Study of the temperature and pressure dependent structural properties of alkali hydrido-closo-borates compounds - CNRS - Centre national de la recherche scientifique Accéder directement au contenu
Article Dans Une Revue Inorganic Chemistry Année : 2022

Study of the temperature and pressure dependent structural properties of alkali hydrido-closo-borates compounds

Résumé

In this work, we report on the structural properties of alkali hydrido-closo-(car)borates, a promising class of solid-state electrolyte materials, using high-pressure and temperature-dependent X-ray diffraction experiments combined with density functional theory (DFT) calculations. The mechanical properties are determined via pressure-dependent diffraction studies and DFT calculations; the shear moduli appear to be very low for all studied compounds, revealing their high malleability (that can be beneficial for the manufacturing and stable cycling of all-solid-state batteries). The thermodiffraction experiments also reveal a high coefficient of thermal expansion for these materials. We discover a pressure-induced phase transition for K2B12H12 from Fm3̅ to Pnnm symmetry around 2 GPa. A temperature-induced phase transition for Li2B10H10 was also observed for the first time by thermodiffraction, and the crystal structure determined by combining experimental data and DFT calculations. Interestingly, all phases of the studied compounds (including newly discovered high-pressure and high-temperature phases) may be related via a group–subgroup relationship, with the notable exception of the room-temperature phase of Li2B10H10.
Fichier principal
Vignette du fichier
final_manuscript.pdf (1.24 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03888098 , version 1 (07-12-2022)

Identifiants

Citer

Romain Moury, Zbigniew Łodziana, Arndt Remhof, Léo Duchêne, Elsa Roedern, et al.. Study of the temperature and pressure dependent structural properties of alkali hydrido-closo-borates compounds. Inorganic Chemistry, 2022, 61 (13), pp.5224-5233. ⟨10.1021/acs.inorgchem.1c03681⟩. ⟨hal-03888098⟩
13 Consultations
25 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More