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Greedy vector quantization

Harald Luschgy ∗ and Gilles Pagès †

Abstract

We investigate the greedy version of the Lp-optimal vector quantization problem for an Rd-
valued random vector X ∈ Lp. We show the existence of a sequence (aN )N≥1 such that aN
minimizes a 7→

∥∥min1≤i≤N−1 |X−ai| ∧ |X−a|
∥∥
Lp

(Lp-mean quantization error at level N induced

by (a1, . . . , aN−1, a)). We show that this sequence produces Lp-rate optimal N -tuples a(N) =
(a1, . . . , aN ) (i.e. the Lp-mean quantization error at level N induced by a(N) goes to 0 at rate

N−
1
d ). Greedy optimal sequences also satisfy, under natural additional assumptions, the distortion

mismatch property: the N -tuples a(N) remain rate optimal with respect to the Lq-norms, p ≤ q <
p+ d. Finally, we propose optimization methods to compute greedy sequences, adapted from usual
Lloyd’s I and Competitive Learning Vector Quantization procedures, either in their deterministic
(implementable when d = 1) or stochastic versions.

Keywords : Optimal Vector Quantization ; greedy optimization ; distortion mismatch ; Lloyd’s I
procedure ; Competitive Learning Vector Quantization.

2010 AMS Classification: 60G15, 60G35, 41A25.

1 Introduction and definition of greedy quantization sequences

Let p ∈ (0,+∞) and LpRd(Ω,A,P) = {Y : (Ω,A,P) → Rd, measurable, ‖Y ‖p =
(
E|Y |p

) 1
p < +∞}

where | . | denotes a norm on Rd. We consider X : (Ω,A,P)→ Rd an Lp-integrable random vector. For
every Γ ⊂ Rd, we define the Lp-mean quantization error induced by Γ as the Lp-mean of the distance
of the random vector X to the subset Γ (with respect to the norm | . |), namely

ep(Γ, X) =
∥∥d(X,Γ)

∥∥
p

where d(ξ, A) = infa∈A |ξ−a|, ξ∈ Rd, A ⊂ Rd, denotes the distance of ξ to A. This quantity is always
finite when X ∈ Lp(P) since ep(Γ, X) ≤ ‖X‖p + mina∈Γ |a| < +∞ owing to Minkowski’s inequality
when p ≥ 1. When p ∈ (0, 1), one has likewise ep(Γ, X)p ≤ ‖X‖pp + mina∈Γ |a|p < +∞. The usual
Lp-optimal quantization problem at level N ≥ 1 is to solve the following minimization problem

ep,N (X) = min
Γ⊂Rd,|Γ|≤N

ep(Γ, X) (1.1)

where |Γ| denotes the cardinality of the subset Γ, sometimes called grid in Numerical Probability or
codebook in Signal processing. The use of “min” instead of “inf” is justified by the fact (see Propo-
sition 4.12 in [22], p.47 or [31]) that this infimum is always attained by an optimal quantization grid
Γ(N) (of full size N if the support of the distribution µ = PX of X has at least N elements).
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The above optimal vector quantization problem is clearly related to the approximation rate of an
Rd-valued random vectors X : (Ω,A,P) → Rd by random vectors taking at most N values (N ∈ N).
One shows (see e.g. Theorem 4.12 in [22] combined with comments, Section 3.3, p.33) that, for very
p∈ (0,+∞),

ep,N (X) = min
{
‖X − q(X)‖p , q : Rd → Rd, Borel, |q(Rd)| ≤ N

}
= min

{
‖X − Y ‖p , Y : Ω→ Rd, measurable, |Y (Ω)| ≤ N

}
,

both minima being attained by random vectors of the form

Y (N) = X̂(N) := πΓ(N)(X) (1.2)

where πΓ(N) denotes a Borel projection on Γ(N) following the nearest neighbour rule where Γ(N) ⊂ Rd
has size at most N .

This modulus is also related to the Wasserstein (pseudo-)distance Wp, p∈ (0, 1] on the space of
Borel probability measure on Rd: let PN be the set of distributions whose support has at most N
elements. Let µ be a Borel distribution on Rd and let ν∈ PN that we can associate to random vectors
X and Y respectively ; then for every p-Hölder function f : Rd → R, with p-Hölder ratio [f ]

p,Hol
< +∞

and every ν∈ PN , ∣∣∣ ∫
Rd
f dµ−

∫
Rd
f dν

∣∣∣ =
∣∣∣E f(X)− E f(Y )

∣∣∣ ≤ [f ]
p,Hol
‖X − Y ‖p . (1.3)

Conversely, noting that the function ξ 7→ d(ξ,Γ(N)) is p-Hölder, we easily derive that

Wp(µ,PN ) = inf
ν∈P

N

sup
{∣∣∣ ∫

Rd
f dµ−

∫
Rd
f dν

∣∣∣, [f ]
p,Hol

≤ 1
}

= ep,N (X)

When ν = µ◦π−1
Γ(N) = L(Y (N)) (defined in (1.2)), the above inequality (1.3) is often used as a cubature

formula for numerical integration (see [31, 13, 14]). When dealing directly with with random vectors,
extensions of this formula are used to compute conditional expectations (see among others [3, 38, 8]
and further on for more references).

The most celebrated result in Optimal (Vector) Quantization Theory is undoubtedly Zador’s The-
orem (see [42, 11] and [22]) recalled below which rules the sharp asymptotic rate of convergence of
ep,N (X) as the quantization level N (or grid size) goes to infinity.

Theorem 1.1 ((Zador’s Theorem), see [22], Theorem 6.2, p.78 and Remark 6.3(c), see also [24]).
(a) If E|X|p < +∞ and µ = PX = ϕ.λd + ν where ν is a singular Borel measure with respect to the
Lebesgue measure λd on Rd. Then

lim inf
N

N
1
d ep,N (X) ≥ J̃p,d

(∫
Rd
ϕ

d
p+ddλd

) 1
p

+ 1
d

where J̃p,d is the sharp limit for the uniform distribution U([0, 1]d) over the unit hypercube which
satisfies

J̃p,d = inf
N
N

1
d ep,N

(
U([0, 1]d)

)
∈ (0,+∞).

(b) If furthermore E|X|p+δ < +∞ or some δ > 0, then

lim
N
N

1
d ep,N (X) = J̃p,d

(∫
Rd
ϕ

d
p+ddλd

) 1
p

+ 1
d

.
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This N−
1
d (sharp) rate is known as the curse of dimensionality. The numerical search of optimal

grids solution to (1.1) (especially in the quadratic setting when d = 2) leads to an N × d-dimensional
problem for each grid size N which is often too demanding in practice when N or d grows. Hence the
need for a possibly sub-optimal “solution”” to this problem, easier to compute in terms of complexity
and dimensionality, provided the price to pay remains asymptotically reasonable.

The starting idea of greedy quantization is to determine a sequence (aN )N≥1 of points of Rd which
is recursively optimal step by step or level by level with respect to the Lp-mean quantization criterion.
We mean that, if we set a(N) = {a1, . . . , aN }, N ≥ 1, and a(0) = ∅, then

∀N ≥ 0, aN+1∈ argminξ∈Rdep(a
(N) ∪ {ξ}, X). (1.4)

Note that a1 is simply an Lp-median of (the distribution of) X and that, when p > 1, a strict convexity
argument implies the uniqueness of this Lp-median. This idea to design not only optimal N -tuples
but an optimal sequence which, hopefully, will produce N -tuples with a rate optimal behavior as
N → +∞ is very natural and can be compared to sequences with low discrepancy in Quasi-Monte
Carlo methods.

In fact, such sequences have already been investigated in an L1 setting for compactly supported
random vectors X as a model of short term experiment planning vs long term experiment planning
represented by regular optimal quantization at a given level N (see [10]). Our aim in this paper is to
solve this greedy optimization problem for as general as possible distributions µ = PX and in any Lp-
space, p∈ (0,+∞), in two directions: first establish the existence of such Lp-optimal greedy sequences
and then evaluate their rate of decay of ep(a

(N), X) to 0 as the quantization level N goes to infinity.
A possible wider field of applications is to substitute such sequences to optimal N -quantizers in the

quantization based numerical schemes that have been developed in the early 2000s. In these procedures
optimal quantizations used as a spatial discretization method that “fits” optimal the distribution of
interest at each time step. Among these application, often in connection with Finance but also with
reliability, we may mention Numerical integration (see [31, 35]), Optimal Stopping Theory (pricing
of American style or callable derivatives, see [2, 3, 4]), Stochastic control of diffusions and portfolio
optimization (see [32, 38, 15]), or control of PDMP(1), for reliability (see [8, 9]), non-linear filtering and
stochastic volatility models (see [32]), discretization of BSDEs and Stochastic PDEs ’see [21]). See
also the review papers [33, 36] and the references therein for more details. In most of these applications,
up to some variant, an Rd-valued discrete time Markov chain (Xk)0≤k≤n is approximated path wise

and in distribution by its quantized approximation sequence (X̂Γk
k )0≤k≤n living on a quantization

tree made up by the optimal quantization grids Γk (of varying sizes Nk) and the transitions matrices
πk = L

(
X̂Γk+1 | X̂Γk

)
which discretize the Markov dynamics of the chain. The quantization based

scheme turns out to be in many cases spatial discretization of a (Backward) Dynamical Programming
principle. Given the common sizes of the grids in these implemented procedures (Nk is often greater
than 1 000) and the number n of time steps (n ≥ 10 and sometimes equal to 100) the storing of
this quantization tree may exceed the storage capacity of the computing device. Using the induced
grids a(N0), a(N1) . . . , a(Nn) induced by a greedy optimal sequence (aN )N≥1 will dramatically reduce
this drawback, provided that, on the other hand, their rate of decay of their mean quantization rates
remain comparable to those of optimal quantizers.

The paper is organized as follows: in Section 2, the existence of (Lp, µ)-optimal greedy sequences
and their first properties are established for general and Euclidean norms. In Section 3, (Lp, µ)-
optimal greedy sequences are shown to be rate optimal in terms of mean quantization error, compared
to sequences of Lp(µ)-optimal N -quantizers. We also solve - positively – the so-called distortion

1Piecewise Constant Deterministic Markov Processes introduced by M. Davis in [16].
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mismatch problem i.e. the property that the above rate optimal decay property remains true for the
Lq(µ)-mean quantization error when q ∈ [p, p + d) in a d-dimensional setting (and sometimes for
q = p+ d). In Section 4, easy-to-check criteria, mostly borrowed from [24], are adapted to our greedy
framework. Section 5 is devoted to some further questions about the asymptotic behaviour of Lp-
greedy sequences, compared to Lp-optimal N -quantizers or non-greedy Lp-rate optimal sequences. In
Section 6, we propose numerical procedures to compute quadratic optimal greedy sequences in both 1
and higher dimensional settings, either by deterministic means or by simulation. Finally, we propose
in Section 7, when X is uniformly distributed on the unit hypercube [0, 1]d, a comparison between
optimal greedy sequences and the sequences with low discrepancy popularized by the Quasi-Monte
Carlo method.

Notations: • N∗ = {1, 2, . . .} the set of positive integers.

• | . | denotes any norm on Rd (except specific mention). B(x, ρ) denotes the closed ball centered at
x∈ Rd with radius ρ > 0. For every subset A ⊂ Rd and ξ∈ Rd, d(ξ, A) = infa∈A |ξ − a| (distance of ξ
to the set A in (Rd, | . |)).

2 Existence of optimal greedy quantization sequences

Proposition 2.1. (a) Existence: If X ∈ Lp(P), then the sequence of optimization problems (1.4)
admits at least one solution (aN )N≥1 where a1 is the Lp-median of the distribution µ. Moreover,
the finite sequence

(
ep(a

(n), X)
)

1≤n≤N is (strictly) decreasing as long as N ≤ card
(
supp(µ)

)
. In

particular, an /∈ a(n−1), for n∈ {1, . . . , N}.
Any such a solution is called an Lp-optimal greedy quantization sequence.

(b) Local optimality: As long as N ≤ card
(
supp(µ)

)
µ
(
CaN (a(N))

)
> 0 where CaN (a(N)) =

{
ξ∈ Rd | |ξ − aN | < min

1≤i≤N−1
|ξ − ai|

}
and for any Borel set C such that CaN (a(N)) ⊂ C ⊂WaN (a(N)) =

{
ξ∈ Rd | |ξ−aN | ≤ min1≤i≤N−1 |ξ−

ai|
}

, aN is solution to the local optimization problem

aN ∈ argmina∈RdE
(
|X − a|p |X ∈ C

)
.

(c) Space filling: Assume X ∈ LqRd(P) for some q ≥ p. Then, any Lp-optimal greedy quantization
sequence (aN )N≥1 satisfies

lim
N
eq(a

(N), X) = 0

i.e., equivalently, lim
N→+∞

∫
Rd

min
1≤i≤N

|ξ − ai|qµ(dξ) = 0. In particular limN ep(a
(N), X) = 0.

Proof. (a) We proceed by induction. When N = 1, the existence of a1 is obvious once noticed that
ξ 7→ E |X − ξ|p is continuous and goes to infinity as |ξ| → +∞. Assume there exists a1, . . . aN such
that ep(a

(k), X) = mina∈Rd ep(a
(k−1) ∪ {a}, X) for every k∈ {1, . . . , N}.

If supp(µ) ⊂ {a1, . . . , aN } then for every a∈ Rd, ep(a(N) ∪ {a}, X) = ep(a
(N), X). Otherwise, let

ξ∗∈ supp(µ) \ {a1, . . . , aN }. It is clear that |ξ − ξ∗| < d(ξ, a(N)) on the ball B
(
ξ∗, 1

4d(ξ∗, a(N))
)

which

satisfies µ
(
B
(
ξ∗, 1

4d(ξ∗, a(N))
))
> 0. Consequently, ep(a

(N) ∪ {ξ∗}, X) < ep(a
(N), X). Now let

K0
N+1 =

{
ξ∈ Rd | ep(a(N) ∪ {ξ}, X) ≤ ep(a(N) ∪ {ξ∗}, X)

}
.

4



This is a closed non-empty set. Now let (ξk)k≥1 be a sequence of elements of K0
N+1 such that |ξk| →

+∞. It follows from Fatou’s Lemma that

lim inf
k

ep(a
(N) ∪ {ξk})p ≥

∫
Rd

lim inf
k

(
d(ξ, a(N))p ∧ |ξ − ξk|p

)
µ(dξ)

=

∫
Rd
d(ξ, a(N))pµ(dξ)

= ep(a
(N), X)p > ep(a

(N) ∪ {ξ∗}, X)p.

This yields a contradiction which in turn implies that K0
N+1 is a compact set. On the other hand

ξ 7→ ep(a
(N) ∪ {ξ}, X) is clearly Lipschitz continuous on Rd, hence it attains its minimum on K0

N+1

which is clearly its absolute minimum.

(b) If µ
(
CaN (a(N))

)
= 0, then one checks that

ep(a
(N−1), X)− ep(a(N), X) =

∫
CaN (a(N))

(
d(ξ, a(N−1))p − |x− aN |

p
)
µ(dξ) = 0

which contradicts the strict decreasing monotony of ep(a
(N), X). Let (Ci)1≤i≤N be a Borel Voronoi

partition of Rd induced by a(N), i.e. satisfying Ci ⊂Wai(a
(N)) =

{
ξ∈ Rd | |ξ−ai| = min1≤j≤N |ξ−aj |

}
,

and such that CN = C. Assume there exists b ∈ C such that
∫
C |ξ − aN |

pµ(dξ) >
∫
C |ξ − b|

pµ(dξ).
Then

ep(a
(N), X)p =

N−1∑
i=1

∫
Ci

|ξ − ai|pµ(dξ) +

∫
C
|ξ − aN |

pµ(dξ)

≥
N−1∑
i=1

∫
Ci

d
(
ξ, a(N−1) ∪ {b}

)p
µ(dξ) +

∫
C
|ξ − aN |

pµ(dξ)

>

N−1∑
i=1

∫
Ci

d
(
ξ, a(N−1) ∪ {b}

)p
µ(dξ) +

∫
C
|ξ − b|pµ(dξ) since µ(C) > 0

≥
N−1∑
i=1

∫
Ci

d
(
ξ, a(N−1) ∪ {b}

)p
µ(dξ) +

∫
C
d
(
ξ, a(N−1) ∪ {b}

)p
µ(dξ)

= ep(a
(N−1) ∪ {b}, X)p

which contradicts the minimality of aN .

(c) Let p∈ (0,+∞). It is clear that, for every ξ∈ Rd, min1≤i≤N |ξ−ai| is non-increasing and converges
toward inf

N≥1
|ξ − aN | so that by the monotone convergence theorem, one has

ep(a
(N), X)p ↓ `∞ :=

∫
Rd

inf
i≥1
|ξ − ai|pµ(dξ).

Let a(∞) = {aN , N ≥ 1}. If `∞ 6= 0, then there exists ξ0 ∈ supp(µ) such that ε0 = d(ξ0, a
(∞)) > 0.

Then, for every ξ ∈ B(ξ0,
ε0
4 ), d(ξ, a(∞)) ≥ 3

4ε0 so that∫
B(ξ0,

ε0
4

)
d
(
ξ, a(∞)

)p
µ(dξ) ≥ η0 with η0 =

(
3ε0

4

)p
µ
(
B
(
ξ0,

ε0

4

))
.

Now, let N0 be a positive integer such that,∫
Rd
d
(
ξ, a(N0)

)p
µ(dξ) ≤ `∞ +

η0

2

(
1− 1

3p

)
.
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We consider the (N0 + 1)-quantizer a(N0) ∪ {ξ0}. On the one hand,∫
B(ξ0,

ε0
4

)
d
(
ξ, {a1, . . . , aN0 , ξ0}

)p
µ(dξ) ≤

(ε0

4

)p
µ
(
B
(
ξ0,

ε0

4

))
=
η0

3p

and, on the other hand,∫
B(ξ0,

ε0
4

)c
d
(
ξ, a(N0) ∪ {ξ0}

)p
µ(dξ) ≤

∫
B(ξ0,

ε0
4

)c
d
(
ξ, a(N0)

)p
µ(dξ)

≤
∫
Rd
d
(
ξ, a(N0)

)p
µ(dξ)−

∫
B(ξ0,

ε0
4

)
d
(
ξ, a(N0)

)p
µ(dξ)

≤ `∞ +
η0

2

(
1− 1

3p

)
− η0

so that ∫
Rd
d
(
ξ, a(N0) ∪ {ξ0}

)p
µ(dξ) ≤ `∞ +

η0

2

(
1− 1

3p

)
− η0 +

η0

3p
< `∞

which yields a contradiction. Hence `∞ = 0 which completes the proof for q = p.

Finally, we derive from what precedes that limN min1≤i≤N |X − ai| = infN≥1 |X − aN | = 0 P-a.s..
As X∈ Lq(P), min1≤i≤N |X−ai| ≤ |X−a1|∈ Lq, the conclusion follows from the Lebesgue dominated
convergence theorem. �

Remark on uniqueness. Uniqueness of Lp-optimal greedy quantization sequence turns out to
be quite different problem from its counterpart for regular Lp-optimal quantization. Thus, for 1-
dimensional log-concave distributions, it is well-known that uniqueness of Lp-optimal quantizers holds
true (up to a reordering of the components in an increasing order, see [25]) holds true. For Lp-optimal
greedy quantization, this uniqueness may fail. Basically, greedy quantization is more influenced by
the symmetry properties of the distributions: thus for the N (0; 1)-distribution (whose density is log-
concave), its is clear that a1 = 0 (unique Lp-median) but then we have that, if a2 is the (unique, see
Proposition A.1 in Appendix A) solution to the the problem

min
a≥0

E
(
|X|p ∧ |X − a|p

)
where X has distribution µ = N (0; 1),

then both a2 and −a2 are solutions to the greedy problem (1.4) at level N = 2 by symmetry of (the
distribution of) X. In fact, one derives in turn that (0, a2,−a2) and (0,−a2, a2) are both the first
three terms of (Lp,N (0; 1))-optimal greedy quantization sequences.

2.1 About Lp-optimal greedy quantization in an Euclidean framework

In this section we assume that | . | denotes an Euclidean norm on Rd. Let Hµ be the closed convex
hull of the support of the distribution µ.

Proposition 2.2. Let ( .|. ) denote the inner product induced by the Euclidean norm. If supp(µ)
contains at least N elements then, the first N elements of any optimal greedy quantization sequence
takes values in Hµ. If supp(µ) is infinite any optimal greedy quantization sequence takes values in Hµ.

Proof. We proceed by induction. Let a1∈ argmina∈RdE|X − a|p and let Π1(a1) be its projection on
Hµ. If a1 6= π1(a1), the pseudo-Pythagoras Theorem implies

∀ ξ∈ Hµ, |ξ − a1|2 ≥ |ξ − π1(a1)|2 + |a1 − π1(a1)|2

6



so that E |X − a|2 ≥ E|X − π1(a1)|2 + |a1 − π1(a1)|2 which yields a contradiction to the definition of
a1. Hence a1∈ Hµ.

Let aN ∈ argmina∈Rdep(a
(N−1)∪{a}, X). It follows from Proposition 2.1(b) that aN ∈ argmina∈RdE

(
|X−

a|p |X ∈ WaN

)
where WaN = {ξ ∈ Rd | |ξ − aN | ≤ d(ξ, a(N−1))} is a closed (polyhedral) convex

set since the norm is Euclidean and has a positive µ-measure. As a consequence aN ∈ Hµ(. |WaN
)

where µ(. |WaN ) is the conditional distribution of µ given WaN . One concludes by noting that
Hµ(. |WaN

) = Hµ ∩WaN ⊂ Hµ. �

Remark. Let p = 2. As soon as card(supp(µ)) ≥ N , we know from Proposition 2.1(b) that µ(WaN ) >
0 and

argmina∈Rd

∫
WaN

|ξ − a|2µ(dξ) =

{∫
WaN

ξ µ(dξ)

µ(WaN )

}
i.e.

aN =

∫
WaN

ξ µ(dξ)

µ(WaN )
= E

(
X |X ∈WaN

)
. (2.5)

This can be seen as a fixed point formula and is the starting point of stochastic optimization procedure
to compute by simulation (of i.i.d. samples of X) of optimal greedy sequences using a variant of the
celebrated Lloyd method introduced in [27] and widely used in Statistics and Data Analysis(see [29])
as k-means algorithm (see Section 6).

3 Greedy quantization is rate optimal

3.1 A general rate optimality result

Following [24], we define for every b∈ (0, 1
2) the b-maximal function associated to an Lp-optimal greedy

quantization sequence (aN )N≥1 by

∀ ξ∈ Rd, Ψb(ξ) = sup
N≥1

λd
(
B(ξ, bd(ξ, a(N)))

)
µ
(
B(ξ, bd(ξ, a(N)))

) ∈ [0,+∞].

It is clear that Ψb(ξ) > 0 for every ξ 6= a1 (Lp-median).

Note that this notion of b-maximal function (originally introduced in [24]) can be naturally defined
with respect to a sequence of grids (ΓN )N≥1 where ΓN has size N .

The theorem below yields a criterion based on the integrability of the maximal function Ψb which
implies that an (Lp, µ)-optimal greedy quantization sequence is (Lp, µ)-rate optimal (in the sense of
Zador’s Theorem). More practical criteria are given further on in Section 4.

Theorem 3.1. Let p∈ (0,+∞) and let µ = PX be such that

∫
Rd
|ξ|pµ(dξ) < +∞. Let (aN )N≥1 be an

Lp-optimal greedy quantization sequence. Assume that there exists b∈ (0, 1
2) such that Ψb∈ L

p
p+d (µ).

Then
lim sup

N
N

1
d ep(a

(N), X) < +∞. (3.6)

Proof. First, note that if µ is a Dirac mass δa for some a∈ Rd, then a1 = a and ep(a
(N), X) = 0 for

every integer N ≥ 1. Otherwise, we rely on the following micro-macro inequality established in [24]
(see Equation (3.4) in the proof of Theorem 2, with the standard convention 1

0 = +∞).

∀ ξ∈ Rd, d(ξ, a(N))p ≤
Cp,b

µ
(
B(ξ, bd(ξ, a(N)))

)(ep(a(N), X)p − ep(a(N) ∪ {ξ}, X)p
)

7



where b∈ (0, 1
2) and Cp,b is a positive real constant depending on p and b. Then, it follows that

ep(a
(N) ∪ {ξ}, X)p ≤ ep(a(N), X)p − 1

Cp,b

µ
(
B(ξ, bd(ξ, a(N)))

)
λd
(
B(ξ, bd(ξ, a(N)))

)bdd(ξ, a(N))p+dVd (3.7)

where Vd denotes the hyper-volume of the unit ball with respect to the current norm on Rd i.e.
Vd = λd

(
B| . |(0; 1)

)
. This implies that

ep(a
(N) ∪ {ξ}, X)p ≤ ep(a(N), X)p − 1

C̃p,b,d

1

Ψb(ξ)
d(ξ, a(N))p+d (3.8)

where C̃p,b,d = Cp,b/(b
dVd)∈ (0,+∞). Note that µ({a1}) < 1 since µ is not a Dirac mass, so that∫

Rd
Ψ

p
p+d

b (ξ)µ(dξ) > 0.

Consequently, as Ψb ∈ L
p
p+d (µ), we can define the probability distribution ν = κb,p,d Ψ

p
p+d

b .µ (where

κb,p,d =
( ∫

Ψ
p
p+d

b dµ
)−1

∈ (0,+∞) is a normalizing real constant). Then, integrating the above

inequality with respect to ν yields∫
Rd
ep
(
a(N) ∪ {ξ}, X

)p
ν(dξ) ≤ ep(a(N), X)p − C̃p,b,d

∫
Rd
d(ξ, a(N))p+d

ν(dξ)

Ψb(ξ)
.

Jensen’s Inequality applied to the convex function u 7→ u
1+ d

p yields

∫
Rd
d(ξ, a(N))p+d

ν(dξ)

Ψb(ξ)
≥

(∫
Rd
d(ξ, a(N))p

ν(dξ)

Ψb(ξ)
p
p+d

)1+ d
p

= κ
1+ d

p

b,p,d

(∫
Rd
d(ξ, a(N))pµ(dξ)

)1+ d
p

= κ
1+ d

p

b,p,d ep
(
a(N), X

)p+d
.

On the other hand, it is clear that

ep
(
a(N+1), X

)p ≤ ∫
Rd
ν(dξ)ep

(
a(N) ∪ {ξ}, X)

)p
so that, finally, if we set AN = ep(a

(N), X)p, N ≥ 1, this sequence satisfies for every integer N ≥ 1,
the recursive inequality

AN+1 ≤ AN − κ̃ A
1+ d

p
N

where κ̃ = κ
1+ d

p

b,p,dC̃p,b,d. The sequence (AN )N≥1 being non-negative, one classically derives the an-

nounced conclusion (for a proof, see Lemma B.1 in the Appendix B, applied with ρ = d
p and

C = κ̃). �

Remark. • One straightforward derives from Zador’s Theorem (Theorem 1.1(a)) that, under the
assumption of the above theorem and if µ has a non-zero absolutely continuous component (i.e.
ϕ = dµ

dλd
6≡ 0), one has

ep(a
(N),p, X) � N−

1
d

8



since ep(a
(N),p, X) ≥ ep,N (X) and lim inf

N
N

1
d ep,N (X) ≥ J̃p,d‖ϕ‖

1
p

L
p
p+d (λd)

> 0. The same conclusion

will hold true for the distortion mismatch problem investigated in Proposition 3.1 in the next section.

• A careful reading of the proof shows that, if we define the sequence of functions Ψb,N by

∀ ξ∈ Rd, Ψb,N (ξ) =
λd
(
B(ξ, bd(ξ, a(N)))

)
µ
(
B(ξ, bd(ξ, a(N)))

) ∈ [0,+∞],

then the theorem holds true under the weaker assumption that there exists an integer N0 ≥ 1 such

that sup
N≥N0

∫
Rd

Ψb,N (ξ)µ(dξ) < +∞.Unfortunately, this fact seems to be of little practical interest.

•When µ is singular with respect to the Lebesgue measure (no absolutely continuous part), it is likely
that, like for standard optimal vector quantization in Zador’s Theorem, this rate is not optimal. The
natural conjecture should be that greedy quantization sequence(s) go to 0 at the same rate as that

obtained for sequences of optimal quantizers which is not N−
1
d when the distribution µ is singular

(see e.g. [22]).

• Since we know that d(ξ, a(N)) ↓ 0 as N → +∞, µ(dξ)-a.s., it is clear that if µ = ϕ.λd (or even

µ = ϕ.λd
⊥
+ µ̃, to be checked), then by the Lebesgue differentiation theorem

1

ϕ(ξ)
= lim inf

N

λd
(
B(ξ, bd(ξ, a(N)))

)
µ
(
B(ξ, bd(ξ, a(N)))

) ≤ Ψb(ξ) µ(dξ)-a.s.

so that by Fatou’s Lemma, the condition Ψb∈ L
p
p+d (µ) implies∫

Rd
ϕ

d
p+d (ξ)dλd(dξ) < +∞.

So, we retrieve here the statement of Remark 6.3(c), p.79, in [22] which points out that if optimal

Lp-mean quantization goes to zero at rate N−
1
d then the above integral is finite (see also Section 1

in [24]). Of course, as emphasized in Remark 6.3(a) from [22], p.79, the classical condition under which
Zador’s Theorem holds, namely E|X|p+δ =

∫
Rd |ξ|

p+δµ(dξ) < +∞ for a δ > 0, implies the finiteness
of this integral owing to an appropriate application of Hölder’s inequality. The above result suggests
a hopefully nonempty question: since Lp-rate optimality for greedy sequence (and consequently for

true Lp-optimal quantizers) holds as soon as X∈ Lp(P) and ψb(X)∈ L
p
p+d (P) for a b∈ (0, 1

2), are such
conditions achievable when E|X|p+δ = +∞ for every δ > 0.

3.2 Distortion mismatch for optimal greedy quantization sequences

In this section we address the problem of distortion mismatch originally investigated in [24] for se-
quences of optimal N -quantizers.

If q∈ (0, p] and X ∈ Lp(P) any optimal greedy sequence (aN )N≥1 remains Lq-rate optimal for the
Lq-norm owing to the monotonicity of the Lq-norm as function of q. But the challenging question
for distortion mismatch starts with the case q > p. It is solved in the proposition below, still relying
on an integrability assumption on the b-maximal function(s) Ψb. For more practical criteria we again
refer to Section 4.

Proposition 3.1. Let q ∈ (p,+∞) and let X ∈ Lp(P) with distribution µ = PX . Assume that the

maximal function Ψb∈ L
q
p+d (µ) for some b∈ (0, 1

2). Let (aN )N≥1 be an Lp-optimal greedy sequence.
Then X∈ Lq(P) and

lim sup
N

N
1
d eq(a

(N), X) < +∞.
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Remarks. When supp(µ) is not compact it is hopeless to have results for q > p+ d since it has been
shown in [24] (Theorem 10 and Equation (2.7)) that the Lq-rate optimality of a sequence (aN )N≥1

would imply when µ = ϕ.λd that∫
ϕ>0

ϕ
− q
p+d (ξ)µ(dξ) =

∫
ϕ>0

ϕ
1− q

p+d (ξ)λd(dξ) < +∞.

However when µ has a compact support, we will see in Proposition 4.2(c) that Lq-rate optimality can
be preserved under appropriate integrability assumptions.

Proof. First, note that if µ is a Dirac mass δa for some a∈ Rd, then a1 = a and eq(a
(N), X) = 0 for

every integer N ≥ 1. Otherwise, it follows from Equation (3.7) rewritten in a reverse way that

∀ ξ∈ Rd, d(ξ, a(N))q ≤ Cb,d,p,q
(
ep(a

(N), X)p − ep(a(N) ∪ {ξ}, X)p
) q
p+d

Ψb(ξ)
q
p+d (ξ).

Now, we note that
∀ ξ∈ Rd, ep(a

(N) ∪ {ξ}, X)p ≥ ep(a(N+1), X)p

by definition of the sequence (aN )N≥1 so that

∀ ξ∈ Rd, d(ξ, a(N))q ≤ Cb,d,p,q
(
ep(a

(N), X)p − ep(a(N+1), X)p
) q
p+d

Ψb(ξ)
q
p+d (ξ).

Integrating with respect to µ yields

eq(a
(N), X)q ≤ Cb,d,p,q

(
ep(a

(N), X)p − ep(a(N+1), X)p
) q
p+d

∫
Rd

Ψb(ξ)
q
p+d (ξ)µ(dξ).

We know that

∫
Rd

Ψb(ξ)
q
p+d (ξ)µ(dξ)∈ (0,+∞) owing to the assumption made on µ and ψb. Hence

eq(a
(N), X)q ≤ C̃b,d,p,q

(
ep(a

(N), X)p − ep(a(N+1), X)p
) q
p+d

where C̃b,d,p,q = Cb,d,p,q
∫
Rd Ψb(ξ)

q
p+d (ξ)µ(dξ). Equivalently

eq(a
(N), X)p+d ≤ C̃

p+d
q

b,d,p,q

(
ep(a

(N), X)p − ep(a(N+1), X)p
)
. (3.9)

Summing over k between N and 2N − 1 yields

2N−1∑
k=N

eq(a
(k), X)p+d ≤ C̃

p+d
q

b,d,p,q

(
ep(a

(N), X)p − ep(a(2N), X)p
)

≤ C̃
p+d
q

b,d,p,qep(a
(N), X)p.

It is clear that Ψb ∈ L
p
p+d (µ) since p < q and Ψb ∈ L

q
p+d (µ). Consequently, it follows from

Theorem 3.1 that there exists a positive real constant C̃ ′b,d,p,q∈ (0,+∞) such that, for every N ≥ 1,

2N−1∑
k=N

eq(a
(k), X)p+d ≤ C̃ ′b,d,p,qN−

p
d .

10



On the other hand the sequence
(
eq(a

(N), X)
)
N≥1

is clearly non-decreasing since (d(ξ, a(N))q)N≥1 is

itself non-decreasing for every ξ∈ Rd. Finally, this implies that, for every N ≥ 1,

Neq(a
(2N−1), X)p+d ≤

2N−1∑
k=N

eq(a
(k), X)p+d ≤ C̃ ′b,d,p,qN−

p
d .

Hence, for every integer N ≥ 1,

Neq(a
(N), X)p+d ≤ 2 C̃ ′b,d,p,qdN/2e−

p
d .

(where dme denotes the upper integer part of m∈ N). Consequently, for every N ≥ 1,

eq(a
(N), X)p+d ≤ 21+ p

d C̃ ′b,d,p,qN
−(1+ p

d
).

One completes the proof by taking the (n+ p)th root of the inequality. �

4 Practical criteria for the integrability of the maximal function

These criteria are mainly borrowed from [24] where they have been established for the first time in
order to solve the mismatch problem for optimal quantization

Compact case and q < p + d. The compact case relies on the following lemma which allows for
non convex support for the distribution µ.

Lemma 4.1 (see Lemma 1 in [24]). If X∈ Lp(P) has a distribution µ and (ΓN )N≥1 is a sequence of
N -quantizers such that

∫
Rd d(ξ,ΓN )pµ(dξ)→ 0, then the maximal functions Ψb associated to (ΓN )N≥1

lie in Lrloc(µ) for every r∈ (0, 1) i.e.

∀ r∈ (0, 1), ∀ b∈ (0,
1

2
), ∀R∈ (0,+∞),

∫
{|ξ|≤R}

ψb(ξ)
rµ(dξ) < +∞.

By combining this result (applied with r = q
p+d) with Proposition 2.1(b), we derive the following

result which extends the one established in [10] for absolutely continuous distributions with convex
support on Rd. Note that the proof of the above lemma is not elementary, especially when supp(µ) is
not convex, and relies on the Besicovitch covering theorem.

Proposition 4.1 (Compact support). If X has a distribution µ with compact support, then any Lp-
optimal greedy quantization sequence (aN )N≥1 is Lq-rate optimal for every q∈ (0, p+ d) i.e. satisfies

lim sup
N

N
1
d eq(X, a

(N)) < +∞.

Compact case and q ≥ p+d. Results can be derived for q > p+d when µ is absolutely continuous
and has a compact support. They rely on the following Lemma (see Lemma 2 in [24]).

Lemma 4.2. Assume µ = ϕ.λd, E|X|p < +∞, supp(µ) is the finite union of closed convex sets and
λd|supp(µ) is absolutely continuous with respect to µ.

Let (ΓN )N≥1 be a sequence of quantization grids satisfying ep(ΓN , X)→ 0 as N → +∞. Then, for
every q∈ (1,+∞], the associated maximal functions Ψb lie in Lqloc(µ) iff 1

ϕ ∈ L
q
loc(µ).

As a consequence of this lemma, we derive the following proposition which deals with the cases
q > p+ d (in (a)) and q = p+ d (in (b)).

11



Proposition 4.2. (a) Let µ = ϕ.λd be like in the preceding lemma and let (aN )N≥1 be an Lp-optimal
greedy quantization sequence for µ. Let q > d+ p. If∫

Rd
ϕ
− q
d+p (ξ)µ(dξ) =

∫
{ϕ>0}

ϕ
1− q

d+p (ξ)λd(dξ) < +∞

then (aN )N≥1 is Lq
′
-rate optimal for every q′∈ (0, q] i.e.

lim sup
N

N
1
d eq′(X, a

(N)) < +∞.

In particular, if ϕ ≥ ε > 0 on supp(µ), then the above integral criterion is fulfilled.

(b) Let q = p+ d. If there exists δ > 0 such that∫
Rd
ϕ−(1+δ)(ξ)µ(ξ) =

∫
{ϕ>0}

ϕ−δ(ξ)λd(dξ) < +∞

then lim sup
N

N
1
d ep+d(X, a

(N)) < +∞.

Non-compact radial case.

Lemma 4.3 (see Corollary 3 in [24]). If X ∈ Lp+δ(P) for some δ > 0 with an essentially radial
distribution µ(dξ) = ϕ(ξ)λd(dξ) in the sense that

ϕ = h(| . |0) on B| . |0(0, R)c with h : (R,+∞)→ R+, non-increasing and | . |0 any norm on Rd.
(4.10)

Let (ΓN )N≥1 be a sequence of N -quantizers such that eq(ΓN , X) → 0. If there exists a real constant
c > 1 such that ∫

Rd
ϕ(c ξ)

− q
p+dµ(dξ) =

∫
Rd
ϕ(c ξ)

− q
p+dϕ(ξ)dξ < +∞ (4.11)

then Ψb∈ L
q
p+d (µ).

In fact, as stated in [24], Corollary 3 is written to be used only with Lp-optimal quantizers so the
above formulation includes minor modifications. Combining this lemma with Proposition 2.1(b) and
Theorem 3.1 yields the following proposition.

Proposition 4.3 (Non-compact support with radial density). If X∈ Lp+δ(P) for some δ > 0 with an
essentially radial distribution in the sense of (4.10) and if, furthermore, ϕ satisfies (4.11), then any
Lp-optimal greedy sequence (aN )N≥1 is Lq-rate optimal i.e. satisfies

lim sup
N

N
1
d eq(X, a

(N)) < +∞.

This case includes e.g. all the centered hyper-exponential distributions of the form µ = ϕ.λd with

ϕ(ξ) = κa,b,c|ξ|c0 e−a|ξ|
b
0 , ξ∈ Rd, a, b > 0, c > −d

and | . |0 is any norm on Rd and subsequently all hyper-exponential distributions since Lp-mean-
quantization errors are invariant by translation of the random vector X. In particular, this includes
all normal and Laplace distributions.

Remark. In one dimension, (4.10) can be replaced mutatis mutandis by a one-sided variant: if there
exist R0, R

′
0∈ R, R′0 ≥ R0 such that

supp(µ) ⊂ [R0,+∞) and f|[R′0,+∞) is non-increasing. (4.12)

This criterion is satisfied by the gamma distributions on R+ (including the exponential distribu-
tions).
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Non-compact and possibly non-radial case.

Corollary 4.1. Assume µ = ϕ.λd and E |X|p+δ < +∞ for some δ > 0. Furthermore, assume that
supp(µ) is peakless in the following sense

κϕ := inf
ξ∈supp(µ), 0<ρ≤1

λd
(
supp(µ) ∩B(ξ, ρ)

)
λd
(
B(ξ, ρ)

) > 0 (4.13)

and that ϕ satisfies the local growth control assumption: there exist real numbers ε ≥ 0, η ∈ (0, 1
2),

M, C > 0 such that

∀ ξ, ξ′∈ supp(µ), |ξ| ≥M, |ξ′ − ξ| ≤ 2η |ξ| =⇒ ϕ(ξ′) ≥ Cϕ(ξ)1+ε. (4.14)

Then, for every q∈ (0, p+d1+ε ) such that∫
Rd
ϕ(ξ)

− q(1+ε)
p+d µ(dξ) =

∫
{ϕ(ξ)>0}

ϕ(ξ)
1− q(1+ε)

p+d λd(dξ) < +∞

(if any), any greedy Lp-optimal sequence (aN )N≥1 is Lq-rate optimal i.e. satisfies

lim sup
N

N
1
d eq(X, a

(N)) < +∞.

In particular, if (4.14) holds either for ε = 0 or for every ε∈ (0, ε] (ε > 0), and if

∀ q∈ (0, p+ d),

∫
Rd
ϕ(ξ)

− q
p+dµ(dξ) =

∫
{ϕ(ξ)>0}

ϕ(ξ)
1− q

d+pλd(dξ) < +∞ (4.15)

then the above conclusion holds for every q∈ (p, p+ d).

Note that (if λd(supp(µ)) = +∞) Assumption (4.13) is e.g. satisfied by any finite intersection of
half-spaces, the typical example being Rd+. Furthermore, a careful reading of the proof below shows
that this assumption can be slightly relaxed into: there exists a real c > 0 such that

κ′ϕ := inf
ξ∈supp(µ)

{
λd(supp(µ) ∩B(ξ, ρ))

λd(B(ξ, ρ))
, 0 < ρ ≤ c |x

}
> 0.

5 Further answers and questions about greedy quantization

In this section, we temporarily denote by
(
aN,p

)
N≥1

the Lp-optimal greedy quantization sequence for

the uniform distribution U([0, 1]) and by
(
α(N),p

)
N≥1

the resulting sequence of greedy quantizers.

B Rate optimality of greedy sequences It is a straightforward consequence of Zador’s Theorem
that if the distribution µ = PX of X ∈ Lp+δ, δ > 0, has a non-zero absolutely continuous component
(i.e. ϕ = dµ

dλd
6≡ 0) and satisfies the assumptions of Theorem 3.1, then

ep(a
(N),p, X) � N−

1
d

since ep(a
(N),p, X) ≥ ep,N (X) and lim infN N

1
d ep,N (X) ≥ J̃p,d‖ϕ‖

1
p

L
d
p+d (λd)

> 0. (By the way it proves

that under the assumption of Theorem 3.1, ‖ϕ‖
L

d
p+d (λd)

< +∞.)

By a similar argument, the same holds true for the distortion mismatch problem under the as-
sumptions of Proposition 3.1.
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B Can greedy quantization sequence produce asymptotically optimal quantizers? If µ
has an absolutely continuous component with density ϕ, then any sequence (Γn)n≥1 of asymptotically
(Lp, µ)-optimal quantization grids at level Nn = card(Γn) → +∞, satisfies the empirical measure
theorem (see [22], Theorem 7.5, p.96 and [17] for a slight refinement), namely

1

Nn

∑
a∈Γn

δa
(w)−→ µ(p) =

ϕ
d
d+p∫

Rd ϕ
d
d+pdλd

.λd as n→ +∞

where
(w)−→ denotes the weak convergence of probability measures. Note that when µ = U([0, 1]),

µ(p) = U([0, 1]), for every p∈ (0,+∞).

By asymptotically (Lp, µ)-optimal, we mean that the (Lp, µ)-mean quantization errors induced

by the grids Γn satisfy the sharp asymptotics of Zador’s Theorem, namely limnN
1
d
n ep(Γn, X) =

J̃p,d‖ϕ‖
1
p

L
d
p+d (λd)

.

It is pointed out in [10] (Theorem 4.10 and Corollary 4.11) that the quantizers (a(N),p)N≥1 designed
from an (Lp, µ)-optimal greedy quantization sequence (aN,p)N≥1 are usually not asymptotically (Lp, µ)-
optimal, even up to an extraction. The counter-example is exhibited in the 1-dimensional basic setting
of the uniform distribution U([0, 1]).

The authors first build and analyze an (L1, U([0, 1]))-optimal greedy sequence (aN,1)N≥1. Then,

they show that the (tight) sequence of empirical measures µ̃N = 1
N

∑
1≤k≤N δak,1 on [0, 1] does not

have the uniform distribution U([0, 1]) (or equivalently the Lebesgue measure λ1|[0,1] over [0, 1]) as a
weak limiting distribution. In particular, this implies, owing to the above empirical measure theorem,
that

lim inf
N

Ne1

(
a(N),1, U([0, 1])

)
>

1

4
= J̃1,1

keeping in mind that J̃1,1 = lim
N
Ne1,N

(
U([0, 1])

)
= inf

N
Ne1,N

(
U([0, 1])

)
. Otherwise, by the above

empirical mean theorem, there would exist a subsequence N ′ → +∞ such that µ̃N ′
(w)→ µ(1) = λ1|[0,1] =

U([0, 1]). Equivalently, this reads

lim inf
N

e1

(
a(N),1, U([0, 1])

)
e1,N

(
U([0, 1])

) > 1.

Numerical tests graphically reproduced in [10] (Figure 1, p.521) suggest that

lim inf
N

Ne1

(
a(N),1, U([0, 1])

)
≈ 0.255 ≈ 1.02× J̃1,1.

Our own numerical tests, based on the algorithms developed in Section 6 in the quadratic case (p =
2), implemented with the uniform distribution, the scalar N (0, 1) and bi-variate N (0; I2) normal
distributions provide similar conclusions (see Section 6 devoted to algorithmic aspects and numerical
experiments).

This leads to our first open question: is this a generic situation? Or, to be more precise:

Open question 1: May an optimal (Lp, µ)-greedy sequence (aN,p)N≥1 contain subsequence(s)
(
a(N ′),p

)
N≥1

of asymptotically (Lp, µ)-optimal µ-quantizers?

In fact, we conjecture that the a generic answer is negative. This amounts to proving, still owing
to the empirical measure theorem, that for any optimal (Lp, µ)-greedy sequence (aN,p)N≥1

lim inf
N

ep
(
a(N),p, µ

)
ep,N

(
µ
) > 1.

14



B Are (Lp, µ)-optimal greedy quantization sequence really optimal among (µ-rate optimal)
sequences? Let us have a look at the celebrated dyadic Van der Corput (VdC ) sequence, viewed
as a quantization sequence. Let us recall that the dyadic VdC sequence is defined by

ξN =
r∑

k=0

nk
2k+1

where N = nr2
r + · · ·+ n0, ni∈ {0, 1}, i = 1, . . . , r.

B The L1-mean quantization problem for the VdC sequence. Elementary computations, not repro-
duced here, show that

lim inf
N

Ne1

(
ξ1, . . . , ξN , [0, 1]

)
=

1

4
= J̃1,1

and that

lim sup
N

Ne1

(
ξ1, . . . , ξN , [0, 1]

)
=

9

32
=

9

8
J̃1,1.

This lim inf is achieved by the subsequence Nn = 2n−1, n ≥ 1, and the lim sup with subsequence
Nn = 3

2 .2
n = 3.2n−1, n ≥ 1. So we can claim that:

• there exist rate optimal sequences in the sense of (3.6) which are not solutions to the greedy
problem (1.4);

• there exist rate optimal sequences (ξN )N≥1 containing subsequence of quantizers (ξ(N ′))N≥1

which are asymptotically L1-rate optimal quantizers: so is the case of the VdC sequence with
the above subsequence N ′ = 2n−1.

Figure 1 in [10] also suggests that the L1-optimal greedy quantization sequence
(
aN,1

)
N≥1

for the

uniform distribution U([0, 1]) satisfies

lim sup
N

Ne1

(
a(N),1, U([0, 1])

)
≈ 1.09× J̃1,1 and 1.09 < 1.125 = 9/8.

B The L2-mean quantization problem for the VdC sequence. The same phenomenons are confirmed
in the quadratic case since, mutatis mutandis,

lim inf
N

Ne2

(
ξ1, . . . , ξN , [0, 1]

)
=

1

2
√

3
= J̃2,1 and lim sup

N
Ne2

(
ξ1, . . . , ξN , [0, 1]

)
=

3
√

5

4
× J̃2,1

where we keep in mind that J̃2,1 = lim
N
Ne2,N (U([0, 1])) = inf

N
Ne2,N (U([0, 1])).

On the other hand, in a quadratic framework, using the greedy Lloyd I procedure described and
analyzed in the next Section 6.1 (see Equations (6.17) if d = 1 and (6.20) if d ≥ 2), we also observe
numerically (see Figure 5) that

lim inf
N

Ne2(a(N),2, U([0, 1])) ≈ 0.29656 ≈ 1.02732× J̃2,1 > J̃2,1

and
lim sup

N
Ne2

(
a(N),2, U([0, 1])

)
≈ 0.32736 ≈ 1.13401× J̃2,1

since J̃2,1 = 1
2
√

3
. So the “loss” is about 13 %.

As for the lim inf, we verify again that no subsequence of
(
a(N),2

)
N≥1

can be asymptotically L2-

optimal and, ss for the lim sup, that the quadratic optimal greedy sequence
(
aN,2

)
N≥1

outperforms

the dyadic VdC sequence from the lim sup criterion since 1.13401 < 3
√

5
4 = 1.67706.
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Figure 1: Graph N 7→ Ne2

(
a(N), U([0, 1])

)
, N = 1, . . . , 10 000.

B Concatenated sequences. From a more general point of view, there is a canonical method to produce
for any distribution µ on (Rd,Bor(Rd)), a µ-rate optimal sequence for (Lp, µ)-quantization by con-
catenating (Lp, µ)-optimal grids of size 2`. We proceed as follows. Let (bN )N≥1 be a sequence made
up with (Lp, µ)-optimal quantizers at level 2`, ` = 0, . . . n− 1 i.e. so that{

b2` , . . . , b2`+1−1

}
is an (Lp, µ)-optimal quantizer at level 2`. (5.16)

One checks straightforwardly by monotony of the Lp-mean quantization error that, for every n ≥ 1,

e2n−1(b(2
n−1), µ) ≤ e2n−1

(
{b2n−1 , . . . , b2n−1}, µ

)
.

Hence, for every N ≥ 1, let be n = n(N) be such that 2n − 1 ≤ N ≤ 2n+1. Then

ep(b
(N), µ) ≤ ep({b2n−1 , . . . , b2n−1}) = ep,2n−1(µ)

so that

lim sup
N

N
1
d ep(b

(N), µ) ≤ lim sup
N

(
N

2n(N)

) 1
d

lim
N
N

1
d ep,N (µ) = 2

1
d lim

N
N

1
d ep,N (µ).

B First elements of comparison.

– If µ = U([0, 1]) and p = 1, one easily checks by induction that the dyadic VdC sequence can be
obtained as a properly reordered sequence (bN )N≥1 from the Lp-optimal quantizers at level N given

by
{

2k−1
2N , 1 ≤ k ≤ N

}
when N = 2n, n ≥ 0. In this very situation, the factor 2

1
d = 2 is conservative

since it can be replaced when p = 1 by 9
8 = 1.125 as seen above.

Anyway, the L1-optimal greedy quantization sequence keeps the lead, since lim sup
N

e1(a(N),1, µ)

e1,N (µ)
≈

1.09 <
9

8
≈ 1.125.

– If µ = U([0, 1]) and p = 2, once again, the quadratic optimal greedy quantization sequence again
keeps the lead, since

lim sup
N

e2(a(N),2, µ)

e2,N (µ)
≈ 1.13401 <

3
√

5

4
≈ 1.67706 < 2.
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– If µ = N (0; I2) (bivariate normal distribution i.e. d = p = 2), our own numerical experiments
suggest for the third time (see more detailed numerical results in Section 6.2) that a quadratic optimal
greedy quantization sequence (or, in practice, the suboptimal sequence resulting from the numerical

implementation of the greedy Lloyd I algorithm) has a lower constant than 2
1
d × limN N

1
2 e2,NN (0; I2).

All these considerations experiments lead us to formulate a second open question:

Open question 2: Does an (Lp, µ)-optimal greedy quantization (aN,p)N≥1 produce the lowest value

for lim sup
N

N
1
d ep,N

(
a(N),p, µ

)
among all sequences (aN,p)N≥1 ?

A less ambitious question could be to compare (Lp, µ)-optimal greedy sequences to concatenated

sequences (5.16) i.e.: “Is the (strict) inequality lim sup
N

ep
(
a(N),p, µ

)
ep,N (µ)

< 2
1
d always satisfied?”

B Practical aspects in view of numerics. From a more applied point of view, it would be of
interest to establish for (Lp, µ)-optimal greedy sequences a counterpart of the non-asymptotic Zador
Theorem in order to upper-bound the (Lp, µ)-mean quantization error of any greedy optimal sequence

(normalized by N−
1
d ) by the Lp+δ-pseudo-standard deviation of the distribution µ and a universal

constant depending only on d, p and δ. The proof of the non-asymptotic Zador’s Theorem (a slight
improvement of Pierce’s Lemma established e.g. in [28]) relies on a random quantization argument
involving the random quantizers (Y (N))N≥1 designed from an i.i.d. sequence (YN )N≥1 with an appro-
priate distribution ν, such a result is not hopeless.

For numerical purposes, in particular numerical integration or conditional expectation approxima-
tion, some reasonably good estimates of lim supN N

1
d e1,N (a(N), µ) in (3.6) would be very useful. This

is to be compared to the never ending quest for sequences with low discrepancy with lower constant
in the Quasi-Monte Carlo community.

6 Algorithmic aspects in the quadratic case

In this section we assume that Rd is equipped with the canonical Euclidean norm and that p = 2
(purely quadratic setting). So, will simply denote (aN )N≥1 quadratic optimal greedy sequences.

Practical computation of an optimal greedy sequence of quantizers relies on obvious variants al-
gorithms (CLV Q and Lloyd) implemented recursively: to switch from N to N + 1, one first adds a
(N + 1)th point (sampled from the support of the distribution µ) to the N -tuple (a1, . . . aN ) computed
during the first N th stages of the optimization procedure. This makes the starting (N + 1)-tuple for
the modified CLV Q to Lloyd procedure. Then, one launches one of these two optimization procedures
with the following restriction: all formerly computed components ai, 1 ≤ i ≤ N − 1 are kept frozen,
and only the new point is moved following the standard rules. Thus, if implementing a CLV Q like
procedure, when the N th component is the “winner” in the competition phase (i.e. the N th component
is the nearest neighbour to the new input stimulus). As for the (randomized) Lloyd I procedure, the
Voronoi cell of the N th component is the only one whose centroid (the N th component) is updated,
the other N − 1 components remaining frozen as well. Let us be more precise.

6.1 The one-dimensional quadratic case

When d = 1 and the distribution µ is absolutely continuous with a continuous positive probability
density ϕ on the real line, one can directly consider the counterpart of the historical deterministic
Lloyd I procedure and of the gradient descent sometimes known as Forgy’s algorithm or k-means. Let
us be more specific.
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B Greedy Lloyd’s I procedure • Assume a1, . . . aN−1 have been computed. Let a
(N−1)
1 < · · · <

a
(N−1)
N−1 be an increasing reordering of a1, . . . , aN−1 .

• Assume the N inter-point local inertia has also been computed, namely

σ2
i :=

∫ a
(N−1)

i+1
2

a
(N−1)
i

|a(N−1)
i − ξ|2µ(dξ) +

∫ a
(N−1)
i+1

a
(N−1)

i+1
2

|a(N−1)
i+1 − ξ|2µ(dξ), i = 1, . . . , N

where

a
(N−1)
0 = a

(N−1)
1
2

= −∞, a(N−1)

i− 1
2

=
a

(N−1)
i−1 + a

(N−1)
i

2
, i = 2, . . . , N − 2, a

(N−1)

N− 1
2

= a
(N−1)
N = +∞.

• Choose an index i0 = i0(N − 1) such that σ2
i0

= max0≤i≤N σ
2
i (maximal local inertia), then consider

a0 = aN,0∈ (a
(N−1)
i0

, a
(N−1)
i0+1 ) and finally define recursively a sequence a[n] = aN,n, n ≥ 1, by

a[n+1] = E
(
X |X ∈WN,[n]

)
=
Kµ

(a(N−1)
i0+1 +a[n]

2

)
−Kµ

(a(N−1)
i0

+a[n]
2

)
Fµ
(a(N−1)

i0+1 +a[n]
2

)
− Fµ

(a(N−1)
i0

+a[n]
2

) , n ≥ 0, (6.17)

where Fµ(x) = µ((−∞, x]) is the cumulative distribution function of µ and Kµ its cumulative first
moment function defined by

Kµ(x) =

∫
(−∞,x]

ξ µ(dξ), x∈ R.

It follows form an easy induction that, at every step n ≥ 0 of the procedure, aN,[n] ∈ WN,[n] ⊂
(a

(N−1)
i0

, a
(N−1)
i0+1 ) so that the procedure is well-defined.

Proposition 6.1. If µ is strongly unimodal in the sense that µ = ϕ.λ1 with ϕ : R→ R log-concave,

then aN,[n] converges toward the unique solution aN,∞∈ (a
(N−1)
i0

, a
(N−1)
i0+1 ) of the fixed point equation

aN = E
(
X |X ∈WN

)
(6.18)

where WN ⊂ (a
(N−1)
i0

, a
(N−1)
i0+1 ) is the closed Voronoi cell of aN in a(N−1) ∪ {aN }.

The detailed proof is postponed to the Appendix A.1. But we can already mention that it relies
on classical arguments called upon in the proofs of the convergence of the standard Lloyd I procedure
(and the uniqueness of the possible stationary limiting point, see [25, 7]).

Remarks. • The computation of the integrals involved in the algorithm can be performed by
higher order quadrature formulas, or e.g. in the case where µ = N (0; 1) using the closed form for∫ x
−∞ ξe

− ξ
2

2
dξ√
2π

= − e−
x2

2√
2π

and high accuracy approximations for its cumulative distribution function

Φ0, using e.g. continuous fractions expansions (see [1]).

• The log-concave assumption which implies the uniqueness of the fixed point for Equation (6.17),
is satisfied by many usual families of distributions on the real line like e.g. the normal distributions
N (m;σ2), the exponential and Laplace distributions, the γ(α, β)-distributions, α ≥ 1, β > 0, are
strongly unimodal. On the other hand, the Pareto distributions are not strongly unimodal though
uniqueness holds true (see [19]).
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B Greedy Forgy’s algorithm (Newton zero search algorithm) This procedure is defined
recursively by

a[n+1] = a[n] −
(
γn+1 ∧

1

ρ(a[n])

)∫ a
(N−1)
i0+1

+a[n]

2

a
(N−1)
i0

+a[n]

2

(
a[n] − ξ

)
µ(dξ) (6.19)

where γn+1∈ (0, 1) goes to 0 as n→ +∞,
∑

n γn = +∞ and

ρ(a) = µ
([a(N−1)

i0
+ a

2
,
a

(N−1)
i0+1 + a

2

])
+
a− a(N−1)

i0

2
f
(a+ a

(N−1)
i0

2

)
+
a

(N−1)
i0+1 − a

2
f
(a+ a

(N−1)
i0+1

2

)
> 0

is the second derivative of the a function a 7→ E
(

min |X − ai|2 ∧ |X − a|2
)
.

Note that, owing to the thresholding of 1/ρ(aN,[n]) by γn+1 ∈ (0, 1), this procedure lives in the

interval (a
(N−1)
i0

, a
(N−1)
i0+1 ) which makes it well-defined and consistent for every n.

When µ is not absolutely continuous, one can implement the same procedure by removing the
term involving the second derivative with a step γn satisfying the standard decreasing step assumption
(
∑

n γn = +∞ and
∑

n γ
2
n < +∞), provided one can compute the µ-integrals of interest.

B Numerical illustration with the N (0; 1) distribution To compute a quadratic optimal greedy
sequence of the normal distribution µ = N (0; 1), we will take advantage of its symmetry. To this end
we consider the distribution µ̃ = µ( . | R+) (µ conditioned to stay non-negative) which is clearly
strongly unimodal and we compute by induction its quadratic optimal greedy sequence (ãN )N≥1 by
the greedy Lloyd I procedure (6.17) with the convention that the origin 0 is a fixed but active point as
a possible nearest neighbour for this slight variant. To be precise, we mean that 0 has its own Voronoi
cell in R+ or, equivalently, that we implement the algorithm, starting at ã0 = 0 when N = 0.

As a second step, it is straightforward that the sequence defined by

a0 = 0, a2N−1 = ãN , a2N = −ãN , N ≥ 1,

is a quadratic optimal greedy sequence.

We reproduce in Figure 2 the graph N 7→ (2N − 1)e2

(
a(2N−1), µ

)
, N = 4, . . . , 210 = 10 000, where

µ = N (0; 1).
Note that lim sup

N
Ne2

(
a(N), µ

)
= lim sup

N
(2N−1) e2

(
a(2N−1), µ

)
since e2

(
a(N), µ

)
↓ 0 as N → +∞.

As a consequence, we derive that

lim inf
N

Ne2

(
a(N),N (0; 1)

)
≈ 1.6534 · · · >

√
3

2
π

1
4 = lim

N
Ne2,N

(
N (0; 1)

)
since

√
3
2 π

1
4 ≈ 1.63055. (The real constant in the right hand side of the inequality easily follows from

Zador’s Theorem). Note that, for the values N = 2n, 0 ≤ n ≤ 7, we observe that Ne2

(
a(N),N (0; 1)

)
<√

3
2 π

1
4 (2).

As for the limsup, we observe numerically that

lim sup
N

Ne2

(
a(N),N (0; 1)

)
≈ 1.8921 < 2×

√
3

2
π

1
4 ≈ 3.2611.

Consequently, the highest “loss” for this one-dimensional distribution with unbounded support is
approximately of 15.7 %.

2This is consistent in some way with the conjecture that Ne2,N
(
N (0; 1)

)
is increasing toward its limit.
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Figure 2: Graph N 7→ (2N − 1)e2

(
a(2N−1),N (0; 1)

)
, N = 4, . . . , 10 000.

6.2 The multidimensional quadratic case (higher dimensions)

In higher dimensions, deterministic procedures like deterministic greedy Lloyd’s I (fixed point pro-
cedure defined by (6.17)) or the greedy Forgy’s (recursive zero search defined by (6.19)) algorithms
become computationally too demanding due to the repeated computations of integrals on the Voronoi
cells of the quantizers. So, it becomes necessary, at least when d ≥ 3, to switch to stochastic opti-
mization procedures like those described below, which are adaptations of the stochastic procedures
introduced to compute true optimal N -quantizers. For more details about these original stochastic
optimization procedures, mostly devised in the 1950’s, we refer e.g. to [5, 35] for CLV Q and [25, 18, 39]
for (randomized) Lloyd’s I procedure or more applied textbooks like [20]. These procedures have been
extensively implemented to compute for numerical probability purposes optimal grids of d-dimensional
normal distributions N (0, Id) for d = 1, . . . , 10 and sizes up to N = 10 000.

From a theoretical point of view, the common feature of these stochastic algorithms is that the
convergence results (a.s. or in Lp) remain partial, especially little is known when the distribution µ
is not compactly supported. So we present below their greedy variants (without rigorous proof as
concerns CLV Q). From a practical point of view, for both procedures, the computation of integrals
on the Voronoi cells is replaced by repeated nearest neighbor searches among the components of the
current N -quantizers which make them rather slow. But in our greedy framework, this drawback
could be overcome by appropriate localization around the elementary quantizer of interest. But this
is beyond the scope of the present work.

B (Randomized) greedy Lloyd’s I like procedure. The greedy Lloyd I procedure to compute
aN , assuming that a(N−1) is known, (starting from the mean a1 = EX) can be recursively defined in
the quadratic case as follows:

aN,[n+1] = E
(
X |X∈WN,[n]

)
, aN,[0]∈ Rd\ {a(N−1)}, (6.20)

where WN,[n] is the closed Voronoi cell of aN,[n] with respect to the quantizer a(N−1) ∪ {aN,[n]}. Of
course in practice, we stop the Monte Carlo simulation at finite range Mn.
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We establish in the proposition below, at least for absolutely continuous distributions with convex
support, that

lim
n→+∞

aN,[n] does exists

under a local finiteness assumption on the possible equilibrium points. Due to the existence of several
equilibrium points, especially in higher dimension, this limit may not be the solution to the greedy
optimization problem at level N , but only a local minimizer. However, in practice, it turns out to be
a good candidate.

Proposition 6.2. Assume the distribution µ of X is strongly continuous (i.e. assigns no mass to
hyperplanes) with a convex support denoted Cµ = supp(µ). Then the above sequence (aN,[n])n≥0 is

bounded and there exists ` ∈
[
e2(a(N)), e2(a(N−1) ∪ {a[0]}

)
such that the set A∞(a[0]) of its limiting

points is a connected compact subset of the set Λ` of `-stationary points defined by

Λ` =
{
a∈ Rd | e2,N

(
a(N−1) ∪ {a}

)
= ` and a = E

(
X |X∈WN,a

)}
where WN,a denotes the closed Voronoi cell of a induced by the N -quantizer a(N−1)∪{a}. In particular,
e2

(
a(N−1) ∪ {a[n]}, X

)
→ ` as n→ +∞.

Furthermore, if the `-stationary set Λ` is locally finite (i.e. with a finite trace on compact sets of
Rd), then aN,[n] a.s. converges to some point in Λ`.

The proof is postponed to Appendix A.2.

The true algorithm to be implemented in practice is a randomized version of this procedure where
each conditional expectation is computed by Monte Carlo simulation (provided X can be simulated
at a reasonable cost): let (Xm)m≥1 be an i.i.d. sequence of copies of X (with distribution µ) defined
on a probability space (Ω,A,P). Then, by the Strong Law of Large Numbers,

aN,[n+1] = lim
M→+∞

∑M
m=1X

m1{Xm∈WN,[n]}∑M
m=1 1{Xm∈WN,[n]}

P-a.s.

B Sequential Competitive Learning Vector Quantization procedure: Let (γn)n≥1 be a

sequence of (0, 1)-valued step parameters satisfying a so-called decreasing step assumption:
∑
n

γn =

+∞ and
∑

n γ
2
n < +∞. Then set

aN,[n+1] = aN,[n] − γn+11{|Xn+1−aN,[n]|<min
a∈a(N−1) |Xn+1−a|}

(
aN,[n] −Xn+1

)
, aN,[0]∈ Rd.

One may conjecture and experimentally check, at least for distribution with compact convex support,

lim
n→+∞

aN,[n] = aN .

If so is the case, one may apply the so-called Ruppert-Polyak principle which states that choosing a
“slowly decreasing” step of the form γn = c

c+nα , 1
2 < α < 1, and averaging the procedure by setting

āN,[n] =
1

n

(
a[N,0] + · · ·+ a[N,n−1]

)
, n ≥ 1,

will speed up the convergence or, to be more precise, will satisfy a Central Limit Theorem at rate
√
n

with the lowest possible asymptotic variance (see e.g. [26, 34] for details).
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B Randomized Greedy Lloyd’s I randomized procedure for the bi-variate normal dis-
tribution

Let µ = N (0; I2) be the bi-variate normal distribution on the plane. Figure 3 depicts the graph
of N 7→

√
Ne2

(
a(N), µ

)
for N = 1 up to 1 000 (and Figure 4 depicts a(1000)). This suggests that this

sequence remains bounded. However, we are not sure with such a rough procedure that the computed
sequence (aN )N≥1 is the optimal greedy one: at each step/level, there are clearly many local parasitic
minima and one should add, prior to computing aN , a pre-processing phase, like in one dimension, in
order to choose among the areas defined by the Delaunay triangulation attached to a(N−1), the one
which induces the minimal inertia. But this phase is numerically demanding and has not yet been
included in the existing script.

The randomized greedy Lloyd’s method 1 has been implemented at each levelN withM = M(N) =
1 000 × N i.i.d. simulations of the N (0; I2) distribution. Owing to Zador’s Theorem, we know that
optimal quadratic quantizers satisfy (asymptotically)

lim
N

√
Ne2,N

(
N (0; I2)

)
= 2
√

2πJ̃2,2 =
2

3

√
5π√

3
≈ 2.0077

since, owing to [22] (Theorem 8.15, p.120, and Examples 8.12, p.116, devoted to hexagon lattices),

J̃2,2 = 1
3

√
5

2
√

3
. Consequently, the “loss” is less than 10 %. We verify on our own numerical experiments

carried out with N = 1000 that it is likely that

sup
1≤N≤1000

√
N e2

(
a(N), N (0; I2)

)
- 2.18.

As already mentioned, it suggests again that the greedy quantization sequence outperforms the con-

catenated sequence (5.16) since 2.18 <
√

2 × 2
3

√
5π√

3
≈ 2.8392 (even if one may guess that the factor

2
1
d =
√

2 is probably too conservative in practice).

7 Greedy quantization versus Quasi-Monte Carlo?

Of course, for every integer N ≥ 1, the weights induced by the µ-mass of the Voronoi cells associated
to a(N) define canonically a sequence of N -tuples which usually cannot be “arranged” into a sequence,
even up to a re-scaling. When considering the unit hypercube [0, 1]d as a state space in d dimension,
it is easy natural to compare an optimal greedy sequence with respect to the uniform distribution
U([0, 1]d) and the so-called uniformly distributed sequences usually implemented in the Quasi-Monte
Carlo method.

Let us recall that a sequence (ξN )N≥1 is uniformly distributed over [0, 1]d if the empirical measures

νN =
1

N

N∑
i=1

δξi weakly converges toward the Lebesgue measure λd on [0, 1]d. In particular this means

that for every bounded λd-a.s. continuous function f : [0, 1]d → R,
1

N

N∑
i=1

f(ξi) →
∫

[0,1]d
fdλd =∫

[0,1]d
f(u)du. This means that the weights associated to a uniformly distributed sequence are by

definition all equal to 1
N which leads to a simple normalization factor 1/N . What is the cost induced

by these uniform weights 1
N , compared to the optimal weights deduced from the cell (hyper-)volumes

of the Voronoi diagram of ξ1, . . . , ξN ? The answer is essentially logN and is provided by Proinov’s
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Figure 3: Graph N 7→
√
N e2

(
a(N),N (0; I2)

)
, N = 1, . . . , 103, computed by the randomized greedy

Lloyd I procedure (M = M(N) = 1 000 × N , N = 1, . . . , 103). Flat solid line (−−−) depicts Zador’s

constant J̃2,2 = 2
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; flat dashed line (−−−) depicts the natural upper bound for the concatenated

sequence.
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Figure 4: Greedy quantizer a(1000) for the N (0; I2) distribution computed by the randomized greedy
Lloyd I procedure with a simulation of size M = 106.
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theorem (see [41]) recalled below which evaluates precisely the convergence rate of empirical measures
of uniformly distributed sequences on Lipschitz continuous functions.

In the Quasi-Monte Carlo (QMC) method, the performance of an N -tuple (ξ1, . . . , ξN )∈ ([0, 1]d)N

is measured by the Kolmogorov-Smirnov distance between the extended cumulative distribution func-
tion of its empirical measure νN , N ≥ 1, and the uniform distribution U([0, 1]d), namely the so-called
star discrepancy defined by

D∗N (ξ1 . . . , ξN ) = sup
u∈[0,1]d

∣∣∣∣∣ 1

N

N∑
i=1

1{ξi∈[[0,u]]} − λd
(
[[0, u]]

)∣∣∣∣∣ (7.21)

where [[0, u]] =
∏d
`=1[0, u`], u = (u1, . . . , ud).

Several sequences ξ = (ξN )N≥1 have been exhibited (see [30]) whose star discrepancy at the origin
satisfies for a real constant C(ξ)∈ (0,+∞),

∀N ≥ 1, D∗N (ξ1 . . . , ξN ) ≤ C(ξ)
(1 + logN)d

N
. (7.22)

Among them one can cite the p-adic VdC (p) sequences (p ≥ 2 in 1-dimension) and, when d ≥ 2,
the Halton sequences (whose ith component is the VdC (pi) sequence where the bases pi, i = 1, . . . , d,
are the first d prime numbers), the Faure sequences, the Sobol’ sequences (a unifying framework has
been developed by Niederreiter, see e.g. [30]). For definitions of these sequences and numerical tests
on various problems we refer to [6, 37]. Although such a rate has never been proved to be the lowest
possible, this opinion is commonly shared by the QMC community (however see again [30] or [34] for
a review of existing lower bounds).

The striking fact with these sequences satisfying (7.22), called sequences with low discrepancy, is
that when they are implemented on the class of functions with finite variation on [0, 1]d the Koksma-
Hlawka inequality implies that, for every such function f : [0, 1]d → R∣∣∣∣∣

∫
[0,1]d

f(u)du− 1

N

N∑
i=1

f(ξi)

∣∣∣∣∣ ≤ V (f)D∗N (ξ1 . . . , ξN ) (7.23)

where V (f) denotes the variation of the function f . So it induces for this specific class of functions

a rate of numerical integration of order O
(

(logN)d

N

)
. In one dimension (d = 1), However, the above

notion of finite variation coincides with the standard definition of finite variation in real analysis.
When d ≥ 2, several definitions can be given, the most popular being the finite variation in the

Hardy & Krause sense (as described e.g. in [30]). Another slightly less general – but more elementary –
being the finite variation in the signed measure sense developed in [6] (see also [34]). Unfortunately,
as the dimension d increases, the set of functions with finite variation (in any of the above senses)
becomes somewhat “sparse” among the set of all real-valued Borel functions defined on [0, 1]d. So
this striking behavior may be considered as not significant when dealing with practical simulation
problems. However to carry out a comparison, we need to evaluate their performances the same
significant functional space, namely that of Lipschitz continuous functions. Proinov’s theorem below
provides an answer.

Theorem 7.1 (Proinov [41]). Assume Rd is equipped with the `∞-norm |(ξ1, . . . , ξd)|∞ = max1≤i≤d |ξi|.
For every continuous function f : [0, 1]d → R, we define uniform continuity modulus of f (with range
δ∈ [0, 1]) by

w(f, δ) := sup
ξ, ξ′∈[0,1]d, |ξ−ξ′|∞≤δ

|f(ξ)− f(ξ′)|.
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(a) Let (ξ1, . . . , ξN )∈ ([0, 1]d)N . For every continuous function f : [0, 1]d → R,∣∣∣∣∣
∫

[0,1]d
f(u)du− 1

N

N∑
i=1

f(ξi)

∣∣∣∣∣ ≤ Cdw(f,D∗N (ξ1, . . . , ξN )
1
d
)

where Cd ∈ (0,∞) is a universal optimal real constant only depending on d. In particular, if the

function f : [0, 1]d → R is `∞-Lipschitz continuous with coefficient [f ]Lip := supx,y∈[0,1]d
|f(x)−f(y)|
|x−y|∞

,
then ∣∣∣∣∣

∫
[0,1]d

f(u)du− 1

N

N∑
i=1

f(ξik

∣∣∣∣∣ ≤ Cd [f ]LipD
∗
N

(ξ1, . . . , ξN )
1
d .

If d = 1, Cd = 1 and if d ≥ 2, Cd∈ [1, 4].

(b) In particular if (ξN )N≥1 is a sequence with low discrepancy in the above sense, then∣∣∣∣∣
∫

[0,1]d
f(u)du− 1

N

N∑
i=1

f(ξ)

∣∣∣∣∣ ≤ Cd [f ]LipC(ξ)
1 + logN

N
1
d

.

Corollary 7.1. (a) For every N -tuple (ξ1, . . . , ξN )∈ ([0, 1]d)N

e1

(
ξ1, . . . , ξN , U([0, 1]d)

)
≤ CdD∗N (ξ1, . . . , ξN )

1
d .

(b) In particular, when d = 1, e1

(
ξ1, . . . , ξN , U([0, 1])

)
≤ D∗

N
(ξ1, . . . , ξN ).

Proof (of (b)). Assume d = 1. The function fξ : u 7→ min1≤i≤N |u− ξi| defined on [0, 1] is 1-Lipschitz
continuous, hence has finite variation with V (fξ) = 1. Then Koksma-Hlawka Inequality (7.23) or
Proinov’s error bound in (a) both imply that

e1

(
ξ1, . . . , ξN , U([0, 1])

)
=

∣∣∣∣∣ 1

N

N∑
i=1

fξ(ξi)− e1

(
ξ1, . . . , ξN , U([0, 1])

)∣∣∣∣∣
= D∗N (ξ1, . . . , ξN ). �

The above claim (b) and the corollary both emphasize the fact that considering uniform weights
1
N induces the loss of a logN factor compared to an optimal (or simply rate optimal) greedy sequence
for optimal quantization since, for such an (L1, U([0, 1])) greedy optimal sequence a = (aN )N≥1, one
has for every integer N ≥ 1,∣∣∣∣∣

∫
[0,1]d

f(u)du−
N∑
i=1

w
(N)
i f(ai)

∣∣∣∣∣ ≤ κ(a) [f ]Lip
1

N
1
d

where the N -tuple (w
(N)
i )1≤i≤N is vector of hyper-volumes (Lebesgue measure) of the Voronoi cells

attached to a(N). Of course the practical implementation of such greedy sequences remains more
demanding since one needs to have access to these N -tuples of weights.

However, by contrast, optimal quantization based cubature formulas turn out to be efficient (ac-
curate) for much lower values of N than sequences with low discrepancy (see e.g. the numerical
experiment carried out in [35] dealing with the pricing of European derivatives).
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A Appendix: Greedy Lloyd’s I procedure

A.1 The one-dimensional greedy Lloyd I procedure

The first is to establish the uniqueness of the equilibrium point a
N

satisfying (6.18) and the convergence of the
Lloyd I procedure at level N toward this point, but with the significant additional constraint that the endpoints
of the (closed convex) support of the strongly unimodal distribution µ are active (though fixed). By active
we mean that, when finite, they have there own Voronoi area. To be more precise we will show the following
proposition

Proposition A.1. Let µ be a distribution on the real line with log-concave density : varphi (i.e. strongly
unimodal) with a finite second moment. Then the support I = {ϕ > 0}) is closed interval with endpoints
a, b ∈ R. If a or b are finite, one may assume without loss of generality that ϕ(a) or ϕ(b) > 0 (so that I is
closed). Then the quantization problem at level N with active finite endpoints (if any) reads

min
x∈I

[
ϕ(x) := E

(
|X − a| ∧ |X − b|2 ∧ |X − x|2

)]
(note that when a or b are infinite, the corresponding terms in the above expectation can be omitted).

(a) The function ϕ is differentiable on I with a derivative given, for every x∈ I, by

ϕ′(x) =
1

2

∫ x+b
2

a+x
2

(x− ξ)µ(dξ).

Furthermore argminI G is reduced to a single (stationary) point x∗ satisfying ϕ′(x∗) = 0 i.e.

x∗ = Φ(x∗) where Φ(x) =
Kµ

(
b+x

2

)
−Kµ

(
a+x

2

)
Fµ
(
b+x

2

)
− Fµ

(
a+x

2

)
and Fµ and Kµ denote the cumulative distribution and first moment functions of the distribution µ respectively.

(b) The greedy Lloyd I procedure defined by

xn+1 = Φ(xn), x0∈ I

converges toward x∗

This result can be seen as a variant of the Lloyd procedure at levels N (N = 1 up tp 3), depending on the
finiteness of the endpoints of the interval I.

Proof. First note that, when both endpoints are infinite and cannot be active, the above statement becomes
trivial since G(x) = E|X − x|2 which attains its minimum at x∗ = EX, whereas the Lloyd I procedure reads
x1 = EX, n ≥ 1, whatever the starting point x0 is.

Otherwise, if a or b are finite, we may assume, up to a symmetry-translation, that a = 0 and b∈ (0,+∞].
(a) Elementary computations show that, for every x∈ I,

G(x) =
1

2

[∫ x
2

0

ξ2µ(dξ) +

∫ x+b
2

x
2

(x− ξ)2µ(dξ) +

∫ +∞

x+b
2

(x− ξ)2µ(dξ)1{b<+∞}

]

G′(x) =

∫ x+b
2

x
2

(x− ξ)µ(dξ)
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and

G′′(x) = Fµ
(x+ b

2

)
− Fµ

(x
2

)
−
(x+ b

2
− x
)
f
(x+ b

2

)
−
(
x− x

2

)
f
(x

2

)
.

In what follows we focus on the case b < +∞. The case b = +∞ can be handled likewise (in fact in an easier
way).

Note that G′(0) = −
∫ 1

2

0
ξµ(dξ) < 0 and G′(b) =

∫ 1
1
2
(b − ξ)µ(dξ) > 0 so that G has at least one zero on

(0, b). (When b = +∞, the existence follows form the fact that G does attain a minimum on (0,+∞) since
limx→+∞ G(x) = +∞.)

Set y1 = x
2 and y2 = x+b

2 . If we assume that x is a solution to x = Φ(x) (or equivalently to the stationary
point equation G′(x) = 0), we can plug this expression for x into the above equation for G′′(x) so that G′′(x)
can be expressed as a function of y1 and y2 ias follows:

G′′(x) =
Φ̃(y1, y2)

Fµ(y2)− Fµ(y1)
, y1 < y2, y1, y2∈ I,

with

Φ̃(y1, y2) =
(
Fµ(y2)− Fµ(y1)

)2
+
(
Kµ(y2)−Kµ(y1)

)(
ϕ(y2)− ϕ(y1)

)
−
(
Fµ(y2)− Fµ(y1)

)(
y2 ϕ(y2)− y1 ϕ(y1)

)
.

Now we consider y1 and y2 as free variables living in I such that y1 ≤ y2. First we note that Φ̃(y, y) = 0. Then,
denoting by ϕ′r the right derivative of the log-concave function ϕ, we compute the following two (right) partial

derivatives of Φ̃:(
∂Φ̃

∂y1

)
r

(y1, y2) =
(
Fµ(y2)− Fµ(y1)

)(
y1ϕ
′
r(y1)− ϕ(y1)

)
+ (y2 − y1)ϕ(y1)ϕ(y2)− ϕ′r(y1)

(
Kµ(y2)−Kµ(y1)

)
and(

∂2Φ̃

∂y1∂y2

)
r

(y1, y2) = (y2 − y1)
(
ϕ(y1)ϕ′r(y2)− ϕ′r(y1)ϕ(y2)

)
.

As (logϕ)′r =
ϕ′
r

ϕ is non-increasing in I, it follows that ∂2Φ̃
∂y1∂y2

(y1, y2) < 0 if y1 < y2 so that y2 7→
(
∂Φ̃
∂y1

)
r
(y1, y2)

is (strictly) decreasing on [y1, b) which in turn implies it is positive on (y1, b). This shows that Φ(y1, y2) > 0
for every y1, y2 ∈ I, y1 < y2. As a consequence, any stationary point x satisfies G′′(x) < 0 i.e. is a strict
local minimum of G. This implies uniqueness of the solution to the equation G′(x) = 0 by an elementary one
dimensional “mountain pass” argument.

(b) In this second claim, we use again a random variable X with distribution µ. By Proposition 2.1(b), we know
that if W[n] = [xn2 ,

xn+b
2 ] denotes the closed Voronoi cell of xn with respect to {0, xn, b} (if b is finite, or {0, xn}

otherwise) then
Eµ
(
|X − xn+1|21{X∈W[n]}

)
≤ Eµ

(
|X − xn|21{X∈W[n]}

)
.

with equality iff xn+1 = xn which is equivalent to xn = x∗ (see claim (a) above). Decomposing |X − xn+1|2 on
the Voronoi partition [0, xn2 ]∪ [xn2 ,

xn+b
2 ]∪ [xn+b

2 , b] of I, one derives that G(xn+1) < G(xn) as soon as xn 6= x∗.
the function G being non-negative G(xn)→ ` as n→∞.

When b is finite the sequence (xn)n≥0 is trivially bounded. When b = +∞, assume there exists a subsequence
xn′ → +∞. By combining the above monotony property and Fatou’s Lemma, we get

E|X|2 ∧ |X − x0|2 = G(x0) ≥ lim inf
n
G(xn′) ≥ EX2

which implies that X2 ≤ (X − x0)2 P-a.s. This is clearly not satisfied on the event {X ∈ [0, x0

2 )} which has
positive probability. Consequently, (xn)n is always bounded.

Then let x∞ = limn→+∞ xn′ be a limiting value of the I-valued sequence (xn)n≥0. Up to a new extraction,
still denoted (n′), one may assume that xn′+1 converges toward a limiting value x′∞ as well. Passing to the
limit owing to continuity we get

x′∞ =

∫ x∞+b
2

x∞
2

ξµ(dξ).
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One shows as above that, except if x′∞ = x∞ = x∗, G(x′∞) < G(x∞) which cannot be true since the sequence
(G(xn))n≥0 converges to `2. Consequently, x∗ = x∞ is the only possible limiting value for the bounded sequence
(xn)n≥0 i.e. its limit. �

Proof of Proposition 6.1. The result follows by applying the above result to the procedure on the interval[
a

(N−1)
i0

2
,
a

(N−1)
i0+1

2

]
of maximal inertia. �

Remark. If we choose a[0] inside an interval which has not the highest local inertia, the procedure will still
converge since we never use this fact throughout the proof of the convergence. The resulting limit will live in
the same interval as the starting value since the algorithm leaves each interval stable by an obvious convexity
argument. So the greedy Lloyd I procedure yields potentially N+1 “candidates” corresponding to each possible
starting interval, but only one (issued from the interval with the highest local inertia) is solution to the greedy
optimal quantization problem.

A.2 The multi-dimensional greedy Lloyd I procedure (proof of Proposition 6.2)

We assume in this section that µ has a convex support Cµ = supp(µ) and that d ≥ 2. Note that in such a
framework there is a major topological difference with the 1-dimensional case: a convex set not reduced to a
single point remains pathwise connected when one point of its points is removed. Owing to that property, it is
easy to show that the algorithm may visit with positive probability the whole support of Cµ (to be precise any
nonempty open set of Cµ). Moreover, the points can no longer be naturally ordered like in 1-dimension.

To alleviate notations, we denote by G the R+-valued function a 7→ e2

(
a(N−1) ∪ {a}

)2
defined on Cµ by

G(a) = e2

(
a(N−1) ∪ {a}

)2
= E

(
d
(
X, a(N−1) ∪ {a}

)2)
.

Let a[0]∈ Cµ \ a(N−1). Lloyd’s I procedure is defined by induction by Equation (6.20), namely

a[n+1] = E
(
X |X∈WN,[n]

)
∈ Cµ

where WN,[n] denotes the (closed) Voronoi cell of a[n] induced by a(N−1) ∪ {a[n]}.
Step 1: It follows from Proposition 2.1(b) that, as son as a[n] is not stationary, i.e. a[n] 6= E

(
X |X ∈ WN,[n]

)
,

one has
E
(
|X − a[n+1]|21{X∈WN,[n]}

)
< E

(
|X − a[n]|21{X∈WN,[n]}

)
.

hence

G(a[n+1]) = E
(
d(X, a(N−1) ∪ {a[n+1]})2

)
≤ E

(
d(X, a(N−1))21{X/∈WN,[n]}

)
+ E

(
|X − a[n+1]|21{X∈WN,[n]}

)
< E

(
d(X, a(N−1))21{X/∈WN,[n]}

)
+ E

(
|X − a[n]|21{X∈WN,[n]}

)
= G(a[n]).

hence, the (non-increasing, non-negative) sequence (G(a[n]))n converges to a finite limit `2 ∈ R+ as n → +∞.

The fact that `∈
(
e2(a(N), e2(a(N−1) ∪ {a[0]}

)
is obvious form what precedes.

Step 2: Assume there exists a subsequence (a[n′]) such that |a[n′]| → +∞ as n→ +∞. Combining the above
monotony of the sequence (G(a[n]))n≥0 and Fatou’s Lemma yields

E d(X, a(N−1))2 ≤ lim inf
n

E d(X, a(N−1) ∪ {α[n′]})2 ≤ lim inf
n
G(a[n]) ≤ G(a[0])

But, as a[0] ∈ Cµ \ a(N−1), we know from Proposition 2.1(a) that G(a[0]) < E d(X, a(N−1))2 which yields a
contradiction.

Step 3: Let a[∞] be a limiting value of the bounded sequence (a[n])n (i.e. the limit of a subsequence). Up
to a new extraction, we may also assume that a[n+1] → a′[∞]. Since G(a[n]) is non-decreasing, G(a[∞]) and
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G(a′[∞]) ≤ G(a[0]) < e2(a(N−1), µ) so that we a′[∞], a
′
[∞] /∈ a

(N−1). The distribution µ being strongly continuous

(i.e. assigning no mass to hyperplanes), one shows e.g. by following the lines of the proof of Lemma 2.3 in [39]
that

E
(
X |W ∈WN,[n]

)
→ E

(
X |X∈WN,[∞]

)
where WN,[∞] denotes the closed Voronoi cell of a[∞] induced by a(N−1) ∪ {a[∞]}. Consequently

a′∞ = E
(
X |X∈WN,[∞]

)
.

If a[∞] 6= a[∞] then G(a′[∞]) < G(a[∞]) which is in a contradiction with the fact (G(a[n]))n converges to a finite

limit `2 ∈ R+ as n → +∞. Hence a′[∞] = a[∞] which shows that one the one hand that a[n+1] − a[n] → 0 as

n→ +∞ and that any limiting value of (a[n])n is a stationary point in the sense that a∞ = E
(
X |X∈WN,[∞]

)
.

The conclusion follows by standard topological arguments on convergence of sequences. �

B Appendix: A technical result on sequences

Lemma B.1. Let (AN )N≥1 be a sequence of non-negative real numbers and let ρ∈ (0,+∞) such that

∀N ≥ 1, AN+1 ≤ AN − C A1+ρ
N

for some real constant C > 0. Then there exists a real constant K > 0 such that

∀N ≥ 1, AN ≤ KN−
1
ρ .

Proof. We may assume that A
N
> 0 for every N ≥ 1, it follows from the inequality satisfies by the sequence

(AN )N≥1 that for very N ≥ 1,

1

AρN+1

≥ 1

AρN

1

(1− CAρN )ρ
≥ 1

AρN
(1 + CAρN )ρ

Now, there exists u0 = u0(ρ) such that for every u∈ [0, u0], (1 + u)ρ ≥ 1 + ρ
2u. It is clear from the assumptions

that AN ↓ 0, hence, there exists a large enough integer N0 such that for every N ≥ N0,

1

AρN+1

≥ 1

AρN
+
Cρ

2

which in turn implies that
1

AρN
≥ 1

AρN0

+
Cρ

2
(N −N0) ≥ Cρ

2
(N −N0)

so that, for every N > N0,

AN ≤
(

2

Cρ

) 1
ρ 1

(N −N0)
1
ρ

.

This completes the proof. �
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