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Abstract

Motivated by proving the loss of ergodicity in expanding systems of piecewise affine coupled
maps with arbitrary number of units, all-to-all coupling and inversion symmetry, we provide
ad-hoc substitutes - namely inversion-symmetric maps of the simplex with arbitrary number
of vertices - that exhibit several asymmetric absolutely continuous invariant measures when
their expanding rate is sufficiently small. In a preliminary study, we consider arbitrary maps
of the multi-dimensional torus with permutation symmetries. Using these symmetries, we show
that the existence of multiple invariant sets of such maps can be obtained from their analogues
in some reduced maps of a smaller phase space. For the coupled maps, this reduction yields
inversion-symmetric maps of the simplex. The subsequent analysis of these reduced maps show
that their systematic dynamics is intractable because some essential features vary with the
number of units; hence the substitutes which nonetheless capture the coupled maps common
characteristics. The construction itself is based on a simple mechanism for the generation of
asymmetric invariant union of polytopes, whose basic principles should extend to a broad range
of maps with permutation and inversion symmetries.

November 22, 2022.

1 Introduction

1.1 Background and motivations

Systems of coupled maps were introduced as discrete time models for the dynamics of collective
systems of interacting units [10]. They have revealed a rich phenomenology depending on the
individual dynamics and on the coupling type and strength. Part of this phenomenology has been
proved from a rigorous mathematical point of view [4].

In particular, the most common result in the chaotic (expanding or hyperbolic) setting is the
existence of a unique absolutely continuous invariant measure (acim) when the coupling strength
is sufficiently weak. Such uniqueness follows from perturbation arguments at the uncoupled limit,
see e.g. [11] for piecewise expanding coupled maps with a finite number of units. For systems
with infinitely many units, similar uniqueness statements have been proved in the case of nearest-
neighbour or exponentially decaying coupling, see for instance [3, 9, 12, 16]. These results have
been considered as the analogue in the deterministic setting of the theory of dynamical systems,
of the uniqueness of the high temperature phase in particle systems of statistical mechanics, and
especially in the Ising model.
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The analogy with particle systems suggests that, when the coupling strength increases suf-
ficiently, uniqueness of the acim (and hence ergodicity) should be lost via some analogue of a
symmetry-breaking-induced phase transition [3]. Yet, the nature of this transition and its out-
comes have long been debated in the community [4]. In particular, outside the weak coupling
regime, the features of the symbolic dynamics on which the thermodynamics formalism and the
subsequent theory of phase transitions are grounded, are not usually known with enough detail.
In the setting of infinite lattices, exceptions have been provided by ad-hoc examples inspired by
Toom’s cellular automata that exhibit standard phase transitions [1, 8].

Loss of ergodicity upon sufficient increase of the coupling strength also occurs in systems with
finitely many units. This is particularly the case of the family {FN,ε}ε∈[0, 1

2
) of maps of the N -

dimensional torus TN defined by [13]1

(FN,εu)i = 2

ui + ε
N

N∑
j=1

g(uj − ui)

 mod 1, ∀i ∈ [1, N ], u = (ui)
N
i=1 ∈ TN ,

where2

g(u) =

{
u− bu + 1

2c if u 6∈ 1
2 mod 1

u if u ∈ 1
2 mod 1

, ∀u ∈ T.

The maps FN,ε are all expanding piecewise affine maps with expanding rate 2(1 − ε) ∈ (1, 2]
(see Appendix A for a summary of related notions). Their atoms are determined by the pairwise
distances between the coordinates ui, whether they are smaller or larger than 1

2 . Moreover, the map
g commutes with the inversion symmetry −Id|T; likewise the maps FN,ε commute with −Id|TN . The
FN,ε also commute with every element of the group ΠN of the permutations of the coordinates
{ui}Ni=1. Altogether, the FN,ε can be considered as an elementary model of a system of N chaotic
units in interaction, where the discontinuities induced by g play the role of nonlinearities.

For every N , the map FN,ε can be shown to have an ergodic acim when ε is small enough (viz.
expanding rate close to 2). Moreover, numerical simulations showed evidences of the breakdown
of the inversion symmetry in the long-term dynamics, when ε is close enough to 1

2 (ie. expanding
rate close to 1) [5, 6]. The essential characteristics of this phenomenology is given in Appendix
B, which in particular describes the systematic symmetric and asymmetric features of the various
acim. This appendix also introduces an original representation of the trajectories that facilitates
the visualization of these features.

The numerical evidences of loss of ergodicity have been partly confirmed by analytic and/or
computer assisted proofs of the emergence of an asymmetric acim, namely an acim whose support
is disjoint from its image under the coordinate sign inversion. That symmetry then implies the
existence of a pair of acim with disjoint supports, which suffices to ensure that ergodicity in FN,ε
cannot hold. The analytic proofs applied to N ∈ [3, 4], see [5, 7, 17, 18], the computer-assisted ones
to N ∈ [3, 6], see [6]. In both cases, they consisted in proving the existence of asymmetric invariant
unions of polytopes (AsIUP), namely invariant unions of polytopes (IUP) that are disjoint from
their image under the symmetry (see again Appendix A for the definitions).

While the proofs have been designed to be deployed in arbitrary dimension, the details of the
dynamics of the AsIUP are specific to the value of N under consideration. No simple mechanism
has emerged that could be naturally extended to an arbitrary value of N (NB: Specific limitations to
such an extension are discussed at the beginning of Section 4 below). Accordingly, this paper more
modestly aims to provide instances of families of maps in arbitrary dimension that capture some

1We use [1, N ] to denote the collection of the first N natural integers.
2The symbol b·c denotes the floor function.
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characteristics of the FN,ε while exhibiting provable emergence of AsIUP via a simple systematic
mechanism when their expanding rate is close to 1.

1.2 Presentation of the results

A natural source of inspiration for our study is to consider a simple example in one dimension,
namely the family {fa}a∈(1,2) of Lorenz-type maps with three branches, see Figure 1 and Appendix
C. As the FN,ε, the maps fa are expanding piecewise affine and they commute with an inversion
symmetry. Moreover, in agreement with the FN,ε phenomenology described above (recall that the
expanding rate of FN,ε is equal to 2(1 − ε)), fa is ergodic with unique acim when the expanding
rate a is close to 2, and has two acim with disjoint supports when a is near 1.

Figure 1: Symmetry-breaking loss of ergodicity in the family {fa}a∈(1,2) of symmetric piecewise
affine Lorenz-type maps with three branches. Left. When the slope a is close to 2, the map fa
is ergodic with unique acim. Right. When a is close to 1, the map fa has two acim with disjoint
supports.

Accordingly, we aim to provide some multi-dimensional analogues of the families of maps {fa}
that capture some characteristics of the FN,ε. Focus will be made on the emergence of AsIUP. In
particular, the multi-dimensional maps will be self-maps of the (N − 1)-simplex SN−1, where given
an arbitrary d ∈ N, Sd is defined by

Sd =
{
x = (xi)

d
i=1 ∈ Rd+ : x1 + · · ·+ xd < 1

}
.

Indeed, a preliminary analysis in Section 2 concludes that AsIUP of the coupled map FN,ε in TN
can be deduced from AsIUP of some related projected map in SN−1, denoted GN−1,ε.

3 More
precisely, an elementary reduction theory is developed in Section 2.1, for arbitrary maps of TN
that commute with every permutation of given N − 1 coordinates. In the piecewise affine case,
the theory shows that an IUP of the original map can be ensured by an IUP of some projected
map of the subset IN ⊂ RN of points with increasing coordinates, see Lemma 2.2. Considerations
about the transfer of an additional symmetry, typically an inversion symmetry, to a symmetry of
the projected map are given in Section 2.2. For more specific mappings such as FN,ε, a further
change of variables implies that it suffices to consider IUP of the map GN−1,ε, which also inherits
some inversion symmetry from the −Id|TN of the FN,ε (Section 2.3).

3Notice that similar N − 1-dimensional reductions of the coupled map FN,ε dynamics have already been identified
[5, 18]. Yet these reductions yielded maps of TN−1 or of [0, 1]N−1, not of SN−1.
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As a consequence, the desired multi-dimensional analogues of the map fa will be maps of
SN−1 that share some systematic features of the maps GN−1,ε. These features and the proposed
mechanism for AsIUP are given in Section 3. In particular, Section 3.1 identifies the inversion
symmetry, the outer atoms of the atomic collection and the dynamics in these atoms. This section
also identifies the changes in the atomic collection as N varies and hence, identifies some cause of
the absence of full systematic in the features of the GN−1,ε.

Inspiration for a systematic mechanism for AsIUP in the arbitrary d-simplex is obtained in
Section 3.2 from a thorough analysis of the dynamics of the family {G2,ε}ε∈(0, 1

2
), which turns out

to show the same ergodic/non-ergodic features as the family {fa}. As for the fa, the mechanism
consists in ensuring, for sufficiently small expanding rate, the existence of a simply-connected IUP
lying across A ∪ B where A is an outermost atom and the atom B is adjacent to A (see Claim
3.3 and Fig. 4). As for the fa, the map restriction to A (resp. to B) expands away from the
corresponding fixed point so that the points are eventually mapped into B (resp. into A). In B,
this trend is combined with the action of a permutation in some basis attached to the fixed point.
The latter feature is a purely multi-dimensional characteristic that has no analogue in dimension
1. In addition, the dynamics in the atoms A and B are such that the IUP does not intersect its
symmetric image; hence providing an AsIUP.

With all the necessary elements being identified, the main result of the paper can finally be
stated and proved (Theorem 4.1 in Section 4). This statement claims the existence, for an arbitrary
integer d ≥ 3, of a family of inversion-symmetric maps of the simplex Sd that reproduce the common
features of the maps Gd,ε and have AsIUP when the expanding rate is close enough to 1. The proof
essentially consists in constructing the maps so that they exhibit some multi-dimensional extension
of the symmetry-breaking mechanism in the family {G2,ε}ε∈(0, 1

2
). In particular, focus is made on

constructing the analogue of the restriction to the atom B above. The construction and associated
mechanism are based on simple principles which should extend to a broad range of maps with
permutation and inversion symmetries.

2 Projection procedure for maps of the torus with permutation
symmetries

This section introduces a projection procedure for maps of the torus TN which commute with
every element of the group ΠN−1 of the permutations of the first N−1 coordinates of u ∈ TN .4

Aiming at reducing every orbit generated by this symmetry group to a single point in phase space,
the projection maps the torus to a subset IN of RN of points with increasing coordinates, and
subsequently to SN−1 × [0, 1) by conjugacy. This procedure is particularly relevant in the case of
invariant sets that consist of the orbit under ΠN−1 of a single connected component because these
sets become simply connected invariant sets in the reduced dynamics. Instance of such sets have
been observed in the phenomenology of the maps FN,ε (see Appendix B).

Furthermore, the procedure ensures that the existence of disjoint invariant sets/IUP of the
induced map implies the same property for the original map in TN . In addition, conditions will be
identified for an additional symmetry of the original map - typically an inversion symmetry - to be
transferred to the projected map. In this setting, natural candidates for disjoint invariant sets of
the projected map will be AsIUP.

In the case of the maps FN,ε, their particular form implies that the corresponding map of

4The projection procedure does not need that the map commutes with every element of ΠN , nor gain any benefit
from that assumption, see the discussion in Section 2.2.
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SN−1× [0, 1) is a skew-product dynamical system whose base map GN−1,ε acts in SN−1. Moreover,
the inversion symmetry −Id|TN is shown to transfer to the base map in SN−1, see Fig. 2 below for
an illustration of the whole procedure in this case. Altogether, it suffices to prove the existence
of AsIUP for the base map GN−1,ε in order to conclude the existence of two acim with disjoint
supports for FN,ε.

Actually, the same reduction to a map Gρ,ε of SN−1 applies to the coupled maps Fρ,ε (see
Appendix D) with distribution ρ = (ρi)

N
i=1 where ρ1 = ρ2 = · · · = ρN−1. When ρN differs from

the other ρi, these maps Fρ,ε only commute with the permutations in ΠN−1 (and not with the
permutations in ΠN \ ΠN−1). In the main text, we keep considering FN,ε for simplicity. We refer
to Appendix D for those features that are specific to the more general Fρ,ε.

2.1 The projection procedure and its consequences for the multiplicity of in-
variant sets

In order to define the projection procedure, we need to introduce various basic notions associated
with the dynamics in TN and its permutation symmetries. Given N ∈ N, let

TN∗ =
{

u ∈ TN : ui 6= uj mod 1, ∀i 6= j ∈ [1, N ]
}
.

be the set of elements u ∈ TN whose coordinates are all distinct. The reason for considering TN∗
instead of TN will be given below. Let then the map P be defined by

(Pu)i = ui + buN − uic − buNc, ∀i ∈ [1, N ].

This map is well-defined as a one-to-one mapping from TN into RN . The set DN
∗ = PTN∗ is a

fundamental domain of TN∗ (namely, every element of TN∗ can be represented by a unique element
in DN

∗ ), which reads

DN
∗ =

{
u ∈ RN−1 × [0, 1) : ui − uj ∈ R \ Z, ∀i 6= j ∈ [1, N ] and 0 < uN − ui < 1, ∀i ∈ [1, N − 1]

}
.

Let also IN ⊂ DN
∗ be the subset of points with increasing coordinates, namely

IN =
{
u ∈ RN−1 × [0, 1) : u1 < u2 < · · · < uN−1 < uN < u1 + 1

}
.

For the sake of notations, we use the same symbol π for a transformation that permutes the first
N − 1 coordinates in TN and in RN respectively (and likewise for ΠN−1). Given u ∈ DN

∗ , let
πu ∈ ΠN−1 be such that πuu ∈ IN . The reason for dealing with TN∗ instead of TN is that the
ordering permutation πu is unique when u ∈ DN

∗ . Notice also that, for every u ∈ DN
∗ , the map

v 7→ πuv is invertible on RN . Moreover, we obviously have πIN ⊂ DN
∗ for every π ∈ ΠN−1.

Claim 2.1. Given a map F : TN 	 which commutes with every π ∈ ΠN−1, let F : RN 	 be defined
by F = P ◦ F ◦ P−1. The restriction F|DN∗ is entirely determined by its action on IN , viz. we have

Fu = π−1
u ◦ F|IN ◦ πuu, ∀u ∈ D

N
∗ . (1)

Proof: The map P and its inverse commute with every transformation in ΠN−1; hence so does F
by the assumption on F . We then have

F|IN v = Fv = πu ◦ π−1
u ◦ Fv = πu ◦ F ◦ π−1

u v, ∀v ∈ IN , u ∈ DN
∗ .

In particular, for v = πuu, we get F|IN ◦ πuu = πu ◦ Fu from where the relation (1) immediately
follows. �
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Assuming in addition that the map F is non-singular, namely that the pre-images of zero
Lebesgue measure sets have zero Lebesgue measure, so that F is also non-singular and then the
complement set IN \

(
IN ∩ F−1DN

∗
)

has zero Lebsegue measure. The relation (1) suggests to
consider the projected map F defined in IN ∩ F−1DN

∗ by

u 7→ Fu = πFu ◦ F|INu.

The important features of F for our purpose, especially in the piecewise affine case, are identified
in the following statement.

Lemma 2.2. (i) Assume that F has two disjoint forward invariant sets in IN ∩ F−1DN
∗ . Then,

the same property holds for F in DN
∗ , and hence for F in TN∗ .

(ii) If F is a non-singular piecewise affine map, then there exist atomic collections in DN
∗ and in IN

respectively so that the maps F and F are non-singular piecewise affine maps. Moreover, assume
that F has two disjoint IUP in IN ∩F−1DN

∗ . Then, the same property holds for F in DN
∗ ∩F−1DN

∗ ,
and hence for F in TN∗ ∩ F−1TN∗ .

Naturally, the converse statement cannot be true because of the equality

πu = πu ◦ π, ∀π ∈ ΠN−1,

implies that every trajectory {F tu}t∈N of F and its image trajectory {π ◦F tu}t∈N are mapped onto
the same trajectory of F . Yet, Lemma 2.2 can serve to detect distinct invariant sets/IUP of F that
consist of distinct orbits of the symmetry group ΠN−1.

Proof of the Lemma. (i) Assume that A,B ⊂ IN ∩ F−1DN
∗ with A ∩ B 6= 0 are two invariant sets

of F . Then both union sets
⋃
π∈ΠN−1

πA,
⋃
π∈ΠN−1

πB ⊂ DN
∗ must be disjoint invariant sets of F.

To see this, assume that u ∈
⋃
π∈ΠN−1

πA. Then u ∈ πA ⊂ DN
∗ for some π ∈ ΠN−1. Also

the symmetry of F implies that πA ⊂ F−1DN
∗ for every π ∈ ΠN−1, which in particular yields

πuu ∈ IN ∩ F−1DN
∗ . Relation (1) then implies

Fu = π−1
u ◦ F|IN ◦ πuu = π−1

u ◦ π−1
F◦πuu ◦ πF◦πuu ◦ F|IN ◦ πuu = π−1

u ◦ π−1
F◦πuuv

where v = πF◦πuu ◦ F|IN ◦ πuu = F ◦ πuu ∈ A because πuu ∈ A and A is invariant under F . In
other terms, Fu ∈ π′A for some π′ ∈ ΠN−1, proving invariance.

Moreover, that the union sets
⋃
π∈ΠN−1

πA and
⋃
π∈ΠN−1

πB are disjoint is also immediate.

Firstly, when π 6= π′, we must have πA ∩ π′B = ∅ because these sets belong to distinct regions of
DN
∗ (distinct relative ordering of the coordinates). Secondly, if we had πA ∩ πB 6= ∅ for some π,

then we would have A ∩B 6= ∅ since π is one-to-one, which contradicts the initial assumption.
(ii) Assume that F is a non-singular piecewise affine map and let {Aω} be its atomic collection
(see Appendix A). Then F is also a non-singular piecewise affine map for the atomic collection, say
{A′ω′}, defined by the refinement of the image collection {PAω} by the level sets of the functions
{b(Fu)N − (Fu)ic − b(Fu)Nc}i∈[1,N ]. The conjugacy P implies that any IUP

⋃
k Pk of F induces

an IUP
⋃
k P
−1Pk of F for the refined atomic collection {P−1A′ω′}. Moreover, two distinct IUP of

F induce two distinct IUP of F .
In addition, the permutation symmetry group implies that for every ω′, we have A′ω′ = πA′ω′+

where π ∈ ΠN−1 and the index ω′+ are such that A′ω′+
⊂ IN . Then, the map F is a piecewise affine

map for the atomic collection {A′′ω′′} defined by the refinement of {A′ω′+} by the sets in IN in which

the ordering of the coordinates ((Fu)i)
N−1
i=1 is constant (namely those sets in which the permutation

πFu does not depend on u).
Now, a similar reasoning as in the proof of (i) shows that if

⋃
k Pk and

⋃
k′ P

′
k′ are disjoint IUP

for F , then
⋃
k Pk and

⋃
k′ P

′
k′ must be disjoint IUP for F. �
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2.2 Maps with additional symmetries

Following Lemma 2.2, a natural setting for the existence of multiple invariant sets/IUP for the
projected map F is when this map has some symmetry, so that one can investigate the existence of
asymmetric invariant sets/AsIUP. Accordingly, we need to determine those conditions that ensure
that a (additional) symmetry of the original map F transfers to one for F . This is precisely the
purpose of the following statement.

Lemma 2.3. Assume that a transformation S : TN∗ 	 commutes with F and that the induced
transformation Σ = P ◦S◦P−1 on DN

∗ has a proper representation on IN , ie. there exists σΣ : IN 	
such that

σΣ ◦ πuu = πΣu ◦ Σu, ∀u ∈ DN
∗ .

Then, F commutes with σΣ on IN ∩ F−1TN∗ .

Proof. Throughout the proof we use the symbol σ to denote σΣ. For every u ∈ DN
∗ ∩ F−1DN

∗ , we
have πFu ◦ Fu ∈ IN ⊂ DN

∗ ; hence using the characterization of σ above and Σ ◦ F = F ◦ Σ, we get

σ ◦ πFu ◦ Fu = πΣ◦Fu ◦ Σ ◦ Fu = πF◦Σu ◦ F ◦ Σu.

On the other hand, we have πu = Id on IN and then for u ∈ IN

πF◦σu ◦ F ◦ σu = πF◦πΣu◦Σu ◦ F ◦ πΣu ◦ Σu = ππΣu◦F◦Σu ◦ πΣu ◦ F ◦ Σu

= πF◦Σu ◦ F ◦ Σu

where the second equality follows from the fact that F commutes with πΣu and the second line
follows from the fact that

ππ′u ◦ π′u = πuu, ∀π′ ∈ ΠN−1. (2)

�
Since F commutes with every π ∈ ΠN−1, it follows that, when S satisfies the conditions of

Lemma 2.3, every transformation π ◦ S induces a transformation π ◦Σ with proper representation
on IN . Yet, that representation is identical to that of the original symmetry S, as our next claim
states.

Claim 2.4. We have σΣ = σπ◦Σ for every π ∈ ΠN−1.

Proof. This is immediate from the relation (2) and the fact that ππ′uu = πuu for every π′ ∈ ΠN−1.
�

Example 2.5. The inversion of coordinate signs S = −Id|TN by

(Su)i = −ui mod 1, ∀i ∈ [1, N ],

induces the transformation Σ = P ◦ S ◦ P−1 on DN
∗ whose explicit expression reads (after simple

algebra)
(Σu)i = δi,N − δuN ,0 − ui, ∀i ∈ [1, N ].

Clearly, Σ has a proper representation σΣ on IN given by

(σΣu)i =

{
−δuN ,0 − uN−i if i ∈ [1, N − 1]
1− δuN ,0 − uN if i = N

(3)

7



Remark 2.6. The left cyclic permutation K of the N coordinates in TN defined by

(Ku)i =

{
ui+1 mod 1 if i ∈ [1, N − 1]
u1 mod 1 if i = N

induces the following transformation κ = P ◦K ◦ P−1 on DN
∗

(κu)i =

{
ui+1 + bu1 − ui+1c − bu1c if i ∈ [1, N − 1]

u1 − bu1c if i = N

This map has no proper representation in IN . Indeed, for every π ∈ ΠN−1 that affects the first
coordinate, we have

(πκ◦πu ◦ κ ◦ πu)N = (κ ◦ πu)N 6= (κu)N = (πκu ◦ κ ◦ πu)N , ∀u ∈ DN
∗ .

Yet, we have ππu ◦ πu = πuu; hence the equality in Lemma 2.3 cannot hold.

This remark shows that the cyclic permutation symmetry cannot transfer to the projected map
F . In order words, that in addition to ΠN−1, the original map F also commutes with K (and
hence with every permutation of the N coordinates, by composition) does not bring any additional
symmetry to F .

However when F commutes with every permutation in ΠN , or more generally, when it commutes
(only) with every element of the group Πi1,··· ,iN−1 of the permutations of the (N − 1) coordinates
indexed by {i1, · · · , iN−1}, a similar projection procedure as in the previous section can be defined,
which is adapted to the (N − 1)-uple under consideration. Naturally, the fundamental domain and
corresponding projection P depend on this (N − 1)-uple, as well as do the representation of F on
the corresponding set IN of points with increasing coordinates and that of the inversion of sign
coordinates S.

In short terms, when F commutes with every permutation of all coordinates, both the projected
map and the representation of the inversion of coordinate signs on IN are not unique and depend
on the choice of the fundamental domain, see Appendix E for examples.

2.3 Application to the coupled maps

For the sake of notation, let d = N − 1. As already pointed out, the coupled maps FN,ε commute
with every π ∈ Πd, and also with the inversion symmetry S = −Id|TN . The arguments above imply
that when the corresponding projected map FN,ε defined by

u 7→ FN,εu = πFN,εu ◦ FN,ε|INu, u ∈ IN ∩ F−1
N,εD

N
∗ ,

(where FN,ε = P ◦ FN,ε ◦ P−1) has an AsIUP with respect to the inversion symmetry σΣ defined
by (3), then FN,ε must have two acim with disjoint supports.

In addition, the specific form of the expression of FN,ε, namely that it consists of the sum of a
multiple of the identity on TN and a map that only depends on the coordinates differences uj − ui,
implies a further reduction. To see this, let φN be defined by

(φNu)i =

{
ui+1 − ui if i ∈ [1, d]

uN if i = N
, u ∈ RN .

This map is one-to-one and we have φNIN = Sd × [0, 1), where Sd is the d-simplex introduced in
Section 1.2. Moreover, explicit computations yield the following statement.

8



Claim 2.7. The conjugated map φN ◦FNε ◦φ−1
N is a skew-product dynamical system on Sd× [0, 1),

whose base map, say Gd,ε, is a piecewise affine map from Sd into itself.

Moreover, we have φN ◦σΣ◦φ−1
N = σd×σ′1, where the inversion symmetries σd and σ′1 respectively

act on Sd and [0, 1), and are given by

(σdx)i =

{
xd−i if i ∈ [1, d− 1]

1− (x1 + · · ·+ xd) if i = d
, x ∈ Sd, (4)

and
σ′1x = 1− δx,0 − x, x ∈ [0, 1)

As a consequence, all the maps Gd,ε commute with σd.
Now, one can show that if

⋃
k Pk is an AsIUP of Gd,ε with respect to σd, then φ−1

N (
⋃
k Pk × [0, 1))

is an AsIUP of the projected map FN,ε with respect to σΣ. Accordingly, it suffices to obtain an
AsIUP in Sd of Gd,ε in order to show the existence of two acim with disjoint supports in TN for
the original coupled maps FN,ε.

A schematic summary of the whole reduction procedure associated with FN,ε is given in Fig. 2.

Figure 2: Schematic representation of the whole reduction procedure for the coupled maps FN,ε
and their inversion symmetry S = −Id|TN . The original system (FN,ε,TN∗ ) is first conjugated
to (FN,ε, D

N
∗ ), then projected to (FN,ε, IN ), which is in turn conjugated to a skew-product sys-

tem whose base is (Gd,ε, Sd). Similar operations are applied to the symmetry S, which yield the
symmetry σd defined in (4) for the system (Gd,ε, Sd).

3 Inspiring features of the maps Gd,ε

In this section, we identify some basic features of the reduced maps Gd,ε : Sd 	 that will inspire
the construction to come. Focus is made on the outermost atoms of the atomic collection, namely
those atoms that consist of d-simplexes whose facets are included in the facets of Sd itself, and their
adjacent atoms that are separated by a co-dimension 1 facet contained in the interior of Sd.

5 In
addition, the mechanism responsible for the emergence of AsIUP in G2,ε is thoroughly analyzed.

3.1 Characterisation of Gd,ε in the outer atoms of Sd

In order to state the features of Gd,ε, we need to introduce and to describe the following subsets of
Sd, see Fig. 3 and the left panel in Fig. 4.

5As we shall see below, the latter are genuine atoms only when d ∈ [2, 3]. Otherwise, the map Gd,ε is not
continuous on these sets. Moreover, its discontinuities depend both on d and ε. This is a cause of the absence of a
simple systematic mechanism for the loss of ergodicity in the FN,ε when N ≥ 5.

9



Figure 3: The simplex S3 and the composing simplexes Ak and Bk. The collection {Ak, Bk}2k=0 is
an atomic collection for G3,ε.

• Given d ∈ N and k ∈ [0, d], let

A0 =
{
x ∈ Sd : x1 + · · ·+ xd <

1
2

}
and Ak =

{
x ∈ Sd : 1

2 < xk
}
, k ∈ [1, d].

• For d ≥ 2, let

B0 =
{
x ∈ Sd : x1 + · · ·+ xd−1, x2 + · · ·+ xd <

1
2 < x1 + · · ·+ xd

}
B1 =

{
x ∈ Sd : x1, x2 + · · ·+ xd <

1
2 < x1 + x2

}
,

Bk =
{
x ∈ Sd : xk <

1
2 < xk−1 + xk, xk + xk+1

}
, k ∈ [2, d− 1],

and
Bd =

{
x ∈ Sd : x1 + · · ·+ xd−1, xd <

1
2 < xd−1 + xd

}
.

Let {vk}dk=0 be the collection of the vertices of Sd, where v0 is the origin and where the coordinates
of the other vk satisfy (vk)i = δi,k for i ∈ [1, d].

Claim 3.1. (i) The sets Ak are pairwise disjoint d-simplexes included in Sd, whose vertices are vk
and the middle points of the edges of Sd issued from vk.
(ii) Each set Bk is also a d-simplex included in Sd and adjacent to Ak. The sets Bk are pairwise
disjoint if d ≥ 3 and they all coincide for d = 2. Moreover, we have

⋃
k Ak ∩

⋃
k Bk = ∅ and each

Ak ∪Bk forms a convex bipyramid.
(iii) Recall the inversion symmetry σd defined in (4). We have σdAk = Ad−k for k ∈ [0, dd2e − 1],6

and if d is even, we also have σdA d
2

= A d
2
. The same properties hold for the Bk.

In addition, notice that the Lebesgue measure of the complement set Sd \
⋃
k(Ak ∪Bk) is zero

for d ∈ [2, 3] and positive for d ≥ 4.
Proof of the Claim. (i) That A0 (resp. Ak) is a d-simplex is a direct consequence of the fact that it
can be obtained as the truncation of Sd by the hyperplane x1 + · · ·+ xd = 1

2 (resp. xk = 1
2). That

the Ak are pairwise disjoint is immediate from their definition and the constraints in Sd.

6The symbol d·e denotes the ceiling function.

10



(ii) That Bk is a simplex follows from the fact that is has d+1 facets that are given by the following
independent inequalities

0 < x`, ` ∈ [2, d− 1] and x1 + · · ·+ xd−1, x2 + · · ·+ xd <
1
2 < x1 + · · ·+ xd if k = 0

0 < x`, ` ∈ [3, d] and x1, x2 + · · ·+ xd <
1
2 < x1 + x2 if k = 1

0 < x`, ` ∈ [1, d] \ [k − 1, k + 1], xk <
1
2 < xk−1 + xk, xk + xk+1 and x1 + · · ·+ xd < 1 if k ∈ [2, d− 1]

0 < x`, ` ∈ [1, d− 2] and x1 + · · ·+ xd−1, xd <
1
2 < xd−1 + xd if k = d

That the Bk are pairwise disjoint is immediate from their definition and the constraints in Sd.
Moreover, the (only) facet of Ak included in the interior of Sd is also a facet of Bk; hence Ak and
Bk must be adjacent sets. That Ak ∪Bk is convex is immediate from their definition.
(iii) Proved by direct computations. �

Now, the next statement describes the main properties of the restrictions Gd,ε|Ak and Gd,ε|Bk .

Lemma 3.2. In addition to commuting with σd, the piecewise affine map Gd,ε has the following
features for every ε ∈

(
0, 1

2

)
.

(i) Every simplex Ak is an atom of Gd,ε and the restrictions of Gd,ε to A0 and to Ak respectively
write

(Gd,ε|A0x)i = 2(1− ε)xi and (Gd,ε|Akx)i = 2(1− ε)xi + (2ε− 1)δi,k, i ∈ [1, d].

(ii) For any k ∈ [0, d], the simplex Bk is an atom of Gd,ε iff d ∈ [2, 3].

This statement is a special case for uniform distributions ρ (viz. for % = 1
N = 1

d+1) of Lemma D.1
in Appendix D. We refer to that Appendix for a proof.

In order words, Lemma 3.2 states that {Ak, Bk}dk=0 is an atomic collection of Gd,ε for d ∈ [2, 3],
and also that Gd,ε has discontinuities inside every Bk when d ≥ 4. In the next section, we provide
an analysis of the dynamics of G2,ε and we establish the existence of AsIUP for ε near 1

2 .

3.2 Analysis of the reduced map G2,ε

As a preliminary comment to this section, we observe that for d = 1, using that the interval
S1 = (0, 1) = A0 ∪ A1 ∪ {1

2}, the first claim in Lemma 3.2 entirely determines (up to a set of zero
Lebesgue measure) the one-dimensional map G1,ε : S1 	. This map is a particular case of a Lorenz
map with two branches [15, 20] and has a unique ergodic acim for every value of % and ε.

For d = 2, we have S2 = A0 ∪A1 ∪A2 ∪B where B := B0 = B1 = B2 (see the left panel in
Fig. 4). Lemma 3.2 states that the 2-dimensional map G2,ε : S2 	 is an piecewise affine map with
atoms A0, A1, A2 and B. That statement also describes the action of the restrictions G2,ε|Ak . As
for the restriction G2,ε|B, its expression is as follows (see equation (8) in Appendix D.1)

G2,ε|Bx = (−2(1− ε)x1 + 1− 2ε
3 , 2(1− ε)(x1 + x2) + 4ε

3 − 1).

An analysis of this expression (details not shown) reveals that G2,ε|B has the following character-
istics.

Claim 3.3. (i) The fixed point p0 =
(

1
3 ,

1
3

)
of G2,ε|B belongs to B.

(ii) Let p1 be the intersection point of the segment [p0v2] and the edge A2 ∩ B. Let p2 be the
intersection point (which exists) of the image segment G2,ε|B[p0p1] and A2∩B. In the basis formed
by the vectors p0p1 and p0p2, the linear part of G2,ε|B is given by the following matrix

2(1− ε)
(

0 1
2

2 0

)
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Let C be the triangle with vertices p0, p1 and p2. The properties of G2,ε on A2 ∪ B imply
that the set C ∪G2,εC ⊂ A2 ∪B is an IUP of G2,ε when ε is close enough to 1

2 .7 The proof of this
conclusion, which essentially consists in showing that G2,ε(G2,εC∩A2) ⊂ G2,εC when the expansion
rate 2(1 − ε) is sufficiently close to 1, is sketched on Figure 4. The proof itself is an adaptation
mutatis mutandis for d = 2 of the proof of Proposition 4.5 below (details not shown).

<latexit sha1_base64="pd6CG+fgXjPa9TrI/+SvifD5VxY=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY9ELx4xyiOBDZkdemHC7OxmZpaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju7nfGqPSPJZPZpKgH9GB5CFn1Fjpcdyr9Iolt+wuQNaJl5ESZKj3il/dfszSCKVhgmrd8dzE+FOqDGcCZ4VuqjGhbEQH2LFU0gi1P12cOiMXVumTMFa2pCEL9ffElEZaT6LAdkbUDPWqNxf/8zqpCW/8KZdJalCy5aIwFcTEZP436XOFzIiJJZQpbm8lbEgVZcamU7AheKsvr5NmpexdlasP1VLtNosjD2dwDpfgwTXU4B7q0AAGA3iGV3hzhPPivDsfy9ack82cwh84nz8NFo2o</latexit>v2

Figure 4: Left. The triangle S2 and the composing triangles A0, A1, A2 and B := B0 = B1 = B2

which form an atomic collection of G2,ε. The triangle C has vertices p0, p1, p2, which are defined
in Claim 3.3. Center. The triangle G2,εC is obtained using the features listed in Claim 3.3. Right.
The restriction G2,ε|A2 is an expanding affine map with fixed point equal to v2 and affine part given
by 2(1− ε)Id. Hence, when ε is close enough to 1, we have G2,ε(G2,εC ∩A2) ⊂ G2,εC. In this case,
the set C ∪G2,εC is an IUP of G2,ε.

Furthermore, recall that the map G2,ε commutes with the transformation σ2 defined by

σ2(x1, x2) = (x1, 1− x1 − x2)

which is the reflection symmetry transverse to the line (p0v1). Clearly, Figure 4 shows that C∪G2,εC
is disjoint from its image under σ2 (which lies in A0 ∪B), and hence it is actually an AsIUP when
it is an IUP.8 In particular, this simply connected AsIUP confirms the numerical phenomenology
of the coupled map F3,ε for ε close to 1

2 (see Appendix B).
As a side comment, notice that it can be proved that the map G2,ε is locally eventually onto

when ε is small enough (details not shown - see [5] for a proof for a similar symmetric map of
the unit square), which implies uniqueness of the acim and hence ergodicity. In other words, the
family of two dimensional maps {G2,ε}ε∈(0, 1

2
) has the same dynamical features as the family of

one-dimensional Lorenz-type maps {fa}a∈(1,2) given in the introduction.

4 Symmetric maps of Sd with multiple acim of disjoint supports

Ideally, we would like to prove for Gd,ε with d ≥ 3 arbitrary, the same emergence of multiple
acim with disjoint (asymmetric) supports for ε near 1

2 . More precisely, given the numerical phe-

7Notice that G2,ε|B is not expanding but its second iterate (G2,ε|B)2 is. This is sufficient to conclude that the
IUP must contains an acim.

8Notice that the original map F3,ε also commutes with every permutation of the 2 coordinates u1 and u3. The
projection procedure in that setting yields another map G′2,ε of S2 whose inversion symmetry is the reflection with
respect to the diagonal (x1, x2) 7→ (x2, x1) (see Appendix E.2). That symmetry may appear more natural than the
reflection with respect to (p0v1) and the map G′2,ε also has an AsIUP when ε is close to 1

2
.
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nomenology reported in Appendix B, we would like to prove the existence of simply connected
AsIUP.

However, the features of Gd,ε indicate that, if they exist, such AsIUP for d ≥ 3 cannot be as
simple as the one in G2,ε described in the previous section. In particular, for d = 3 the expression
(8) in Appendix D.1 of the image coordinate (G3,ε|B1x)3 implies that no AsIUP can be included in
A1 ∪B1 (nor in A3 ∪B3 by symmetry).9 In addition, one can check that the fixed point of G3,ε|B0

does not belong S3; hence a feature as in statement (i) of Claim 3.3 cannot hold for G3,ε|B0 (and
also for G3,ε|B2 by symmetry). For d ≥ 4, no evidence has been found of long-term trajectories
contained in Ak ∪Bk for some k ∈ [0, d]. Therefore, to provide a simple systematic mechanism for
the emergence of AsIUP in Gd,ε for an arbitrary d ≥ 3, remains an inaccessible objective.

Consequently, we target a more modest goal, which is to provide proved examples of families
of piecewise C∞ symmetric maps of Sd, d ≥ 3 arbitrary, that exhibit multiple acim with disjoint
(asymmetric) supports when the expanding rate of their linear restrictions is sufficiently close to
1. This symmetry-breaking induced loss of ergodicity will be a consequence of the emergence of
simply connected AsIUP that are generated by a multi-dimensional extension of the mechanism in
G2,ε. The outcome of the construction is given in the following statement, which can be considered
as the main result of this paper.

Theorem 4.1. For every d ≥ 3, there exists ad ∈ (1, 2) and a family {Hd,a}a∈(1,,ad) of piecewise
C∞ maps of Sd with the following properties.

• The maps Hd,a commute with the inversion symmetry σd (defined in (4)).

• The maps Hd,a coincide with Gd,εa on
⋃d
k=0Ak, where εa = 1 − a

2 ∈ (0, 1
2) (so that the

corresponding expanding rate is a).

• The maps Hd,a have an acim whose support is included in Ak ∪Bk, for some k ∈
[
0, dd2e − 1

]
.

(NB: By the symmetry, they also have a disjoint acim whose support in included in Ad−k ∪Bd−k).

• The acim support is actually included in some AsIUP, say U , included in Ak ∪Bk. Moreover,
the restriction Hd,a|U∩Bk is an affine map. Its fixed point belongs to Bk and there exists a
(not necessarily normed nor orthogonal) basis {en}dn=1 of Rd such that the action of the linear
part L of Hd,a|U∩Bk in this basis is given by

Len = a|en|
|en+1|en+1, ∀n ∈ [1, d],

provided that d+ 1 is identified with 1.

Remark 4.2. (i) The Theorem actually holds for every k ∈
[
0, dd2e − 1

]
, with ad depending on

k. Hence, for a ∈ (1,mink ad), it holds for all k.

(ii) We do not know whether or not the whole restriction Hd,a|Bk (and not only Hd,a|U∩Bk) can
be chosen to be affine.

Proof of Theorem 4.1: The proof consists in providing a suitable definition of Hd,a in Bk so that we
get an IUP inside Ak ∪Bk. To that goal, the first step identifies an adequate collection of linearly
independent points in Bk.

Lemma 4.3. For every k ∈ [0, d], there exists a collection {pn}dn=0 of linearly independent points
which satisfy the following conditions

9Actually, when ε is close to 1
2
, G3,ε has a sinply-connected AsIUP across B0, A1 and B1 (details not shown).
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• p0 lies in the interior of Bk.

• the points {pn}dn=1 lie in the facet common to Ak and Bk. Moreover, p1 is also included in
the segment [p0vk].

• the vector (Euclidean) lengths {|p0pn|}dn=1 and |p0vk| satisfy the following inequalities

|p0p1| < |p0p2| < · · · < |p0pd| < |p0vk|.

Proof. Let T = Ak ∩Bk be the common facet to Ak and Bk and let p1 ∈ Int(T ) be arbitrary. Let
p0 ∈ (vkp1) ∩ Int(Bk) where (vkp1) is the line through vk and p1. Since p1 ∈ Int(T ), we must have

|p0p1| < max
p∈T
|p0p|,

hence, by continuity there exists pd ∈ Int(T ) such that |p0p1| < |p0pd|. For the remaining points
{pn}d−1

n=2 (d ≥ 3), we use an iterative argument. By continuity again, there exists pd−1 ∈ Int(T ) \
(p1pd) such that

|p0p1| < |p0pd−1| < |p0pd|.

In order to obtain pd−1, it suffices to pick up a point in Int[p1pd] such that these inequalities hold,
and then to apply a small perturbation transverse to this segment.

If d ≥ 4, let (p1pd−1pd) denotes the plane defined by these points and let pd−2 ∈ Int(T ) \
(p1pd−1pd) be such that

|p0p1| < |p0pd−2| < |p0pd−1|.

As before, in order to obtain pd−2, it suffices to pick up a point in Int[p1pd−1] such that these
inequalities hold, and then to apply a small perturbation transverse to the plane (p1pd−1pd). We
continue likewise for the remaining points {pn}d−3

n=2. Notice that for the last point p2, the complement
space to the hyperplane (p1p3 · · · pd−1pd) is one-dimensional. �

Let Ck be the d-simplex included in Bk and defined by the vertices {pn}dn=0. In order to
construct an IUP of Hd,a that contains an acim, it suffices to specify the (linear) action of Hd,a|Bk
on Ck. The action on the complementary set Bk \ Ck is irrelevant for our purpose. It only needs
to be defined such that Hd,a|BkBk ⊂ Sd, in order to ensure that the whole dynamics is well-defined
as a map of Sd into itself.

Definition 4.4. Given k ∈ [0, d], let {pn}dn=0 be a collection as in the previous statement and let
Ck be the simplex defined by these points. Let a′d > 1 be such that

a′d|p0pn| ≤ |p0pn+1| for n ∈ [1, d− 1] and a′d|p0pd| ≤ |p0vk|.

Let {Hd,a}a∈(1,a′d) be a family of piecewise affine maps defined on Ak ∪ Ck as follows

• Hd,a|Ak = Gd,1−a
2
|Ak .

• Hd,a|Ck is an affine map with fixed point p0 and with the following features

Hd,a|Ckp0pn = a |p0pn|
|p0pn+1|p0pn+1 for n ∈ [1, d− 1] and Hd,a|Ckp0pd = a |p0pd|

|p0p1|p0p1.
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Notice that the restriction Hd,a|Ck has similar permutation-expanding features as the map

G2,1−a
2
|B in Section 3.2. Only the length ratios

|Hd,ap0pn|
|p0pn| differ from those of

|G2,1−a2
p0pn|

|p0pn| . Yet,
these choice do not really matter for our purpose as long as the product over a cycle is larger than
one (so that the iterate (Hd,a|Ck)d is expanding - see the end of the proof below) and Hd,aCk ∈ Sd.
The features in Definition 4.4 imply the existence of an IUP for Hd,a, as claimed in the following
statement.

Proposition 4.5. Let {Hd,a}a∈(1,a′d) be as in Definition 4.4. Then

(i) for all a ∈ (1, a′d), we have Hd,aCk ⊂ Ak ∪ Ck,

(ii) when a is sufficiently close to 1, the set Ck ∪Hd,aCk is an IUP of Hd,a. More precisely, we
have Hd,a(Hd,aCk ∩Ak) ⊂ Hd,aCk.

Proof. (i) That Hd,a|Ck is affine and non-singular implies that Hd,aCk is a d-simplex. Moreover,
the conditions in the definition of Hd,a|Ck imply that its vertices must satisfy the conditions

Hd,a|Ckpn ∈ Bk, ∀n ∈ [0, d− 1] and Hd,a|Ckpd ∈ Ak. (5)

By convexity of Ak ∪Bk, it follows that Hd,aCk ⊂ Ak ∪Bk. Moreover, we have

Hd,a|Ckpn ∈ [p0pn+1], ∀n ∈ [0, d− 1] and Hd,a|Ck [p0pd] ∩Bk = [p0p1],

which, by convexity, implies Hd,aCk ∩Bk ⊂ Ck. Statement (i) immediately follows.
(ii) We begin with the following assertion.

Claim 4.6. The set Hd,aCk ∩Ak is a d-simplex.

Proof of the Claim. According to (5), each segment Hd,a|Ck [pdpn] (n ∈ [0, d − 1]) intersects the
facet Ak ∩Bk. Therefore, the set Hd,aCk ∩Ak can be regarded as the truncation of the polyhedral
sector defined by the rays Hd,a|Ck [pdpn) (n ∈ [0, d− 1]) by the hyperplane associated with Ak ∩Bk.
As such, it must be a d-simplex. �

Claim 4.7. When a is sufficiently close to 1, we have Hd,a(Hd,aCk ∩Ak) ⊂ Hd,aCk.

Proof of the Claim. By the previous claim and the fact that Hd,a|Ak is affine and expanding, the
set Hd,a(Hd,aCk ∩ Ak) must be a d-simplex. In order to prove the claim, we study the location of
the images under Hd,a|Ak of the vertices of Hd,aCk ∩ Ak, namely of the points p1, {qn}d−1

n=1 where
qn is the intersection point of the edge Hd,a|Ck [pdpn] and the facet Ak ∩Bk,10 and Hd,a|Ckpd.

By the definition of Gd,1−a
2
|Ak , both Hd,a|Akp1 and Hd,a|Ak ◦ Hd,a|Ckpd belong to the ray

[Hd,a|Ckpd, p0). Moreover, by continuity, when a is close enough to 1, they must belong to the
segment [Hd,a|Ckpd, p0], which is an edge of Hd,aCk.

In order to locate the remaining vertices {Hd,a|Akqn}
d−1
n=1, for each n ∈ [1, d−1], we consider the

2-dimensional plane generated by the lines (p0vk) and (p0pn+1), see Fig. 5. Clearly, the point qn
lies at the intersection of the segments [p1pn+1] and Hd,a|Ck [pdpn]. In particular, this point belongs
to the edge Hd,a|Ck [pdpn] - but it is not a vertex - of the triangle (p0, Hd,a|Ckpd, Hd,a|Ckpn), which
is a 2-facet of Hd,aCk. Now, the definition of Hd,a|Ak and Lemma 3.2 imply that Hd,a|Akqn belongs
to the same plane, and more precisely, to the half-plane delimited by the line Hd,a|Ck(pdpn) and

10Notice that p1 is the intersection point of the edge Hd,a|Ck [pdp0] and the facet Ak ∩Bk.
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Figure 5: Illustration of the vertices of the facets of Ck, Hd,aCk and Hd,a(Hd,aCk ∩ Ak) in the 2-
dimensional plane generated by the lines (p0vk) and (p0pn+1). Left: The facet of Ck is the triangle
(p0p1pn+1). Center: The facet of Hd,aCk is the triangle (p0, Hd,a|Ckpd, Hd,a|Ckpn). Right: The facet
of Hd,a(Hd,aCk ∩Ak) is the triangle (Hd,a|Akp1, Hd,a|Ak ◦Hd,a|Ckpd, Hd,a|Akqn).

that contains p0. Therefore, by continuity, when a is sufficiently close to 1, Hd,a|Akqn must belong
to the interior of the triangle (p0, Hd,a|Ckpd, Hd,a|Ckpn).

Let finally a be close enough to 1, so that all constraints above simultaneously hold. Then all
points Hd,a|Akp1, {Hd,a|Akqn}

d−1
n=1 and Hd,a|Ak ◦Hd,a|Ckpd belong to Hd,aCk. The claim then follows

by convexity. �
The proof of Proposition 4.5 is complete. �
Finally, that the linear part L of Hd,a|Ck is as claimed in Theorem 4.1 immediately follows for

the basis {p0pn}d,=1 from the Definition 4.4. As a consequence, the iterated map (Hd,a|Ck)d has

linear part Ld = adId and thus is expanding. Using also that Hd,a|Ak is expanding, we conclude
that Hd,a must have an acim supported in Ck ∪Hd,aCk. The proof of Theorem 4.1 is complete. �
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A Essentials of expanding piecewise affine maps

Given d ∈ N, let M ⊂ Rd be a bounded polytope or M = Td. A map F is said to be a piecewise
affine map of M if there exists a finite collection {Aω} of open, convex and disjoint polytopes
included in M (and called atoms) such that

• the difference set M \
⋃
ω Aω has zero Lebesgue measure,

• for each ω, the restriction F |Aω is an affine map and F (Aω) ⊂M .
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Notice that the atomic collection {Aω} is not unique. One may choose any finite sub-collection
{A′ω′} of atoms such that⋃

ω′

A′ω′ ⊂
⋃
ω

Aω and Leb

(⋃
ω

Aω \
⋃
ω′

A′ω′

)
= 0. (6)

A piecewise affine map is said to be expanding if there exists a > 1 such that the linear maps
Lω associated with the affine restrictions F |Aω all satisfy the following inequality on the Euclidean
lengths

|Lωx| ≥ a|x|, ∀x ∈ Rd.
The largest of such a is called the expanding rate.

A finite union
⋃
k Uk of polytopes in M is called an invariant union of polytopes (IUP) for

F if there is an atomic collection {Aω} such that

F

⋃
k,ω

Uk ∩Aω

 ⊂⋃
k

Uk.

If
⋃
k Uk is an IUP of an expanding piecewise affine F , then F must have an acim with support

included in
⋃
k Uk [19]. Notice that this property and the acim are independent of the action of F

on
⋃
k,ω Uk \Aω, nor they depend on the choice of the atomic collection as in (6).

An invertible transformation σ : M 	 is said to be an inversion symmetry if we have σM = M
and σ2 = Id 6= σ. An IUP

⋃
k Uk is said to be an asymmetric IUP (AsIUP) if⋃

k

Uk ∩ σ

(⋃
k

Uk

)
= ∅.

If an expanding piecewise affine F commutes with some inversion symmetry σ and if
⋃
k Uk is an

AsIUP of F , then evidently, F must have two acim with disjoint supports.

B Main features of the maps FN,ε

B.1 Adapted representation of points in TN

The coupled map phenomenology and its symmetry-induced loss of ergodicity can be more easily
apprehended using the following decomposition of points in phase space. Given u ∈ RN , let

• let uDiag ∈ RN be the vector whose coordinates are all equal to
∑N

i=1 ui and

• let u⊥ = u− 1
N uDiag ∈

{
u ∈ RN :

∑N
i=1 ui = 0

}
.

This decomposition extends to the torus TN as follows. If u ∼ v are two elements of the same
equivalence class in TN , then we can write u = uDiag + u⊥ and v = vDiag + v⊥ where

• uDiag ∼ vDiag are two elements of the same equivalent class in T and

• u⊥ ∼ v⊥ where this equivalence is defined by the following relation

u⊥ ∼ v⊥ ⇐⇒ (u⊥)i = (v⊥)i + ni − 1
N

N∑
j=1

nj , ∀i ∈ [1, N ],

for some n = (ni)
N
i=1 ∈ ZN . Let DN be the set of all equivalent classes induced by this

definition.
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If {ut}t∈N where ut+1 = FN,εu
t for all t ∈ N is an orbit of FN,ε issued from u ∈ TN , then the iterates

utDiag ∈ T evolve independently according to the one-dimensional map x 7→ 2x mod 1, for which
the Lebesgue measure is ergodic. Hence, any loss-of-ergodicity feature of FN,ε has to take place in
DN .

Now, every element of DN can be represented by an element of the scaled-centred permutahedron
PN defined by

PN =

{
u ∈ RN :

N∑
i=1

ui = 0 and
∑
i∈S

ui ≤ |S|(N−|S|)2N , ∀S ( [1, N ], S 6= ∅

}
.

To see this, notice that the hyperplane
∑N

i=1 ui = N(N+1)
2 can be tiled by copies of the (original)

permutahedron that are generated by the translations of the vectors n ∈ ZN whose coordinates ni
are all equal modulo N and satisfy

∑N
i=1 ni = 0. The definition of PN then follows from the analytic

characterisation of the permutahedron in terms of inequalities constraints of the coordinates, see
e.g. Chapter 7 in [14], together with the appropriate scaling 1

N of the translations in the definition
above of the equivalence classes associated with u⊥.

Furthermore, the symmetries of FN,ε are conveyed to PN , namely the map induced by FN,ε on
PN commutes with the permutations of coordinates and their sign inversion.

B.2 Main features of the phenomenology of FN,ε

As mentioned in the introduction, the coupled map phenomenology has been largely reported
previously, see in particular [5, 6, 17, 18]. Here, we provide a brief summary report together with
new illustrations using the symmetric components u⊥ in the permutahedrons PN .
Notation: Throughout this section and in Appendix E, the symbol Πk (k ∈ [2, N ]) denotes the
group of the permutations of the first k coordinates of u ∈ RN (or u ∈ TN ). The symbol
Πi1,··· ,ik denotes the group of permutations of the coordinates ui1 , · · · , uik (or ui1 , · · · ,uik).

In few words, for each N ≥ 3,11 the expanding domain ε ∈ [0, 1
2) can be separated into two

domains, ε < εN and ε > εN , which can be described as follows

• For ε < εN , the dynamics is ergodic, ie. there is a unique ergodic component of positive
Lebesgue measure. Of course, this unique component must be invariant under all symme-
tries, viz. the permutations in ΠN and the inversion −Id|TN . A representation of such fully
symmetric component for N = 3, obtained from numerical simulations, is given on Fig. 6 left.

• For ε > εN , ergodicity is lost and there exists asymmetric (and hence multiple) ergodic
components. These ergodic components have the following features

– For N ≥ 4, asymmetric ergodic components may coexist with symmetric ones, see Fig.
7 for the case N = 4.

– Every asymmetric component breaks the inversion symmetry −Id|TN , more precisely, it
is disjoint from its image under −Id|TN . Every asymmetric component also breaks some
permutation symmetry in ΠN , yet it shows a residual symmetry, ie. it is invariant under
some subgroup of ΠN .

– In particular, for ε sufficiently close to 1
2 , for some and hence every (N − 1)-uple

{i1, · · · , iN−1}, there exist components that are invariant under every element in Πi1,··· ,iN−1 .
Examples of such components are given on Fig. 6 right (N = 3), Fig. 7 center (N = 4)

11For N ∈ [1, 2], the map FN,ε turns out to be ergodic for all ε ∈ [0, 1
2
).

19



Figure 6: Polar plots of the iterates {ut0+t}1000
t=1 in P3 (t0 = 500), of two typical orbits of F3,ε issued

from random initial conditions u0, one for ε = 0.35 in the ergodic regime (left) and one ε = 0.43
in the regime where ergodicity fails (right). Radial coordinate: t ∈ [1, 1000]. Angular coordinate:
ut0+t
i between −1

3 (angle = −π) and 1
3 (angle = π), one colour for each i ∈ [1, 3] (NB 1

3 = N−1
2N for

N = 3, see the definition of PN in the main text). Left. Points of different colours are all scattered
across various sectors, indicating that the orbit is invariant under every permutation of the three
coordinates. Right. The orange and green points are scattered across the same two sectors, while
the blue points belong to a distinct third sector, indicating that the orbit is invariant under the
permutation of two coordinates only (ie. symmetry group equal to Πi1,i2 for some pair {i1, i2} of
indices.). Actually, the figure suggests that the orbit generates a single connected component in
phase space that also breaks the inversion symmetry −Id|P3 , viz. the reflexion with respect to the
horizontal axis.

and Fig. 8 left (N = 5, 6). Such ergodic components consist of (N − 1)! connected com-
ponents, which are the images under the transformations in Πi1,··· ,iN−1 , of one of these
components. This feature contrasts with those of other symmetric and asymmetric er-
godic components whose connected components after identification through the action
of the symmetry subgroup, do not reduce to a singleton, see Fig. 6 - 8 for illustrations.

– For N ≥ 4, ergodic components with other residual symmetry subgroups of ΠN such as
product subgroups, may emerge (and persist) at different values of ε. In particular, for
N = 4, ergodic components that are invariant under every transformation in Π2 × Π2

(up to conjugacy) emerge, see Fig. 7 right. For N = 5, ergodic components with residual
symmetry Π2×Π3 emerge and for N = 6, components with residual symmetry Π2×Π4

has been observed, see Fig. 8 right.

C The dynamics of the Lorenz-type maps fa

The one-dimensional maps fa : [0, 1] 	 can be characterised as follows.

• They commute with the reflection x 7→ 1− x.

• They are affine maps with slope a on each interval [0, xd] (and then [1− xd, 1] by symmetry)
and (xd, 1− xd), where d ∈ (1

4 ,
1
2) does not depend on a.

• Each of the points 0 (and then 1 by symmetry) and 1
2 is a fixed point of every map fa.
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Figure 7: Polar plots of the iterates {ut0+t}1000
t=1 in P4 of three co-existing typical orbits of F4,ε for ε

in the domain where ergodicity fails. Same setting as in Fig. 6. Left. Orbit invariant under every 4-
coordinate permutation and −Id|P4 (viz. symmetry group is Π4×Z2). Center. Orbit invariant under
every element of Πi1,i2,i3 for some triple {i1, i2, i3}. Right. Symmetry group equal to Πi1,i2 ×Πi3,i4

for some permutation {i1, · · · i4} of [1, 4].

Clearly, the condition on d implies that we must have fa(d) ∈ (1
2 , 1) when a is sufficiently close to

2 (see Figure 1). In this regime, the map fa is locally eventually onto [20] and hence ergodic with
respect to some absolutely continuous measure supported on (fa((xd)+), fa((1− xd)−)).

On the other hand, fa(d) ∈ (0, 1
2) when a is sufficiently close to 1. In this regime, both the

intervals (fa(x
+
d ), fa(x

−
d )) and (fa((1−xd)+), fa((1−xd)−)) are invariant and hence fa must have an

acim on each interval (whose support being the whole interval because the map is locally eventually
onto therein). Ergodicity has been lost via symmetry-breaking.

D Coupled map Fρ,ε with arbitrary distribution ρ

A N -dimensional vector ρ = (ρi)
N
i=1 where all ρi ≥ 0 and

∑N
i=1 ρi = 1 is called a distribution.

Given a distribution and a number ε ∈ [0, 1
2), consider the map Fρ,ε : TN 	 defined by [7]

(Fρ,εu)i = 2

ui + ε

N∑
j=1

ρjg(uj − ui)

 mod 1, ∀i ∈ [1, N ].

All maps Fρ,ε are expanding piecewise affine maps and their atomic partitions and symmetries are
the same as those of the FN,ε. Moreover, the former are retrieved for the uniform distribution
ρi = 1

N for all i, ie. we have
FN,ε := F

(
1
N )Ni=1,ε

.

For distributions ρ with rational coordinates, the maps Fρ,ε capture the so-called cluster dynamics
in the maps FN,ε, namely the dynamics in some invariant subsets of TN . To see this, given any
u ∈ TN , let the distribution (nkN )Kk=1 be defined by the number K ≤ N of groups - called clusters
- inside which the coordinates ui are equal, and by the number nk of coordinates in each group,
see e.g. [2]. The mean field coupling in FN,ε implies that the set of configurations with given
distribution (nkN )Kk=1 is invariant under the action of FN,ε and the dynamics therein is governed by
F

(
nk
N )Kk=1,ε

.
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Figure 8: Polar plots of the iterates {ut0+t}1000
t=1 in PN of two co-existing typical orbits of FN,ε for ε

in the domain where ergodicity fails (top row N = 5, bottom row N = 6). Same setting as in Fig.
6. Left (top and botton). Orbits invariant under the elements of Πi1,··· ,iN−1 for some (N − 1)-uple
{i1, · · · , iN−1}. Right (top and bottom). Symmetry group equal to Πi1,i2 ×Πi3,··· ,iN .

Consider a distribution ρ for which the first d = N − 1 coordinates are equal, ie. there exists
% ∈ (0, 1

d) such that
ρi = %, ∀i ∈ [1, d] and ρN = 1− d%.

Evidently, the corresponding coupled maps Fρ,ε commute with every π ∈ Πd, and also with the
inversion symmetry S = −Id|TN . The arguments in Section 2 imply that when the corresponding
projected map Fρ,ε has an AsIUP with respect to the inversion symmetry σΣ defined by (3), then
Fρ,ε must have two acim with disjoint supports.

Moreover, as in Claim 2.7, Fρ,ε is conjugated to a skew-product dynamical system whose base
map, say Gρ,ε is a mapping of Sd into itself. This map commutes with σd and the existence of an
AsIUP for Gρ,ε implies the existence of two acim with disjoint supports for Fρ,ε.

Now, similarly as in Lemma 3.2, the main features of the restrictions Gρ,ε|Ak and Gρ,ε|Bk are
given in the following statement.

Lemma D.1. In addition to commuting with σd, the expanding piecewise affine map Gρ,ε has the
following features for every % ∈

(
0, 1

d

)
and ε ∈

(
0, 1

2

)
.

(i) Every simplex Ak is an atom of Gρ,ε. The restrictions of Gρ,ε to A0 and to Ak do not depend
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on the value of % ∈
(
0, 1

d

)
and they respectively write

(Gρ,ε|A0x)i = 2(1− ε)xi and (Gρ,ε|Akx)i = 2(1− ε)xi + (2ε− 1)δi,k, i ∈ [1, d].

(ii) Let d ≥ 2. Given k ∈ [1, d− 1], the simplex Bk is an atom of Gρ,ε iff d ∈ [2, 3] and % ≥ 1
4 . For

k = 0 and k = d, the same property holds iff % ∈ [ 1
2d ,

1
2(d−1) ].

Proof. Throughout the proof, we regard Fρ,ε and P as maps from RN into itself. Let also Fρ,ε =
P ◦Fρ,ε : IN → DN

∗ . A careful examination of the definition of Gρ,ε concludes that an atom of this
map is defined by the simultaneous occurrence of the following conditions for the variable u ∈ IN

(a) the collection
{∑N

j=1buj − ui + 1
2c
}N
i=1

is constant,

(b) the collection {b(Fρ,εu)N − (Fρ,εu)ic}N−1
i=1 is constant,

(c) the ordering of the coordinates {(Fρ,εu)i}N−1
i=1 is constant.

Clearly, these conditions only depend on the differences {ui+1 − ui}Ni=1, namely they are genuine
conditions for the variable x = ((φNu)i)

d
i=1 ∈ Sd.

The rest of the proof is purely computational. The equality uj − ui =
∑j−1

n=i xn implies that for
x ∈ A0, we have buj − ui + 1

2c = 0 for all i, j ∈ [1, N ] which immediately implies (a). Moreover, we
have

(Fρ,εu)j − (Fρ,εu)i = 2(1− ε)(uj − ui),

and hence
0 < (Fρ,εu)j − (Fρ,εu)i < 1− ε, ∀i < j ∈ [1, N ],

which implies (property (b))

b(Fρ,εu)N − (Fρ,εu)ic = 0, ∀i ∈ [1, N − 1]

and hence, together with the expression of (Fρ,εu)j − (Fρ,εu)i above, the property (c) and the
expression of Gρ,ε|A0 . The result for Ad follow by symmetry.

Now, assume that x ∈ Ak for some k ∈
[
1, dd2e

]
, the remaining cases follow by symmetry. Then,

Figure 9: Illustration of a configuration u ∈ IN for which x = ((φNu)i)
d
i=1 ∈ Ak for k ∈ [2, d] (to

be adapted in the case k = 1).

we have (see Fig. 9) for i ∈ [1, k],

buj − ui + 1
2c = χ[k+1,N ](j), ∀j ∈ [1, N ],

and for i ∈ [k + 1, N ]
buj − ui + 1

2c = −χ[1,k](j), ∀j ∈ [1, N ].

Again, property (a) is evident. Moreover, direct calculations yield

(Fρ,εu)j − (Fρ,εu)i = 2(1− ε)(uj − ui) + 2εχ[1,k](i)χ[k+1,N ](j), ∀i < j ∈ [1, N ],
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and hence (property (b))

b(Fρ,εu)N − (Fρ,εu)ic = χ[1,k](i), ∀i ∈ [1, N − 1],

and also the coordinates (Fρ,εu)i are increasing12 (property (c)). The expression of Gρ,ε|Ak imme-
diately follows.

Assume now that x ∈ Bk for some k ∈
[
1, dd2e

]
. Then, we have (see Fig. 10) for i ∈ [1, k − 1]13

Figure 10: Illustration of a configuration u ∈ IN for which x = ((φNu)i)
d
i=1 ∈ Bk for k ∈ [2, d− 1]

(to be adapted in the cases k = 0, 1 and k = d).

buj − ui + 1
2c = χ[k+1,N ](j), ∀j ∈ [1, N ].

Moreover

buj − uk + 1
2c = χ[k+2,N ](j) and buj − uk+1 + 1

2c = −χ[1,k−1](j), ∀j ∈ [1, N ].

and for i ∈ [k + 2, N ], we have

buj − ui + 1
2c = −χ[1,k](j), ∀j ∈ [1, N ].

Again, property (a) is obvious. Moreover, we have

N∑
n=1

ρnbun − ui + 1
2c −

N∑
n=1

ρnbun − uN + 1
2c =


1 if i ∈ [1, k − 1]

1− % if i = k
% if i = k + 1
0 if i ∈ [k + 2, N − 1]

from where we obtain (property (b))

b(Fρ,εu)N − (Fρ,εu)ic = χ[1,k](i), ∀i ∈ [1, N ].

As a consequence we have

(Fρ,εu)i = 2(1− ε)ui + 2ε

N∑
j=1

ρjuj − b(Fρ,εu)Nc+ χ[1,k](i) +


−2ε

∑N
j=k+1 ρj if i ∈ [1, k − 1]

−2ε
∑N

j=k+2 ρj if i = k

2ε
∑k−1

j=1 ρj if i = k + 1

2ε
∑k

j=1 ρj if i ∈ [k + 2, N ]

12because we have in particular (Fρ,εu)k+1 − (Fρ,εu)k > 1− ε+ 2ε− 1 = ε.
13When k = 1, we naturally ignore the indices i ≤ k − 1.
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and hence

(Fρ,εu)i+1 − (Fρ,εu)i = 2(1− ε)(ui+1 − ui) +


0 if i ∈ [1, k − 2]

2ερk+1 if i = k − 1
2ε(1− ρk − ρk+1)− 1 if i = k

2ερk if i = k + 1
0 if i ∈ [k + 2, N − 1]

It immediately follows that (Fρ,εu)i+1 − (Fρ,εu)i > 0 for all i 6= k. For i = k, the situation depends
on the location of % = ρk = ρk+1 with respect to 1

4 , since we have using also uk+1 − uk < 1
2

(Fρ,εu)k+1 − (Fρ,εu)k ∈ (2ε(1− 2%)− 1, ε(1− 4%)) ,

and 2ε(1 − 2%) − 1 ≤ 0 for all ε ∈ [0, 1
2) and % ≤ 1

2 . Hence, the sign of (Fρ,εu)k+1 − (Fρ,εu)k is
certainly negative when % ≥ 1

4 . Otherwise, this sign depends on the location of 2(1− ε)(uk+1− uk)
with respect to 1− 2ε(1− 2%).

Using also that ui+2 − ui > 1
2 for i ∈ [k − 1, k], we obtain

(Fρ,εu)i+2 − (Fρ,εu)i > ε(1− 2%), i ∈ [k − 1, k],

and hence for % ≥ 1
4 , we have (property (c))

(Fρ,εu)1 < · · · < (Fρ,εu)k−1 < (Fρ,εu)k+1 < (Fρ,εu)k < (Fρ,εu)k+2 < · · · < (Fρ,εu)N−1 < (Fρ,εu)N
(7)

Since we must have % < 1
N−1 , the condition % ≥ 1

4 can only hold for N ∈ [3, 4]. The proof of the
statement (ii) for k ∈ [1, d] is complete. The case k = 0 can be treated by a similar analysis. Their
details are left to the reader. �

In addition, the ordering in equation (7) implies that for % ≥ 1
4 , the reduced map in B1 writes

(Gρ,ε|B1x)i =


(Fρ,εu)1 − (Fρ,εu)2 = 2(1− ε)(u1 − u2) + 1− 2ε(1− 2%) if i = 1
(Fρ,εu)3 − (Fρ,εu)1 = 2(1− ε)(u3 − u1) + 2ε(1− %)− 1 if i = 2

(Fρ,εu)4 − (Fρ,εu)3 = 2(1− ε)(u4 − u3) if N = 4 and i = 3

ie.

(Gρ,ε|B1x)i =


−2(1− ε)x1 + 1− 2ε(1− 2%) if i = 1

2(1− ε)(x1 + x2) + 2ε(1− %)− 1 if i = 2
2(1− ε)x3 if N = 4 and i = 3

(8)

Besides, the computation of Gρ,ε|B0 (% ≥ 1
4) for N = 4 yields the following expression

(Gρ,ε|B0x)i =


2(1− ε)x2 if i = 1

−2(1− ε)(x1 + x2) + 1− 2ε(1− 3%) if i = 2
2(1− ε)(x1 + x2 + x3) + 2ε(1− 2%)− 1 if i = 3

Let d = 2. Lemma D.1 states that the 2-dimensional map Gρ,ε : S2 	 associated with any 3-
dimensional distribution ρ of the form ρ = (%, %, 1−2%) with % ≥ 1

4 , is an expanding piecewise affine
map with atomic collection {A0, A1, A2, B} where B = B0 = B1 = B2. Moreover, the restriction
Gρ,ε|B has similar characteristics as those of G2,ε|B in Claim 3.3.

Claim D.2. (i) The fixed point p0 of Gρ,ε|B belongs to B.
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(ii) Let p1 be the intersection point of the segment [p0v2] and the edge A2 ∩ B and let p2 be the
intersection point (which exists) of the image segment Gρ,ε|B[p0p1] and A2∩B. In the basis formed
by the vectors p0p1 and p0p2, the linear part of Gρ,ε|B is given by the following matrix

2(1− ε)
(

0 1
αε

αε 0

)
for some αε > 0.

Proof: (i) The coordinates of p0 are
(

1−2ε(1−2%)
3−2ε , 1−2ε%

3−2ε

)
, from where one checks that p0 ∈ B for all

ε ∈ (0, 1
2).

(ii) The linear part of Gρ,ε|B writes 2(1− ε)M where M has eigenvector e2 with eigenvalue 1, and
2e1 − e2 with eigenvalue −1 (Recall that the ej are the canonical vectors). Using that

p0p1 = xεe1 + yε(2e1 − e2),

for some yε 6= 0, we obtain that M must write as claimed in the basis formed by p0p1 and Gρ,ε|Bp0p1.
Finally, one checks that the ray [p0, Gρ,ε|Bp1) intersects the edge A2 ∩B for all ε ∈ (0, 1

2). �
Similarly as in the case % = 1

3 of uniform distribution, recalling the triangle C = {p0p1p2},
one can prove that C ∪ Gρ,εC ⊂ A2 ∪B is an IUP, and hence an AsIUP, of Gρ,ε when ε is close
enough to 1

2 . Actually, since the point p0 depends on ε when % 6= 1
3 , one needs to adapt the proof

of Proposition 4.5 in this case, using that infε dist(p0, A2 ∩B) > 0.

E Projection procedure in the case of other permutation groups
of N − 1 coordinates

The procedure in Section 2.1 extends to the case where F commutes with every element of
Πi1,··· ,iN−1 , for every (N − 1)-uple {i1, · · · , iN−1}. Here, we consider two cases, namely when
{i1, · · · , iN−1} = {2, · · · , N} and when {i1, · · · , iN−1} = {1, · · · , N − 2, N}. We compute the ex-
pressions of the corresponding elements, and in particular of the symmetries σΣ and φN ◦ σΣ ◦ φN
associated with the inversion of coordinates sign. Obviously, when F commutes with every permu-
tation in ΠN , any of these cases can be selected for the reduction procedure.

E.1 Case of commutation with the permutations of {ui}Ni=2

Here, we assume that F : TN 	 commutes with every permutation of the coordinates {ui}Ni=2.
Then, the same statements as in Section 2.1 hold with the following definitions

DN
∗ =

{
u ∈ [0, 1)× RN−1 : ui − uj ∈ R \ Z, ∀i 6= j ∈ [1, N ] and 0 < ui − u1 < 1, ∀i ∈ [2, N ]

}
,

(Pu)i = ui + du1 − uie − bu1c, ∀i ∈ [1, N ],

and
IN =

{
u ∈ [0, 1)× RN−1 : u1 < u2 < · · · < uN−1 < uN < u1 + 1

}
.

The transformation πu is the permutation of the last N − 1 coordinates that sends u ∈ DN
∗ to IN .

Moreover, the conjugated transformation Σ = P ◦S◦P−1 induced by the inversion of coordinate
signs S = −Id|TN reads

(Σu)i = 2− δi,1 − δu1,0 − ui, ∀i ∈ [1, N ].
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which has proper representation σΣ on IN given by

(σΣu)i =

{
1− δu1,0 − u1 if i = 1

2− δu1,0 − uN−i+2 if i ∈ [2, N ]

which differs from the expression (3). The conjugated transformation φN ◦σΣ ◦φN (see Section 2.3
for the expression of φN ) writes

(φN ◦ σΣ ◦ φNx)i =


1− (x1 + · · ·+ xN−1) if i = 1

xN−i+1 if i ∈ [2, N − 1]

2− δ(φ−1
N x)1,0

− (φ−1
N x)2 if i = N

Notice that φN ◦σΣ ◦φN is a skew-product map whose base map acts on the first N −1 coordinates
{xi}N−1

i=1 .

E.2 Case of commutation with the permutations of {ui}N−2
i=1 ∪ {uN}

Assume that F : TN 	 commutes with every permutation of the N−1 coordinates {ui}N−2
i=1 ∪{uN}.

Then, the same statements as in Section 2.1 hold with the following definitions

DN
∗ =

{
u ∈ RN−2 × [0, 1)× R : ui − uj ∈ R \ Z, ∀i 6= j ∈ [1, N ] and

{
0 < uN−1 − ui < 1 if i ∈ [1, N − 2]
0 < uN − uN−1 < 1

}
,

(Pu)i =

{
ui + buN−1 − uic − buN−1c if i ∈ [1, N − 1]
uN + duN−1 − uNe − buN−1c if i = N

and
IN =

{
u ∈ RN−2 × [0, 1)× R : u1 < u2 < · · · < uN−1 < uN < u1 + 1

}
.

In this case, the transformation πu that sends u ∈ DN
∗ to IN is more involved than in the previous

cases. It can be described as a two-step process. First, let π(1) be the permutation of the first N−2
coordinates such that

(π(1)u)1 < (π(1)u)2 < · · · < (π(1)u)N−2.

If we have uN < (π(1)u)1 + 1, then π(1)u ∈ IN and πu = π(1). In order to describe the other case,
assume that u ∈ DN

∗ is such that u1 < · · · < uN−2 and u1 + 1 < uN . Then define

j = max{i ∈ [1, N − 2] : ui < uN − 1}, and (π(2)u)i =


ui+1 if i ∈ [1, j − 1]
uN − 1 if i = j
ui if i ∈ [j + 1, N − 1]

u1 + 1 if i = N

Clearly, we have π(2)u ∈ IN and hence πu = π(2) in this case, so that πu = π(2)◦π(1) for an arbitrary
u ∈ DN

∗ (letting π(2) = Id when u1 < · · · < uN−2 and uN < u1 + 1).
Moreover, the conjugated transformation Σ = P ◦S◦P−1 induced by the inversion of coordinate

signs S = −Id|TN reads

(Σu)i =

{
δi,N−1 − δuN−1,0 − ui if i ∈ [1, N − 1]

2− δuN−1,0 − uN if i = N

which has proper representation σΣ on IN given by

(σΣu)i =


−δuN−1,0 − uN−2−i if i ∈ [1, N − 3]
1− δuN−1,0 − uN if i = N − 2

1− δuN−1,0 − uN−1 if i = N − 1
1− δuN−1,0 − uN−2 if i = N
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The conjugated transformation φN ◦ σΣ ◦ φN i (see Section 2.3 for the expression of φN ) writes

(φN ◦ σΣ ◦ φNx)i =


xN−3−i if i ∈ [1, N − 4]

1− (x1 + · · ·+ xN−1) if i = N − 3
xN−1 if i = N − 2
xN−2 if i = N − 1

1− δ(φ−1
N x)N−1,0

− (φ−1
N x)N−2 if i = N

which again shows that φN ◦ σΣ ◦ φN is a skew-product map whose base acts on the first N − 1
coordinates. Moreover, for N = 3, this base map is simply the reflection (x1, x2) 7→ (x2, x1) with
respect to the diagonal.
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