
orientation of the image half-line 7T C BT*jVﬁ, therefore:

(Ly)- dE [ Tonr ey
201 J_por \/g(%_l) w?

L oya [ ek (L)

D2t er Vw(w-u)

But:

. /1 — . {1 i
V() = B ) exp IN*F (p) = LR ),

where T°N is the collection defined by 1"/ N¥*(u,y) := fNJ—'i(%,y) and éHﬁ is
the model first-integral where p is replaced by —p. Finally:

1 —
Ir(;’})) = —Ir*r(u;}’)

where in the right-hand side we have replaced y by —u. The conclusion follows
from 4.2 as the collectionsN is obtained as a fixed-point of the Cauchy-Heine op-
erator built from a linear combination of terms It. O

According to the discussion performed in Section 1.4, more precisely the period
presentation of the orbital modulus laid out in Corollary 5.6, we deduce that the
following chain of identities holds:

R (E”) = —T*Tﬁ(ﬁ)
=-T"Tr(R) =T (R)

since F and F are locally conjugate near (0,0). Hence, F and F have same or-
bital modulus at (c0,0) and are conversely locally conjugate near (co,0). It is well
known that there exists a unique conjugacy which is fibered in the u-variable (see
e.g. | , ]), therefore @ extends as a fibered diffeomorphism (u,y)

@ (u,y) on the whole IP; (C) x D. Because @ (u,p) = (u,yznzo by (u)y”) this means

that each function ¢,, extends holomorphically as an entire and bounded function
of u, hence a constant. This completes the proof of Proposition 6.3. O
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