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Abstract. Corner percolation is a dependent bond percolation model on Z2 introduced by Bálint
Tóth, in which each vertex has exactly two incident edges, perpendicular to each other. Gábor Pete
has proven in 2008 that under the maximal entropy probability measure, all connected components are
finite cycles almost surely. We consider here a regime where West and North directions are preferred
with probability p and q respectively, with (p, q) 6= ( 1

2 ,
1
2 ). We prove that there exists almost surely an

infinite number of infinite connected components, which are in fact infinite paths. Furthermore, they
all have the same asymptotic slope 2q−1

1−2p .

1 Introduction
Various constrained percolation models on Z2 have been studied, including models with restrictions
on the degree of each vertex, see for example [4] or [2]. In the present work, we study an even more
constrained percolation model, called corner percolation, where each vertex has exactly two incident
open edges, perpendicular to each other. It was introduced by Bálint Tóth, and studied by Gábor
Pete in the maximal entropy regime [6].

Corner percolation configurations are also known under the name of hitomezashi design, by analogy
with a Japanese style of embroidery called sashiko, that creates patterns satisfying the same constraints,
see Figure 1. Since at each vertex, there is exactly one horizontal and one vertical open edge, the
components are either finite cycles or bi-infinite paths, made in both case of a perfect alternation of
horizontal and vertical edges. The mathematical properties of hitomezashi loops have been recently
investigated and still raise many questions. In particular, it was proven that their length is always
congruent to 4 modulo 8, but the proof is quite intricate, and the enumeration of hitomezashi loops
according to their length is still an open question [3].

Although they exhibit a rich combinatorial structure, corner percolation configurations can be
created by a very simple procedure. Indeed, in order to satisfy the constraint, there must be on
each horizontal line a perfect alternation of open and closed edges, and the same holds for vertical
lines. Consequently, a configuration can be parametrized by two binary sequences specifying, for each
horizontal and vertical line, which edges are open. A natural question is then to ask whether there
exists an infinite connected component, depending on the probability distributions of the two binary
sequences. If the choice is made uniformly at random and independently for each horizontal and
vertical line, it can be interpreted as the maximal entropy probability measure on all configurations
satisfying the constraints. Gábor Pete treated this case and proved that under the maximal entropy
probability measure, all connected components are finite cycles almost surely [6].

Let us give an alternative interpretation of the maximal entropy probability measure. We consider
that each horizontal line of the grid Z2 is a one-way road that can be either oriented to the East or to
the West with probability 1

2 , and the same for vertical lines with North and South. This orientation is
fixed once and for all. We start from the origin of the grid and follow the horizontal road according to
its orientation. At each corner, we turn left or right according to the direction of the road encountered,
see Figure 2. This process describes a deterministic walk in a random environment, and it can be
seen that the path taken follows the component of the origin in a corner percolation configuration
distributed under the maximal entropy probability measure. Consequently, Pete’s result ensures that
the trajectory necessarily comes back where it started.

This point of view leads us to consider a case where some directions can be preferred: we extend
this model by considering that each vertical road is oriented to the North with probability q, and that
each horizontal road is oriented to the West with probability p. We prove the following:
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Figure 1: A configuration of corner perco-
lation.
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Figure 2: An instance of a finite trajectory for the
deterministic walk starting from the origin, in an
environment giving the directions of the roads.

Theorem 1.1. If (p, q) 6= ( 1
2 ,

1
2 ), then with positive probability the path starting from the origin never

goes back to its starting point. Moreover, there almost surely exists an infinite number of infinite paths,
and they all have a same asymptotic slope, which is equal to 2q−1

1−2p (and if p = 1/2, the asymptotic slope
is infinite).

This result will be proved in two steps, Theorem 3.1 and Theorem 4.1. In the next section, we
define the model more formally and we prove its ergodicity.

2 Definition of the model and ergodicity

2.1 Definition and notations
Let us denote by (Z2,E2) the two-dimensional grid, that is, the graph whose set of vertices is Z2 and
whose set of edges is E2 = {{x, x + e1} : x ∈ Z2} ∪ {{x, x + e2} : x ∈ Z2}, where e1 = (1, 0) and
e2 = (0, 1).

Let G be the set of subgraphs G = (Z2, E) of (Z2,E2) such that each vertex has exactly one
horizontal and one vertical adjacent edge, that is: for any x ∈ Z2, exactly one of the edges among
{x, x+e1} and {x, x−e1} belongs to E , and exactly one of the edges among {x, x+e2} and {x, x−e2}
belongs to E . Note that this implies that connected components are all infinite simple paths or finite
circuits.

Let us introduce the following sets of even and odd elements of Z2:

Z2
e = {(x1, x2) ∈ Z2 : x1 + x2 ∈ 2Z},

Z2
o = {(x1, x2) ∈ Z2 : x1 + x2 ∈ 1 + 2Z}.

Let Ω = {−1, 1}Z×{−1, 1}Z. Our notations are inspired by those of Pete. We define a map X : Ω→ G
as follows. For ω = (ξ, η) ∈ Ω, the graph X(ω) = (Z2, E) is defined this way (see Figure 3): E is the
set of open edges, and for all i ∈ Z,

• if ξ(i) = 1, then for all k ∈ Z, the vertical edge {(i, k), (i, k)+e2} is open if and only if (i, k) ∈ Z2
o.

If ξ(i) = 0, then for all k ∈ Z, the vertical edge {(i, k), (i, k)+e2} is open if and only if (i, k) ∈ Z2
e;

• if η(i) = 1, then for all k ∈ Z, the horizontal edge {(k, i), (k, i) + e1} is open if and only if
(k, i) ∈ Z2

o. If η(i) = 0, then for all k ∈ Z, the horizontal edge {(k, i), (k, i) + e1} is open if and
only if (k, i) ∈ Z2

e.

By construction, X takes values in G. Furthermore, the map X : Ω→ G is bijective. For p, q ∈]0, 1[,
we introduce the probability

µp,q = (qδ1 + (1− q)δ−1)⊗Z ⊗ (pδ1 + (1− p)δ−1)⊗Z
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Figure 3: Construction of some open edges knowing that ξ(1) = 1, ξ(−3) = 0, η(1) = 1 and η(2) = 0.
Points of Z2

e are colored in gray, points of Z2
o in red.

on Ω (with the product σ-algebra). We denote by Pp,q the image of µp,q by X, and we call Pp,q
the corner percolation model with parameters (p, q). When there is no ambiguity on the parameters,
we write µ (respectively P) instead of µp,q (respectively Pp,q). In the special case q = p = 1

2 , this
distribution can be interpreted as the uniform distribution on G. In this work, we are interested in the
properties of random graphs of G distributed according to Pp,q, and more specifically in the existence
and properties of infinite paths.

2.2 Invariance by even translations and ergodicity
For v ∈ Z2, the translation τv is the map: τv : G → G defined, for G = (Z2, E) ∈ G, by:

τv(G) = (Z2, v + E),

where v+E = {{x+v, y+v} : {x, y} ∈ E}. Observe that for any v ∈ Z2, the translation τv is bijective,
of inverse the translation τ−v. If v ∈ Z2

e, we call τv an even translation.

Remark 2.1. The law of the corner percolation model has some useful symmetry properties:

1. The model of parameters (p, q) has the same law as the model of parameters (1 − p, 1 − q)
translated by the vector (1, 0) or by the vector (0, 1). Therefore, the distribution P is invariant
under even translations.

2. The model of parameters (p, q) has the same law as the model obtained by symmetry with respect
to the x-axis (respectively y-axis) of the model of parameters (p, 1− q) (respectively (1− p, q)).

3. The model of parameters (q, p) has the same law as the model obtained by symmetry with respect
to the line of equation y = x of the model of parameters (p, q).

These transformations also let the number of infinite paths invariant.

Proposition 2.2. For all (k, `) ∈ Z2
e, such that k 6= 0 and ` 6= 0, the dynamical system (G,F,P, τ(k,`))

is ergodic, that is: for any event A such that τ−1
(k,`)(A) = A, we have P(A) ∈ {0, 1}.

Proof. We will show that (G,P,F, τ(k,`)) is mixing, that is: for any events A and B,

lim
n→+∞

P(A ∩ τ−n(k,`)(B)) = P(A)P(B).

Indeed, Corollary 2.2.6 of [5] shows that it implies ergodicity.
Let us first assume that A and B depend only on finitely many lines and columns. Let IA and JA

(resp. IB and JB) be finite subsets of Z such that A (resp. B) depends only on {η(i) : i ∈ IA} and
{ξ(j) : j ∈ JA} (resp. on {η(i) : i ∈ IB} and {ξ(j) : j ∈ JB}). Since k 6= 0 and ` 6= 0, for n large
enough, we have IA ∩ (−kn + IB) = ∅ and JA ∩ (−`n + JB) = ∅, so that the events A and τ−n(k,`)(B)
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Figure 4: Representation of CN (red circles) and BN (grey points), for N = 2.

depend on disjoint sets of lines and columns. The probability µ is a product distribution, so we have
P(A ∩ τ−n(k,`)(B)) = P(A) × P(τ−n(k,`)(B)). Since (k, `) ∈ Z2

e, the translation τ(k,`) is even and preserves
P. So, we obtain

P(A ∩ τ−n(k,`)(B)) = P(A)P(B).

Events depending only on finitely many lines and columns generate the product σ-algebra, so that by
Lemma 2.2.7 of [5], we obtain that (G,F,P, τ(k,`)) is mixing, and therefore ergodic.

Now, we state two consequences of Birkhoff’s pointwise ergodic theorem, that will be used multiple
times thereafter. We first define

φ : Z2 → Z2
e

x = (x1, x2) 7→ (x1 − x2, x1 + x2)
,

which is a bijection. We also set (see Figure 4), for all N ∈ N∗, BN = J−N,NK2 and

CN = φ(BN ) = {x ∈ Z2
e : − 2N ≤ x1 ≤ 2N and − 2N + |x1| ≤ x2 ≤ 2N − |x1|}.

Theorem 2.3 (Birkhoff’s pointwise ergodic theorem).

1. For all (k, `) ∈ Z2
e such that k 6= 0 and ` 6= 0, if f ∈ L1(G), then

lim
n→+∞

1

n

n−1∑
i=0

f ◦ τ i(k,l) = E(f) a.s.

2. If f ∈ L1(G), then lim
N→+∞

1

#CN

∑
x∈CN

f ◦ τx = E(f) a.s.

Proof. Since P is invariant under the even translation τ(k,l), the first point is exactly Birkhoff’s theorem
(see for instance Theorem 2.1.5 of [5]). By Proposition 2.2, the dynamical system (G,P,F, τ(k,`)) is
ergodic, thus the limit is constant.

In the second point, we apply a multi-dimensional ergodic theorem. Consider the two commuting
even translations τ1 = τ(1,1) and τ2 = τ(−1,1). We can apply Theorem 2.1.5 of [5] to the set T =
{τx1

1 ◦ τ
x2
2 = τφ(x1,x2), (x1, x2) ∈ Z2}. The ergodicity of (G,F,P, τ1) ensures that the σ-algebra of the

events invariant by T is trivial, so the limit is equal to E(f).

3 Height function and infinite paths
Now, we define the height function H : Z2 + ( 1

2 ,
1
2 ) → Z, which was the key ingredient introduced by

Gábor Pete in [6] to study the case ( 1
2 ,

1
2 ). We color the faces of Z2 in a chessboard manner: a face

(n + 1
2 ,m + 1

2 ) is black if n + m ∈ 2Z, otherwise it is white. Note that a path has only black faces
along one side and only white faces along the other. We set H

(
1
2 ,

1
2

)
= 0. For a face (n+ 1

2 ,m+ 1
2 ),
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consider a path in Z2 + ( 1
2 ,

1
2 ), from ( 1

2 ,
1
2 ) to (n+ 1

2 ,m+ 1
2 ). We follow this path starting from ( 1

2 ,
1
2 ),

and each time it crosses an open edge from a black face to a white face (respectively from a white face
from a black face), we add (respectively substract) 1 to the height. Note that it does not depend on
the choice of the path, and all black faces (respectively all white faces) have the same height along a
path. The level of a path is the height of a black face along this path.

Despite the strong dependencies of the model, the height function can be expressed as a function of
two independent simple random walks on Z. Remember that we denote by (ξ(n))n∈Z (resp. (η(m))m∈Z)
the values of the vertical (resp. horizontal) lines, and that its law is (qδ1 + (1 − q)δ−1)⊗Z (resp.
(pδ1 + (1− p)δ−1)⊗Z). We define two independent random walks (Xn)n∈Z and (Ym)m∈Z by setting:

X0 = 0, for n > 0, Xn =

n∑
i=1

ξ(i), and for n < 0, Xn = −
0∑

i=n+1

ξ(i);

Y0 = 0, for m > 0, Ym =

m∑
i=1

η(i), and for m < 0, Ym = −
0∑

i=m+1

η(i).

It is not difficult to check that:

H

(
n+

1

2
,m+

1

2

)
=

⌈
Xn + Ym

2

⌉
.

We can now prove our main result:

Theorem 3.1. There almost surely exists an infinite number of infinite paths in corner percolation
with parameters (p, q), as soon as (p, q) 6= ( 1

2 ,
1
2 ).

Proof. Step 1. We want to construct an event having positive probability, ensuring that the component
of the origin is infinite. First of all, note that we have, for all n ∈ Z,

P(Xn+1 = Xn + 1) = q and P(Yn+1 = Yn + 1) = p.

We start by assuming that q > 1
2 : by the symmetry properties 2 and 3 of Remark 2.1, we will have

the result for all parameters (p, q) 6= ( 1
2 ,

1
2 ). By the law of large numbers, we have lim

n→+∞
Xn = +∞

and lim
n→+∞

X−n = −∞. Then let K > 16
2q−1 be such that

∀n ≥ K, Xn

n
− 2q − 1

2
>

2q − 1

4
and

X−n
n
− 1− 2q

2
<

1− 2q

4
,

with positive probability. We have, for all n ≥ K and m ∈ N such that m ≤ 2q−1
2 n, on one hand⌈

Xn + Ym
2

⌉
≥
Xn − 2q−1

2 n

2
≥ n

2

(
Xn

n
− 2q − 1

2

)
> 1,

and on the other hand⌈
X−n + Y−m

2

⌉
≤
X−n + 2q−1

2 n

2
+ 1 ≤ n

2

(
X−n
n
− 1− 2q

2

)
+ 1 < −1.

Therefore, the event

A =

{
∀n ≥ K, ∀0 ≤ m ≤ 2q − 1

2
n,

⌈
Xn + Ym

2

⌉
> 1 and

⌈
X−n + Y−m

2

⌉
< −1

}
has positive probability. For (ξ, η) ∈

(
{−1, 1}Z

)2, we denote by (ξK , ηK) ∈
(
{−1, 1}J−K,KK

)2
the

restrictions
(
(ξn)|n|≤K , (ηn)|n|≤K

)
. Let us define the map

Π :
(
{−1, 1}Z

)2 →
(
{−1, 1}Z\J−K,KK

)2
(ξ, η) 7→

(
(ξn)|n|>K , (ηn)|n|>K

) .
Now we set

ASt =
{

(ξ, η) ∈ ({−1, 1}Z)2 : (ξK , ηK) = (1K ,1K), Π(ξ, η) ∈ Π(A)
}
.
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Figure 5: Example of the construction of the event ASt for q = 0.7 and K = 4. The path containing
the origin has level −1. If a point (n,m) is in C−1 or C1, then we have H(n + 1

2 ,m + 1
2 ) > 1 or

H(n+ 1
2 ,m+ 1

2 ) < −1. The only face with height −1 on the x-axis of Z2 +( 1
2 ,

1
2 ) is (− 3

2 ,
1
2 ). Therefore,

the two blue points cannot be in the same finite cycle.

As all vertical and horizontal lines are independent, and A ⊂ Π−1 ◦Π(A), we have

P (ASt) ≥ P ((ξK , ηK) = (1K ,1K))P
(
Π−1 ◦Π(A)

)
≥ p(2K+1)2P(A) > 0.

Now let us prove that ASt ⊂ A. Let (ξ, η) ∈ ASt: there exists (ξ̃, η̃) ∈ A such that Π(ξ̃, η̃) = Π(ξ, η).
We denote by (X̃n)n∈Z and (Ỹm)m∈Z the same walks as before for (ξ̃, η̃). Then for all n ≥ K and
0 ≤ m ≤ 2q−1

2 n, we have

H(ξ,η)

(
n+

1

2
,m+

1

2

)
=

⌈
Xn + Ym

2

⌉

=


K +

n∑
k=K+1

ξ(k) + min(m,K) +
m∑

k=min(m,K)+1

η(k)

2


=


K +

n∑
k=K+1

ξ̃(k) + min(m,K) +
m∑

k=min(m,K)+1

η̃(k)

2


≥


n∑
k=1

ξ̃(k) +
m∑
k=1

η̃(k)

2


≥

⌈
X̃n + Ỹm

2

⌉
= H(ξ̃,η̃)

(
n+

1

2
,m+

1

2

)
.

In the same manner we have, for all n,m ≤ −K,

H(ξ,η)

(
n+

1

2
,m+

1

2

)
≤ H(ξ̃,η̃)

(
n+

1

2
,m+

1

2

)
,

therefore ASt ⊂ A. We recall that BK = J−K,KK2. On ASt, the components crossing BK are stairs
in BK , and all the heights of the faces in BK are known. The path containing the origin has level −1,
so if it is finite, then the points (−K,K) and (K,−K) must be connected in Z2 \ BK . But it is not
possible, because such a path would go through a zone where all the heights are positive or all the
heights are negative, see Figure 5.

Therefore, on the event ASt, which has positive probability, the connected component of the origin
is infinite.

Step 2. Now we use Theorem 2.3 to construct an infinity of infinite paths. Let (α1, α2) ∈ N × N∗ be

6



such that 0 < α1

α2
< 2q−1

2 . By Theorem 2.3, we have

lim
n→+∞

1

n

n−1∑
i=0

1ASt
◦ τ i(α2,α1) = P(ASt) > 0 a.s.,

which means that almost surely, there exists a sequence of integers (Nk)k∈N such that for all k ∈ N,
τ−Nk(ASt) is realised and Nk+1 −Nk > K. The components of the points ((Nk, Nk))k∈N are infinite,
and the last condition ensures that they are disjoint two by two, since they all have different levels.
Therefore, we just proved that there almost surely exists an infinite number of infinite connected
components.

In the next section, we prove the last part of Theorem 1.1, stating that all infinite paths have a
same asymptotic slope. The proof will require one more time the height function.

4 Direction of the infinite paths

Figure 6: Simulations on the left (resp. right) have parameters p = q = 0.9 (resp. q = 0.6 and p = 0.5).
Faces are colored acccording to their heights, with colors that repeat periodically.

Remember that the connected components of the graph are either finite circuits or bi-infinite
simple paths. We encode the connected component of the origin by a bi-infinite, possibly periodic,
path Γ = (Γn)n∈Z of vertices. We choose its orientation by taking Γ1 such that when we walk along
the path in the positive direction, the face with the highest height is on the right side of the path.
Note that it amounts to choosing Γ1 such that {Γ0,Γ1} is a horizontal edge. The origin of the path is
Γ0 = (0, 0). If the connected component of the origin is infinite, then Γ is simple, while if the connected
component of the origin is a circuit, then Γ is periodic.

Let us denote by DR the disk of radius R ∈ R∗+, and by Z[i] the set {a + ib : a, b ∈ Z}. We set
zp,q = 2p− 1 + i(2q − 1). We denote by θp,q the argument of zp,q in [0, 2π[. Then we define, for ε > 0,
the following discrete cone

Cεp,q = {z ∈ Z[i] : 〈 z
|z|
, eiθp,q 〉 ≤ ε}.

7



Note that tan
(
θp,q + π

2

)
= 2q−1

1−2p , if p 6=
1
2 . Therefore, Cεp,q is centered around the line of equation

y = 2q−1
1−2px if p 6= 1

2 , and around the y-axis if p = 1
2 .

Theorem 4.1. Let (p, q) 6= ( 1
2 ,

1
2 ). Then we have, for all ε > 0,

P(∃R ∈ R∗+ : Γ ⊂ DR ∪ Cεp,q) = 1.

This implies that if Γ is simple, then Γ has an asymptotic slope, which is 2q−1
1−2p . By invariance by

even translation, the same result holds for all bi-infinite paths.

y

x

Cεp,q

Cεp,qDR

Figure 7: Representation of the set described in Theorem 4.1. The path Γ is included in the colored
area for some value of R ∈ R∗+.

Proof. Note that Γ has level 0 or −1. This implies that the faces adjacent to Γ have height 0, 1 or −1.
Using the asymptotic behaviour of the random walks, we will see that almost surely, these faces are
all in a restricted part of the grid.

The key step to prove the theorem is to show that, for all ε > 0 and 0 < ε0 <
|zp,q|ε

2 , almost surely
there exists R0 ∈ R∗+ such that, for all θ ∈ [0, 2π[ and r ≥ R0 satisfying (r cos(θ), r sin(θ)) ∈ Z2,∣∣∣∣Xr cos(θ) + Yr sin(θ)

r
− 〈zp,q, eiθ〉R2

∣∣∣∣ ≤ ε0. (1)

Let us start by showing that (1) implies the result. We set ε > 0 and R = max
(
R0,

4
|zp,q|ε

)
. Let

(n,m) ∈ Z2 \DR be such that (n,m) /∈ Cεp,q. There exist r ∈ R∗+ and θ ∈ [0, 2π[ such that (n,m) =

(r cos(θ), r sin(θ)), with r > R and
∣∣〈eiθp,q , eiθ〉R2

∣∣ > ε. Then we have
∣∣〈zp,q, eiθ〉R2

∣∣ > |zp,q|ε, and∣∣∣∣H (n+
1

2
,m+

1

2

)∣∣∣∣ ≥
∣∣Xr cos(θ) + Yr sin(θ)

∣∣
2

≥ r

2

∣∣∣∣∣
∣∣∣∣∣
∣∣Xr cos(θ) + Yr sin(θ)

∣∣
r

− 〈zp,q, eiθ〉R2

∣∣∣∣∣− ∣∣〈zp,q, eiθ〉R2

∣∣ ∣∣∣∣∣
≥ r

2

∣∣ ∣∣〈zp,q, eiθ〉R2

∣∣− ε0

∣∣
≥ r

2
(|zp,q|ε− ε0)

≥ r|zp,q|ε
4

> 1,

the fourth and fifth inequalities coming from the fact that |zp,q|ε2 > ε0. Since the level of Γ is 0 or −1,
then we deduce that (n,m) /∈ Γ. Therefore, Γ ⊂ DR ∪ Cεp,q.

Now, let us prove (1). By the law of large numbers, there exists N ∈ N∗ such that for all n ≥ N ,

max

(∣∣∣∣Xn

n
− (2p− 1)

∣∣∣∣ , ∣∣∣∣X−nn − (1− 2p)

∣∣∣∣ , ∣∣∣∣Ynn − (2q − 1)

∣∣∣∣ , ∣∣∣∣Y−nn − (1− 2q)

∣∣∣∣) ≤ ε0

2
. (2)

We set R0 = 4(N+1)
ε0

. For θ ∈ [0, 2π[ and r ≥ R0 such that (r cos(θ), r sin(θ)) ∈ Z2, we have∣∣∣∣Xr cos(θ) + Yr sin(θ)

r
− [(2p− 1) cos(θ) + (2q − 1) sin(θ)]

∣∣∣∣
≤
∣∣∣∣Xr cos(θ)

r
− (2p− 1) cos(θ)

∣∣∣∣+

∣∣∣∣Yr sin(θ)

r
− (2q − 1) sin(θ)

∣∣∣∣ . (3)
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We now bound the first term from above. We have two cases:

Case 1: | cos(θ)| ≤ ε0
4 .

In this case, we bound from above Xr cos(θ) with the triangular inequality:∣∣∣∣Xr cos(θ)

r

∣∣∣∣ ≤ | cos(θ)|.

Since |(2p− 1) cos(θ)| ≤ | cos(θ)|, we have∣∣∣∣Xr cos(θ)

r
− (2p− 1) cos(θ)

∣∣∣∣ ≤ 2 cos(θ) ≤ ε0

2
.

Case 2: | cos(θ)| > ε0
4 .

This time we have r| cos(θ)| ≥ N , so by (2), we have∣∣∣∣Xr cos(θ)

r cos(θ)
− (2p− 1)

∣∣∣∣ ≤ ε0

2
.

Then we have ∣∣∣∣Xr cos(θ)

r
− (2p− 1) cos(θ)

∣∣∣∣ ≤ ∣∣∣∣Xr cos(θ)

r cos(θ)
cos(θ)− (2p− 1) cos(θ)

∣∣∣∣
≤ | cos(θ)|

∣∣∣∣Xr cos(θ)

r cos(θ)
− (2p− 1)

∣∣∣∣ ≤ ε0

2
.

Working in the same manner for the second term in (3), we obtain (1).

Remark 4.2. Remember that Γ is a bi-infinite path. We define the forward path Γ+ (resp. the
backward path Γ−) by

Γ+ = (Γn)n∈N (resp. Γ− = (Γ−n)n∈N).

Note that Theorem 4.1 implies that, conditionally on the event {Γ is simple}, we have

lim
n→+∞

Γ+
n

|Γ+
n |
∈ {eiθ̃p,q , e−iθ̃p,q} and lim

n→+∞

Γ−n
|Γ−n |

∈ {eiθ̃p,q , e−iθ̃p,q},

where θ̃p,q = θp,q + π
2 (modulo 2π).

In the proof of Theorem 3.1, we proved that with positive probability, we have

lim
n→+∞

Γ+
n

|Γ+
n |
6= lim
n→+∞

Γ−n
|Γ−n |

.

Indeed, on the event we constructed (see Figure 5), vertices of Γ+ (resp. Γ−) are restricted to a certain
area after a sufficient number of steps.

Using Theorem 2 of Burton and Keane [1], we can prove that in fact, forward and backward paths
always have the same asymptotic direction. In other words, we have almost surely lim

n→+∞
Γ+
n

|Γ+
n |
6=

lim
n→+∞

Γ−
n

|Γ−
n |
. Indeed, Theorem 2 of [1] asserts that an infinite connected component C has exactly one

neighbor on each connected component of Z2 \C, ignoring finite cycles. If we assume by contradiction
that forward and backward paths may go to the same direction, then we deduce that an event of the
type of the one of Figure 8 has positive probability, which leads to a contradiction.

5 Questions and discussions

5.1 Level of infinite paths
On Figure 6, it seems that two distinct infinite connected components have different levels, and that
each integer is the level of one infinite connected component. This leads to the following conjecture:

Conjecture 5.1. The function which maps each infinite connected component to its level is bijective.
Moreover, two infinite connected components are neighbors if and only if the difference of their level
is −1 or 1.

9



Figure 8: Example of a configuration containing a bi-infinite path whose forward and backward paths
go to the same direction (the blue one). This path has two neighbors on the same side (the red one
and the green one).

5.2 Ergodicity of the processes of the signs
Remember that horizontal edges and vertical edges alternate along Γ, and the edges E2n = {Γ2n,Γ2n+1}
(resp. E2n+1 = {Γ2n+1,Γ2n+2}), n ∈ Z, are horizontal (resp. vertical). We define the sign of a
horizontal (resp. vertical) edge by setting

Γ2n+1 − Γ2n = −sgn(E2n)e1 (resp. Γ2n+2 − Γ2n+1 = sgn(E2n+1)e2).

With the help of Theorem 2.3, we can prove the following:

Proposition 5.2. Let p, q ∈]0, 1[. The process (sgn(E2n))n∈Z (resp. (sgn(E2n+1))n∈Z) is stationary,
that is:

P(sgn(Et1) = x1, ..., sgn(Etn) = xn) = P(sgn(Et1+k) = x1, ..., sgn(Etn+k) = xn)

for all n ∈ N∗, x1, x2, ..., xn ∈ {−1, 1}n, k ∈ 2Z and t1 < t2 < ... < tn in 2Z (resp. in 2Z + 1). In
particular, we have

∀n ∈ Z, E(sgn(E2n)) = 2p− 1 and E(sgn(E2n+1)) = 2q − 1.

If p 6= 1
2 and q 6= 1

2 , bi-infinite simple paths have an asymptotic direction by Theorem 4.1. This
implies that there exists a random integer N such that (Γn)n≥N does not visit any line or column
visited by (Γn)0≤n≤k. Lines and columns being independent, the dynamical system seems to have the
mixing property, which would imply its ergodicity, but we did not manage to prove it.

Conjecture 5.3. Assume that p 6= 1
2 and q 6= 1

2 . Let us denote by X a process among (sgn(E2n))n∈Z
and (sgn(E2n+1))n∈Z. Conditionally on the event “Γ is simple”, the process X is ergodic, that is:
({−1, 1}N,QX , θ) is ergodic, where θ is the shift map, Q = P(.|Γ is simple) and QX is the law of X
under Q.

We denote by A the event “Γ is simple”. This conjecture would imply that

lim
n→+∞

1

n

n−1∑
i=0

sgn(E2i) =
2p− 1

P(A)
1A and lim

n→+∞

1

n

n−1∑
i=0

sgn(E2i+1) =
2q − 1

P(A)
1A,

and the same result for the backward path. We would also obtain the following improvement of Remark
4.2:

PA
(

lim
n→+∞

Γ+
n

|Γ+
n |

= eiθ̃p,q and lim
n→+∞

Γ−n
|Γ−n |

= e−iθ̃p,q
)

= 1.

5.3 Distribution of the sequences ξ and η

We assumed the sequences ξ and η to be i.i.d. But in fact, we only used the three following properties:

• the corner percolation is ergodic for the translations of Proposition 2.2;

• one of the limits of (Xn

n )n∈N and (Yn

n )n∈N is non-zero;

• µp,q has a finite energy property.

So we could take more general distributions for ξ and η, as long as these properties are still satisfied.
In particular, all the results could be extended to two independent ergodic stationary Markov chains
on {−1, 1}.
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