
HAL Id: hal-03891198
https://cnrs.hal.science/hal-03891198

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Dynamic Programming versus supervised learning
Gilles Pagès, Olivier Pironneau

To cite this version:
Gilles Pagès, Olivier Pironneau. Dynamic Programming versus supervised learning. Nu-
merical Control: Part A, 23, Elsevier, pp.467-497, 2022, Handbook of Numerical Analysis,
�10.1016/bs.hna.2021.12.014�. �hal-03891198�

https://cnrs.hal.science/hal-03891198
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Chapter 1

Dynamic Programming versus Su-
pervised Learning
Optimal fishing quotas

Gilles Pagèsa and Olivier Pironneaub

agilles.pages[at]sorbonne-universite.fr, LPMA, Sorbonne Université, Paris, France,
bolivier.pironneau[at]sorbonne-universite.fr , LJLL, Sorbonne Université, Paris, France.

Chapter Points
• This chapter deals with the design of optimal fishing quota within a model used in

Senegal for the long term evolution of the fish biomass.
• The numerical tests validate supervised learning for stochastic control in this case.

However the control is not Markovian, but for fishing quotas this does not seem to be
a problem .

• For comparison the same problem is solved with Dynamic Programming. Three
implementations are tested using either a probabilistic method or the
Hamilton-Jacobi partial differential equations.

1.1 INTRODUCTION

Stochastic control of differential systems with random data or modeling errors, is
usually solved by Dynamic Programming, a technique introduced in the 1950 by
Richard Bellman (3). Numerically one has to solve a backward in time differential
equation possibly coupled with the forward stochastic differential equation (SDE)
of the problem. The method has various discrete implementations (see (14), (12),
etc). Calculus of variations and optimal control is another approach, which, in
principle is more expensive because the backward adjoint Partial Differential
Equation (PDE) and the forward Kolmogorov PDE for the PDF of the process
are coupled and must be solved iteratively by a gradient method.

A third method has been proposed several years ago (see (2), (11), (4), (1)
and others): Supervised Learning with Neural Networks: like off-line/on-line
reduction methods, one is ready to pay a high CPU price in a "training" phase so
as to solve quickly the problem with new data with the "trained network". The
novelty is that a trained neural network can be ported on a small unit like a smart
phone and yet be fast and accurate.

In this chapter the three classes of methods will be tested on an easy yet
practical problem studied in (6): the control of a fishing site in Senegal where
the fish biomass is threatened by intensive fishing. In (1) it was shown that pa-
rameter identification from a few measurements near time zero could be obtained

3

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1570865921000296
Manuscript_ac44923efaf276f40854dd0414e7fd17

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1570865921000296
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1570865921000296

444

accurately and fast by supervised learning. Here the parameters are known but
with some uncertainty and the objective is to apply optimal quotas to stabilise
the fish biomass at a desired level in this stochastic setting.

The model has two ordinary differential equations (ODE), one for the fish
biomass 𝑋𝑡 at time 𝑡, and one for the fishing effort which, for us, will be the
number of boats at sea 𝐸𝑡 .

Quotas are meant to keep the biomass at a constant desired level 𝑋𝑑 . Hence
the total number of fish caught must be lower than the quota𝑄𝑡 . By construction
each boat can’t catch more than 𝑞𝑋𝑡 , where 𝑞 is a constant reflecting the “struc-
tural limit” of the fisherman’s catch yet proportional to the biomass. Nevertheless
each boat is told to keep their catch below 𝑄𝑡/𝐸𝑡 .

The control problem is solved by minimizing a criteria, the integral over time
of ‖𝑋𝑡 − 𝑋𝑑 ‖2. But quotas, imposed by the regulator, are unpopular. To avoid
too low (constraining) quotas, we add to the criteria the integral over time of
−𝛼𝑄𝑡 where 𝛼 is constant and positive; consequently, a low quota will not be
optimal because it gives a larger value to the criteria than a big quota.

Along the way we found that the solution of the problem is very often
"bang-bang", i.e; switching from the structural limit to the quota often. For the
regulator, rapidly changing quotas may be also dangerously unpopular; hence
in an attempt to avoid such frequent drastic changes we add to the criteria the
integral over time of 𝛽‖ ¤𝑄𝑡 ‖2 where 𝛽 is a positive constant.

More details on the modelling of the problem can be found in Appendix 𝐴.
The plan of the paper is as follows:

In section 1, the control problem is stated. It is a stochastic control prob-
lem because the data are not known accurately. Existence of solutions and
discretization methods are discussed. We identify 3 formulations:

1. Deterministic control where the state is the solution of an ODE.
2. Non-dynamic control, i.e. an SDE for the state equation but a deterministic

control function of time only.
3. A fully stochastic state and control, usual to Dynamic Programming.

In section 2, a Monte-Carlo method is proposed for the non-dynamic case. It
is a brute force Monte-Carlo approach, much more expensive than the Dynamic
Programming approach of section 4, but it has an advantage: it can be ported to a
Neural Network for training and testing. We have used the standard multilayered
Recurrent Neural Networks of Keras (7) (RNN, see figure 1.3); LSTM is also
available in Keras, but as there are no repeating patterns in the solution of a SDE
with brownian noise, it is not clear that a Long-Short-Term-Memory feedback
architecture would improve the (already good) performance of RNN.

Finally, in the last section PDE methods are investigated, based either on Ito
Calculus or Kolmogorov equations for the probability density function (PDF)
of the process. It will be seen that these methods do not handle very well the
penalty term 𝛽‖ ¤𝑄𝑡 ‖2.

Dynamic Programming versus Supervised Learning Chapter | 1 5Dynamic Programming versus Supervised Learning Chapter | 1 5Dynamic Programming versus Supervised Learning Chapter | 1 5

1.2 A MODEL PROBLEM

To study the evolution of the biomass of a fishing site we consider the following
stochastic optimal control problem

min
𝑢∈U

𝐽 (𝑢) :=
∫ 𝑇

0
E
[
(𝑋𝑡 − 𝑋𝑑)2 − 𝛼𝑢(𝑋𝑡 , 𝑡) + 𝛽 |𝜕𝑡𝑢(𝑋𝑡 , 𝑡) |2

]
d𝑡, (1.1)

with d𝑋𝑡 = 𝑋𝑡 (𝑟 − ^𝑋𝑡 − 𝑢𝑡)d𝑡 + 𝜎𝑋𝑡d𝑊𝑡 , 𝑋0 = 𝑋0 ≥ 0, (1.2)

where 𝑊𝑡 is a standard Wiener process on a probability space (Ω,A, P),
𝑋𝑑 , 𝑟, ^, 𝜎, 𝑢𝑚, 𝑢𝑀

are real constants which depend on the considered fishing
site and

U =
{
𝑢 ∈ 𝐻1 (]0, 𝑇 [,𝑊1,1) : 𝑢𝑚 ≤ 𝑢(𝑡, 𝑋𝑡) ≤ 𝑢𝑀

𝑎.𝑠.
}
.

This problem arises for the determination of fishing quotas (see Appendix 𝐴 for
details): 𝑋𝑡 is the fish biomass at time 𝑡 and 𝑢𝑡𝑋𝑡 is the fishing quota at time 𝑡.
Occasionally we will also display a variable proportional to the number of boats
at sea, the "fishing effort" 𝐸 (𝑡), modeled by

d𝐸𝑡 = (𝑎 − 𝑢𝑡𝑋𝑡 − 𝑐𝐸𝑡) d𝑡, 𝐸0 = 𝐸0 given,

where 𝑎 is related to the price of fish and 𝑐 is the operating cost of the fisherman.
As explained in Appendix 𝐴, 𝑎 − 𝑢𝑡𝑋𝑡 is the profit of the fisherman and it
decreases when too many fish are caught because the price of fish collapse.

The control aims at keeping a biomass at a desired level 𝑋𝑑 at all times, but,
quotas being unpopular, there is a term to prevent low quotas, −𝛼𝑢𝑡 and another
to prevent quotas from changing too quickly: 𝛽 |𝜕𝑡𝑢 |2.

It is important to notice that one may also consider the case where 𝑢 is a
deterministic function of 𝑡 only:

min
𝑢∈U𝑑

𝐽 (𝑢) :=
∫ 𝑇

0
E
[
(𝑋𝑡 − 𝑋𝑑)2] − 𝛼𝑢(𝑡) + 𝛽 |𝜕𝑡𝑢(𝑡) |2

]
d𝑡 with (1.2),

withU𝑑 =
{
𝑢 ∈ 𝐻1 (]0, 𝑇 [) : 𝑢𝑚 ≤ 𝑢(𝑡) ≤ 𝑢𝑀

}
.

(1.3)

We shall refer to it as the non-dynamic problem by opposition to Dynamic
Programming where 𝑢(𝑋𝑡 , 𝑡) is stochastic because of 𝑋𝑡 but Markovian. In the
non-dynamic case, the optimal control is the same for all trajectories 𝑋𝑡 and in
the dynamic case 𝑢 adapts to the trajectories. To our surprise the non-dynamic
case turns out to be more precise and more suitable because the day-to-day noise
may not be very meaningful.

Occasionally we shall also refer to the deterministic case, i.e. when 𝜎 = 0.

666

1.2.1 Existence of solution: the deterministic case

In the deterministic case the problem reads

min
𝑢∈U𝑑

{
𝐽 (𝑢) =

∫ 𝑇

0
|𝑋−𝑋𝑑 |2−𝛼𝑢+𝛽 | ¤𝑢 |2 :

¤𝑋
𝑋

= 𝑟−^𝑋−𝑢, 𝑋 (0) = 𝑋0
}
. (1.4)

As 𝑢 is positive 0 ≤ 𝑋 (𝑡) ≤ 𝑋𝑀 := 𝑋0𝑒𝑟𝑇 . Then obviously 𝐹 (𝑋) := 𝑟𝑋 −
^𝑋2 − 𝑋𝑢 is uniformly Lipschitz in 𝑋: let 𝛼 = 𝑟 + 2𝑋𝑀 + 2𝑢

𝑀
.

∀𝑡 ∈ [0, 𝑇], |𝐹 (𝑋1 (𝑡)) − 𝐹 (𝑋2 (𝑡)) | ≤ |𝑋1 (𝑡) − 𝑋2 (𝑡) |
(
𝑟 + 𝑢𝑚 + 2^𝑋𝑀

)
,

therefore the solution of the ODE exists and is unique. It is also uniformly
Lipschitz continuous in 𝑢:

¤𝑋𝑖 = 𝑟𝑋𝑖 − ^𝑋2
𝑖 − 𝑢𝑖𝑋𝑖 , 𝑖 = 1, 2, ⇒

¤𝑋1 − ¤𝑋2 = (𝑋1 − 𝑋2)
(
𝑟 − ^(𝑋1 + 𝑋2) − (𝑢1 + 𝑢2)

)
− (𝑢1 − 𝑢2) (𝑋1 + 𝑋2) ⇒

|𝑋1 (𝑡) − ¤𝑋2 (𝑡) | ≤ 𝛼
∫ 𝑡

0
|𝑋1 (𝑠) − 𝑋2 (𝑠) |d𝑠 + 2𝑋𝑀

∫ 𝑡

0
|𝑢1 (𝑠) − 𝑢2 (𝑠) |d𝑠

so that by a Grönwall argument, one derives that, for every 𝑡 ∈ [0, 𝑇]

|𝑋1 (𝑡) − 𝑋2 (𝑡) | ≤ 2𝑋𝑀 𝑒𝛼𝑇 ‖𝑢1 − 𝑢2‖𝐿2 (]0,𝑇 [) .

This also shows that 𝑢 ↦→
∫ 𝑇
0 |𝑋 (𝑡) − 𝑋𝑑 |

2d𝑡 is continuous on 𝐿2 (]0, 𝑇 [).

Proposition 1. Problem (1.4) has a solution.

Proof. Consider a minimizing sequence: 𝑢𝑛 ∈ U𝑑 , 𝐽 (𝑢𝑛) → inf𝑢∈U𝑑
𝐽 (𝑢).

U𝑑 being non-empty, bounded and closed and ‖ ¤𝑢‖20 being part of the criteria,
there is a subsequence with 𝑢𝑛 → 𝑢∗ ∈ U𝑑 weakly in 𝐻1 (]0, 𝑇 [) and strongly
in 𝐿2 (]0, 𝑇 [). By the above established continuity, 𝑋𝑛 → 𝑋∗ in 𝐿2 (]0, 𝑇 [).
Obviously

∫ 𝑇
0 𝛼𝑢𝑛 →

∫ 𝑇
0 𝛼𝑢∗ and by the lower semicontinuity of 𝑢 → ‖ ¤𝑢‖20,

𝐽 (𝑢∗) ≤ lim inf 𝐽 (𝑢𝑛) = inf
𝑢∈U𝑑

𝐽 (𝑢) ⇒ 𝑢∗ is a solution.

1.2.2 Existence of solution: the stochastic non-dynamic case

Proposition 2. The solution of the SDE (1.2) exists and is positive.

Proof. 𝑋 ↦→ (𝑟 − ^𝑋 − 𝑢𝑡)𝑋 is locally Lipschitz, uniformly in 𝑡 since 𝑢𝑡 ∈
[𝑢𝑚, 𝑢𝑀

]; hence for every realization 𝑊𝑡 (𝜔) there is a unique strong solu-
tion until a blow-up time 𝜏 which is a stopping time for the filtration F 𝑤𝑡 =

𝜎(N𝑠 ,𝑊𝑠 , 𝑠 ≤ 𝑡) where N𝑠 denotes the P-negligible sets of A. On [0, 𝜏[we
may work with 𝑌𝑡 = log 𝑋𝑡 , solution (by Itô calculus) of

d𝑌𝑡 =
(
𝑟 − 𝜎2

2 − ^𝑋𝑡 − 𝑢𝑡
)
d𝑡 + 𝜎d𝑊𝑡 , ⇒ ∀𝑡 ∈ (0, 𝜏] :

𝑋𝑡 = 𝑋
0 exp

(
(𝑟 − 𝜎2

2)𝑡 −
∫ 𝑡

0
(^𝑋𝑠 + 𝑢𝑠)d𝑠 + 𝜎𝑊𝑡

)
≤ 𝑋0𝑒𝑆𝑡 (𝑢𝑚) ,

(1.5)

Dynamic Programming versus Supervised Learning Chapter | 1 7Dynamic Programming versus Supervised Learning Chapter | 1 7Dynamic Programming versus Supervised Learning Chapter | 1 7

where 𝑆𝑡 (𝑣) := (𝑟 − 𝜎2

2)𝑡−𝑣𝑡 +𝜎𝑊𝑡 . Hence
∫ 𝜏
0 𝑋𝑠d𝑠 = +∞ is impossible unless

𝜏 = +∞, P-a.s. Therefore, 𝑋𝑡 ∈ R+ for every 𝑡 ≥ 0 and

𝑋0𝑒𝑆𝑡 (𝑢𝑀) exp
(
−^

∫ 𝑡

0
𝑒𝑆𝑠 (𝑢𝑀)d𝑠

)
≤ 𝑋𝑡 ≤ 𝑋0𝑒𝑆𝑡 (𝑢𝑚) . (1.6)

Theorem 1. Problem (1.1)(1.2) has a solution.

Proof. Consider two trajectories driven by the same 𝑊𝑡 but with different 𝑢,
denote 𝛿𝑋𝑡 the difference and �̄�𝑡 their average; we have

d𝛿𝑋𝑡 =
(
𝛿𝑋𝑡 (𝑟 − 2^�̄�𝑡 − �̄�) − �̄�𝑡𝛿𝑢

)
d𝑡 + 𝜎𝛿𝑋𝑡𝑑𝑊𝑡 .

By Itô calculus:

(𝛿𝑋𝑡)2 = 2
∫ 𝑡

0

(
(𝛿𝑋𝑠)2 (𝑟 + 𝜎2

2 − 2^�̄�𝑡 − �̄�) − �̄�𝑠 𝛿𝑢 (𝑠) 𝛿𝑋𝑠

)
d𝑠 + 2

∫ 𝑡

0
𝜎 (𝛿𝑋𝑠)2d𝑊𝑠

so that E [(𝛿𝑋𝑡)2] ≤ 2(𝑟 + 𝜎2
2 − 𝑢𝑚)

∫ 𝑡

0
E [(𝛿𝑋𝑠)2]d𝑠 −

∫ 𝑡

0
𝛿𝑢 (𝑠) E [�̄�𝑠 𝛿𝑋𝑠]d𝑠

≤ 2(𝑟 + 𝜎2
2 − 𝑢𝑚)

∫ 𝑡

0
E [(𝛿𝑋𝑠)2] +

∫ 𝑡

0
𝛿𝑢 (𝑠) E [(�̄�𝑠)2]d𝑠.

We have seen earlier that 0 ≤ 𝑋𝑡 ≤ 𝑋0𝑒
(𝑟− 1

2 𝜎
2)𝑡+𝜎𝑊𝑡 , therefore E [(�̄�𝑠)2] ≤

4𝑒 (2𝑟+𝜎2)𝑠E [𝑋2
0], so much so that by Grönwall’s lemma,

E [(𝛿𝑋𝑡)2] ≤ 2(𝑟+ 𝜎2

2 −𝑢𝑚)
∫ 𝑡

0
E [(𝛿𝑋𝑠)2]d𝑠+4𝑒 (2𝑟+𝜎

2)𝑇 E [𝑋2
0]

∫ 𝑡

0
(𝛿𝑢(𝑠))2𝑑𝑠

and by Grönwall’s lemma again,E [(𝛿𝑋𝑡)2] ≤ 4𝑒2𝑟+𝜎2−2𝑢𝑚)𝑡𝑒 (2𝑟+𝜎
2)𝑇 E [𝑋2

0]
∫ 𝑡
0 |𝛿𝑢(𝑠) |.

Hence, there exists 𝐶 > 0, sup𝑡 ∈[0,𝑡] E [(𝛿𝑋𝑡)2] ≤𝐶 E [𝑋2
0] ‖𝛿𝑢‖𝐿1 (]0,𝑇 [) . Con-

tinuity of 𝑢 ↦→
∫ 𝑇
0 E [(𝑋𝑡 − 𝑋𝑑)

2]d𝑡 follows and existence is then shown as
in (1.2.1).

1.2.3 Existence of solution: the dynamic case

To establish existence by probabilistic methods proved to be rather hard. On the
other hand, the problem can be converted into an equivalent distributed control
problem by using the Kolmogorov equation of the PDF of 𝑋𝑡 .

We will show in section 1.7 that their is a solution when the E in the criteria
and ^ are multiplied by a cutoff for large 𝑋 and, with Q+ := R+×]0, 𝑇 [, and a
modifiedU:

U =
{
𝑢 ∈ 𝐿2 (𝑊1,1 (R+)) : 𝑢 ∈ [𝑢𝑚, 𝑢𝑀

], 𝜕𝑡𝑢 ∈ 𝐿2 (Q+), lim
𝑋→+∞

| log 𝑋 |𝑢(𝑋, 𝑡) < +∞
}
.

888

1.2.4 Discretization

Let ℎ = 𝑇
𝑀

and 𝑡𝑚 = 𝑚ℎ. For any 𝑓 , 𝑓 𝑚 denotes an approximation of 𝑓 (𝑚ℎ).
Define the Euler – or Euler-Maruyama – scheme of the diffusion by

𝑋𝑚+1 = 𝑋𝑚 (1 + ℎ(𝑟 − ^𝑋𝑚 − 𝑢𝑚) + 𝜎𝛿𝑊𝑚) (1.7)

where 𝛿𝑊𝑚 = 𝑊(𝑚+1)ℎ −𝑊𝑚ℎ . Note that positivity of 𝑋 may not be preserved
by this scheme, but we may choose to discretize (1.5). Alternatively, to avoid
the computing cost of exponentials, we may use the Milstein scheme:

�̃�𝑚+1 = �̃�𝑚
(
1 + ℎ(𝑟 − ^�̃�𝑚 − 𝑢𝑚 − 𝜎

2

2
) + 𝜎𝛿𝑊𝑚 + 𝜎

2

2
(𝛿𝑊𝑚)2

)
. (1.8)

Proposition 3. Let �̃� denote the solution of the continuous Milstein scheme
given for every 𝑡 ∈ [𝑚ℎ, (𝑚 + 1)ℎ) by

�̃�𝑡 = �̃�
𝑚
(
1 + (𝑡 − 𝑚ℎ)

(
𝑟 − ^�̃�𝑚 − 𝑢𝑚 − 𝜎2

2
)
+ 𝜎(𝑊𝑡 −𝑊𝑚) + 𝜎2

2 (𝑊𝑡 −𝑊
𝑚)2

)
.

Assume �̃�0 = 𝑋0 > 0. Then, on event 𝐴ℎ =
{
�̃�𝑚 < 1

2^ℎ +
𝑟−𝜎2/2−𝑢

𝑀

^

}𝑀−1
𝑚=0 , the

continuous Milstein (�̃�𝑡)𝑡 ∈[0,𝑇] almost surely has positive paths.

Proof. We proceed by induction. Starting from (1.8), we want the discriminant
of the second degree polynomial equation in 𝑊𝑡 −𝑊𝑚 to be negative, namely
after obvious simplification by 𝜎 > 0

1 − 2
(
1 + ℎ

(
𝑟 − ^�̃�𝑚 − 𝑢𝑚 − 𝜎2

2
))
< 0⇐⇒ �̃�𝑚 < 1

2^ℎ +
𝑟−𝜎2/2−𝑢

𝑀

^
.

Remark 1. It is clear that P(𝐴ℎ) ↑ 1 as ℎ → 0. For more details on the
positivity preserving property of the Milstein scheme, see (15, Chapter 7.5).

1.3 BRUTE FORCE SOLUTION OF THE NON-DYNAMIC CONTROL
PROBLEM BY MONTE-CARLO

We wish to solve (a discretized version of) Problem (1.3) by a Monte Carlo simu-
lation. Recall that 𝛿𝑊𝑚 =

√
ℎN𝑚0,1 where (N𝑚0,1)𝑚=1,...,𝑀 denotes the numerical

realization of an i.i.d. sequence of N(0, 1)-distributed random variables. For
each of the above three schemes there is a function Zℎ such that

𝑋𝑚+1 = Zℎ (𝑋𝑚, 𝑢𝑚,N𝑚+10,1), 0 ≤ 𝑚 ≤ 𝑀 − 1, 𝑋0 given. (1.9)

Let (N𝑚0,1,𝑘)
𝑚∈[0,𝑀)
𝑘∈[1,𝐾] , be 𝐾 × 𝑀 independent realizations of N0,1 and, for {𝑢𝑚 ∈

[𝑢𝑚, 𝑢𝑀
]}𝑀
𝑚=1 given, independent of 𝑘 , let {𝑋𝑚

𝑘
}𝐾
𝑘=1 be the 𝐾 (independent)

results of (1.9). By the law of large numbers:

E [(𝑋𝑡 − 𝑋𝑑)2] |𝑡=𝑚ℎ ≈ E𝐾 [(𝑋𝑚 − 𝑋𝑑)2] :=
1
𝐾

𝐾∑︁
𝑘=1
(𝑋𝑚𝑘 − 𝑋𝑑)

2.

Dynamic Programming versus Supervised Learning Chapter | 1 9Dynamic Programming versus Supervised Learning Chapter | 1 9Dynamic Programming versus Supervised Learning Chapter | 1 9

Then (1.3) can approximated by

min
{𝑢𝑚∈[𝑢𝑚 ,𝑢𝑀] }

𝑀−1
𝑚=0

𝐽𝐾 := ℎ
𝑀−2∑︁
𝑚=0

[
E𝐾 [(𝑋𝑚+1 − 𝑋𝑑)2] − 𝛼𝑢𝑚 +

𝛽

ℎ2 |𝑢
𝑚+1 − 𝑢𝑚 |2

]
.

(1.10)

1.3.1 Solution with a gradient method

Gradient methods update {𝑢𝑚}𝑀−1
𝑚=1 by 𝑢𝑚 ← 𝑢𝑚 − `𝐺𝑚 where `, the step size,

is an appropriate scalar, and 𝐺𝑚 = 𝜕𝑢𝑚𝐽𝐾 . Let 𝑋𝑚
𝑘

be computed by (1.7); let us
differentiate this equation and multiply it by an adjoint variable 𝑃𝑚

𝑘
and sum:

𝑀−2∑︁
𝑚=0

[
− 𝑃𝑚𝑘 𝛿𝑋

𝑚+1
𝑘 + 𝑃𝑚𝑘

(
𝛿𝑋𝑚𝑘

(
1 + ℎ(𝑟 − 2^𝑋𝑚𝑘 − 𝑢

𝑚) + 𝜎𝛿𝑊𝑚
𝑘

)
− 𝑋𝑚𝑘 ℎ𝛿𝑢

𝑚
)]

= 0.

As 𝛿𝑋0 = 0, if we set 𝑃𝑀−1 = 𝑃𝑀−2 = 0, 𝑣𝑚
𝑘
= 1 + ℎ(𝑟 − 2^𝑋𝑚

𝑘
− 𝑢𝑚) +𝜎𝛿𝑊𝑚

𝑘
,

−
𝑀−2∑︁

0
ℎ𝑃𝑚𝑘 𝑋

𝑚
𝑘 𝛿𝑢

𝑚 =

𝑀−2∑︁
1
(𝑃𝑚−1
𝑘 𝛿𝑋𝑚𝑘 −𝑃

𝑚
𝑘 𝛿𝑋

𝑚𝑣𝑚𝑘) =
𝑀−2∑︁

1
𝛿𝑋𝑚𝑘 (𝑃

𝑚−1
𝑘 −𝑃𝑚𝑘 𝑣

𝑚
𝑘).

Define 𝑃𝑚
𝑘

by 𝑃𝑚−1
𝑘

= 𝑃𝑚
𝑘
𝑣𝑚
𝑘
− 2(𝑋𝑚

𝑘
− 𝑋𝑑), 𝑚 = 𝑀 − 2, 𝑀 − 3, . . . Then

𝑀−1∑︁
𝑚=1

𝛿𝐸𝐾 [(𝑋𝑚 − 𝑋𝑑)2] =
2
𝐾

𝐾∑︁
𝑘=1

𝑀−1∑︁
𝑚=1
(𝑋𝑚𝑘 − 𝑋𝑑)𝛿𝑋

𝑚
𝑘 =

1
𝐾

𝐾∑︁
𝑘=1

𝑀−2∑︁
𝑚=0

𝑃𝑚𝑘 𝑋
𝑚
𝑘 𝛿𝑢

𝑚
𝑘 .

So the gradient is 𝐺𝑚 = 1
𝐾

∑𝐾
𝑘=1 𝑃

𝑚
𝑘
𝑋𝑚
𝑘
− 𝛼 − 2 𝛽

ℎ2 (𝑢𝑚+1 − 2𝑢𝑚 + 𝑢𝑚−1). Note

FIGURE 1.1 Solution of (1.1) discretized by (1.10), versus 𝑚, in the deterministic case (𝜎 =

0, 𝐾 = 1) with 𝛽 = 0 (left), and 𝛽 = 0.001 (right). The blue curve is the control 𝑢; the biomass 𝑋𝑡

is in ochre and the fishing effort in green.

that the successive (𝑢𝑚)𝑚 = 0, . . . , 𝑀 − 1 obtained by this gradient descent are
not adapted and depend on all the 𝑀 × 𝐾 simulated N𝑚0,1,𝑘 .

101010

1.3.2 Implementation and examples

We use the L-BFGS-B function of the Python library minimize. It is an ac-
celerated projected gradient method for problems with box constraints and an
automatic adjustment of the step size `. We took 50 time steps and chose to
solve a deterministic case with

𝜎 = 0, 𝐾 = 1, 𝑋𝑑 = 1, ^ = 1.2, 𝑋0 = 0.9, 𝑐 = 1, 𝑎 = 1, 𝑢𝑚 = 0.5, 𝑢
𝑀

= 1.

The computer program is in file fishingQuotaBruteforce.py. The results
with 𝛼 = 𝛽 = 0 are shown on the left in figure 1.1 with a saturation of the
constraints 𝑢 = 𝑢𝑚 when 𝑚 < 7; but the solution is not bang-bang everywhere
and 𝑢 = 0.8 gives 𝑋𝑚+1 = 𝑋𝑚 = 𝑋𝑑 , 𝑃𝑚 = 0. On the right in figure 1.1 the
results are shown for 𝛼 = 0.01, 𝛽 = 0.001. On figure 1.2 a stochastic case
of (1.10) is solved with the same parameters except 𝜎 = 0.3. The results are
shown for 𝐾 = 1, 10, 100, 10000 Monte-Carlo samples.

1.4 SOLUTION OF THE NON-DYNAMIC CONTROL PROBLEM BY
SUPERVISED LEARNING

We still aim at to solving (1.3) using Monte Carlo simulations (written here in
continuous time for genericity)

min
𝑢∈U

𝐽 (𝑢) :=
∫ 𝑇

0

[
1
𝐾

𝐾∑︁
1
(𝑋𝑘 (𝑡) − 𝑋𝑑)2 − 𝛼𝑢(𝑡) + 𝛽(𝜕𝑡𝑢(𝑡))2

]
d𝑡 (1.11)

with d𝑋𝑘 = 𝑋𝑘 (𝑡)
(
𝑟 − ^𝑋𝑘 (𝑡) − 𝑢(𝑡)

)
d𝑡 + 𝜎𝑋𝑘 (𝑡)d𝑊𝑘 (𝑡), 𝑋 (0) = 𝑋0.

(1.12)

where 𝑊 𝑘 are 𝐾 independent standard Brownian mouions 𝑋𝑘 is replaced by a
numzerical scheme. In practice To reduce CPU cost, we shall train a neural
network with input parameters [𝑋0, 𝑟, ^] and output an optimal {𝑢𝑚}𝑀−1

𝑚=1 for
these parameters, computed by the brute force method above. There is no need
to vary the parameter 𝑋𝑑 because we can always return to the case 𝑋𝑑 = 1 by
scaling.
To build a training set we use a large number of synthetic solutions obtained with
the brute force method of the previous section. We have used a small 𝐾 = 100 to
generate 10000 solutions (it takes about 90 minutes on an intel core i7 machine).
It works as follows:
• Choose [𝑋0, 𝑟, ^] uniformly random in [𝑋0

𝑚, 𝑋
0
𝑀
] × [𝑟𝑚, 𝑟𝑀] × [^𝑚, ^𝑀].

• Generate 𝐾 · 𝑀 normal gaussian random values for d𝑊𝑡 .
• Compute a discrete optimal solution {𝑢𝑚}𝑀−1

𝑚=1 of (1.11) with K=100 by the
L-BFGS-B Python module.

• Then train a neural network [𝑋0, 𝑟, ^] → {𝑢𝑚}𝑀−1
𝑚=1 with these 10000 synthetic

solutions.

Dynamic Programming versus Supervised Learning Chapter | 1 11Dynamic Programming versus Supervised Learning Chapter | 1 11Dynamic Programming versus Supervised Learning Chapter | 1 11

s

FIGURE 1.2 Solution of (1.10) in the stochastic case with 𝜎 = 0.3: convergence of the Monte-
Carlo approximation. Left to right, up first: K=1, K=10, K=100,K=1000, K=10000. Already the
results are fairly converged at K=100. In the last figure the optimal control is computed with K=100
and used to solve (1.2) with a new random noise, thereby showing that the solution is still acceptable.
Note that the brute force solution for 𝐾 � 1 is quite close to the noiseless solution of figure 1.1-b.

121212

• Finally, check the precision by using the network’s answer {𝑢𝑚}𝑀−1
𝑚=1 to a

new set of values for [𝑋0, 𝑟, ^] and compare with the brute force solution
corresponding to these parameters.
For an introduction to Statistical Learning with Neural Networks see (8). We

have used Keras (see (7)) to generate a 4-layer Neural Network (see figure 1.3).
The input layer has 3 inputs; the two hidden layers have 50 neurons each and the
output layer has M nodes. All layers use the ReLU activation. The two hidden
layers are separated by a batch-normalisation.

FIGURE 1.3 The Neural Network has 3 inputs, two hidden layers each with 50 neurons (10 shown
here) and separated by batch-normalisation and an output layer with M output (M=15 shown here) .
Right: typical convergence curve of the loss function during the training phase.

1.4.1 A numerical test

We have taken 50 time steps and K=100 for the brute force part. The following
parameters are used:

𝑇 = 2, 𝛼 = 0.01, 𝛽 = 0.001, 𝜎 = 0.3, 𝑋𝑑 = 1, 𝑢𝑚 = 0.5, 𝑢
𝑀

= 1.

For the Neural Network training we have used 10 000 samples in batches of 32
and a maximum of 2 000 epochs. The input parameters are

r = np.random.uniform(1.9,2.2),\;
kappa = np.random.uniform(1,1.3),\;
X0=np.random.uniform(0.7,1.3)

Finally for the fishing effort equation, 𝑎 = 𝑐 = 1. The computer program is
written in Python and is in the file fishingQuotaIA4.py. The learning phase
produced the following precision on each of the time steps:

Test loss: 0.03751661651

Dynamic Programming versus Supervised Learning Chapter | 1 13Dynamic Programming versus Supervised Learning Chapter | 1 13Dynamic Programming versus Supervised Learning Chapter | 1 13

FIGURE 1.4 On each of the 6 plots𝑋 and 𝑢 are shown: True discrete solution in green for𝑋 and red
for 𝑢. NN solution in blue for 𝑋𝑁𝑁 and ochre for 𝑢𝑁𝑁 . The plots correspond to the following values
of the parameters: 𝑟 = 2.02285, ^ = 1.0203, 𝑋0 = 1.1122, 𝑟 = 2.0688, ^ = 1.2641, 𝑋0 = 0.7852,
𝑟 = 1.9151, ^ = 1.0141, 𝑋0 = 0.8299, 𝑟 = 2.0738, ^ = 1.1876, 𝑋0 = 1.1344, 𝑟 = 2.0463, ^ =

1.1224, 𝑋0 = 0.7550.

141414

Average relative error |1-u_NN/u| for the 49 time steps =
[0.031 0.03954 0.04612 0.03440 0.03665 0.0432 0.03549 0.04364
0.04247 0.03737 0.03448 0.03950 0.04441 0.04149 0.03366 0.04054
0.03978 0.04160 0.0404 0.03319 0.03800 0.03229 0.04076 0.03475
0.03333 0.03761 0.04427 0.03837 0.03909 0.03384 0.03707 0.03838
0.03682 0.03278 0.03412 0.02993 0.03138 0.02646 0.02687 0.02550
0.02197 0.01949 0.02680 0.02290 0.01801 0.01872 0.01909 0.014978 0.01907]

Notice that the error is about the same at all time steps.
In figure 1.4 the performance of the trained Neural Network on 6 new cases

are shown. Each case corresponds to a set of parameters [𝑟, ^, 𝑋0] and a new
realization of the random noise. The “exact" control 𝑢 is computed by the brute
force method with 𝐾 = 100 and compared with the solution 𝑢𝑁𝑁 given by the
neural network (values at the 50 time steps).

In all cases except case 4 the control 𝑢𝑁𝑁 given by the network is close to
the “exact” one; but even then, 𝑋𝑁𝑁 computed by (1.7) with 𝑢𝑁𝑁 is close to 𝑋
computed with 𝑢 “exact". This reveals that 𝑋 is not that sensitive to 𝑢: that the
problem is somewhat stiff.

1.5 BELLMAN’S STOCHASTIC DYNAMIC PROGRAMMING FOR THE
DYNAMIC PROBLEM

Consider the value function

𝑉 (𝑡, 𝑋) = min
𝑢∈U

{ ∫ 𝑇

𝑡

E
[
(𝑋𝜏 − 𝑋𝑑)2 − 𝛼𝑢 + 𝛽 |𝜕𝑡𝑢 |2

]
d𝜏 :

d𝑋𝜏 = 𝑋𝜏d𝜏(𝑟 − ^𝑋𝜏 − 𝑢𝜏) + 𝜎𝑋𝜏d𝑊𝜏 , 𝑋 (𝑡) = 𝑋
}
.

(1.13)

Let [0, 𝑇] = ∪𝑀1 [(𝑚 − 1)ℎ, 𝑚ℎ]. Let Zℎ (𝑋, 𝑢𝑚, 𝑧) denote one iterate of a
numerical scheme (1.7)(1.8) for the SDE starting at 𝑋 , for instance with (1.7)

Zℎ (𝑋, 𝑢, 𝑧) = 𝑋+𝑋 (𝑟−^𝑋−𝑢)ℎ+𝑋𝜎𝑧
√
ℎ, 𝑧 being the realization of a N0,1 r.v.

Let 𝑣𝑀 (𝑋) = 0 and let, for 𝑚 ∈ {0, . . . , 𝑀 − 1}, 𝑣𝑚 (𝑋) =

min
𝑢∈U

∫ (𝑚+1)ℎ

𝑚ℎ
E
[
|Zℎ (𝑋, 𝑢, 𝑧) − 𝑋𝑑 |2 − 𝛼𝑢 + 𝛽 |𝜕𝑡𝑢 |2

]
d𝜏 + E [𝑣𝑚+1

(
Zℎ (𝑋, 𝑢, 𝑧)

)
]

≈ min
𝑢∈U

{
ℎE

[
|Zℎ (𝑋, 𝑢, 𝑧) − 𝑋𝑑 |2

]
− 𝛼ℎ𝑢 + 𝛽

ℎ
|𝑢𝑚+1 (𝑋) − 𝑢 |2 + E

[
𝑣𝑚+1

(
Zℎ (𝑋, 𝑢, 𝑧)

)]}
.

(1.14)

EvidentlyE
[
|Zℎ (𝑋, 𝑢, 𝑧) − 𝑋𝑑 |2

]
= 𝑋−𝑋𝑑+ℎ𝑋 (𝑟−^𝑋−𝑢) |2+ℎ𝑋2𝜎2. To com-

pute E[𝑣𝑚+1 (Zℎ (𝑋; 𝑢; 𝑧))], we use a quadrature formula with 𝑄 points {𝑧𝑞}𝑄𝑞=1

and weights {𝑤𝑞}𝑄𝑞=1 based on optimal quantization of the normal distribution
N(0, 1) (see (16) or (15, Chapter 5) and the website quantize.maths-fi.com

Dynamic Programming versus Supervised Learning Chapter | 1 15Dynamic Programming versus Supervised Learning Chapter | 1 15Dynamic Programming versus Supervised Learning Chapter | 1 15

for download of weighted grids) so that

E[𝑣𝑚+1 (Zℎ (𝑋; 𝑢; 𝑧))] ≈
𝑄∑︁
𝑞=1

𝑤𝑞𝑣
𝑚+1 (Zℎ (𝑋, 𝑢, 𝑧𝑞)) .

Finally at every time step and every 𝑋 𝑗 = 𝑗 𝐿/𝐽, 𝑗 = 0, ..., 𝐽, with 𝐿 � 1,
the result is minimized with respect to 𝑢 ∈ U by a dichotomy. In this fashion
{𝑢𝑚 (𝑋 𝑗)}𝐽𝑗=1 is obtained and a piecewise linear interpolation is constructed to
prepare for the next time step 𝑢𝑚−1.

With the same parameters as above except 𝛽 = 0.1, 𝐿 = 3, 𝐽 = 50 and
𝑀 = 50, the results of figures 1.5, 1.6 have been obtained. Once {𝑢𝑚 (𝑋)}𝑀−1

0

0
1

2

1

0.6

0.8

1

𝑡

𝑋

𝑢(𝑋, 𝑡)

FIGURE 1.5 Solution of the Dynamic Pro-
gramming equation: 𝑢 (𝑥, 𝑡) .

0.5 1 1.5 0
1

20

2

4

𝑋

𝑡

𝑉 (𝑋, 𝑡)

FIGURE 1.6 Solution of the Dynamic Pro-
gramming equation: 𝑉 (𝑥, 𝑡) .

is known, for any realization of the fishing model we use it as follows:

𝑋𝑚+1 = 𝑋𝑚 + ℎ𝑋𝑚
(
𝑟 − ^𝑋𝑚 − 𝑢𝑚 (𝑋𝑚)

)
+ 𝑋𝑚𝜎

√
ℎN𝑚0,1, 𝑋0 = 𝑋0.

Two such simulations are shown on figure 1.7,1.8. The results are not as good
as before, meaning that the dynamic setting gives a poor solution to the control
of the fishing site. These results should be compared with those of Appendix 𝐴
which deals with a very similar problem for which there is a polynomial in log 𝑋
solution when 𝛼 = 0.

1.6 SOLUTION WITH THE HAMILTON-JACOBI-BELLMAN PARTIAL
DIFFERENTIAL EQUATIONS

The Dynamic Programming equations can be written as a deterministic set of
PDE: the Hamilton-Jacobi-Bellman (HJB) equations.

To this end we consider the same value function defined in (1.13).

161616

FIGURE 1.7 Simulation of the fishing
model with a quota function computed by
Dynamic Programming and 𝑋0 = 0.8.

FIGURE 1.8 Simulation of the fishing
model with a quota function computed by
Dynamic Programming and 𝑋0 = 1.2.

Proposition 4. The value function verifies 𝑉 (·, 𝑇) = 0 and

0 = inf
𝑢∈U

{
(𝑋 − 𝑋𝑑)2 − 𝛼𝑢 + 𝛽 |𝜕𝑡𝑢 |2 + 𝜕𝑡𝑉 + (𝑟 − ^𝑋 − 𝑢)𝑋𝜕𝑋𝑉 + 𝜎2𝑋2

2 𝜕𝑋𝑋𝑉
}
.

(1.15)

Proof. The proof given below is heuristic and non standard but it gives a link
with the previous section. For the standard argument see for instance (10). We
return to (1.14) above. As 𝑢𝑀 plays no role in the discretization we assume that
𝑢𝑀 = 𝑢𝑀−1. Hence when 𝑚 = 𝑀 − 1 the minimization reduces to

𝑣𝑀−1 = ℎ min
𝑢∈U

{
E
[
|𝑋 − 𝑋𝑑 |2

]
− 𝛼𝑢

}
= ℎ(|𝑋 − 𝑋𝑑 |2 − 𝛼𝑢𝑚)

and the minimizer is 𝑢𝑀−1 = 𝑢𝑚. When 𝑚 < 𝑀 − 1 a similar argument gives,

𝑣𝑚 (𝑋) ≈ min
𝑢∈U

{(
|𝑋 − 𝑋𝑑 |2 − 𝛼𝑢 +

𝛽

ℎ2 |𝑢
𝑚+1 (𝑋) − 𝑢 |2

)
ℎ + E [𝑣𝑚+1 (Zℎ (𝑋, 𝑢, 𝑧)]

}
.

(1.16)
With a Taylor expansion, let us approximate 𝑣𝑚+1 (𝑋 +ℎ) ≈ ∑𝑞𝑀

𝑞=0 𝑣
(𝑞)𝑚+1 (𝑋) ℎ𝑞

𝑞! .
For clarity denote _ = 𝑟 − ^𝑋 − 𝑢, so

E [𝑣𝑚+1 (Zℎ (𝑋, 𝑢, 𝑧))] = 𝑣𝑚+1 (𝑋) + E
[𝑞𝑀∑︁

0
𝑣 (𝑞)

𝑚+1
𝑋𝑞ℎ

𝑞

2 (𝜎𝑧 + _
√
ℎ)𝑞

]
≈ 𝑣𝑚+1 (𝑋)

+ 𝑋𝑣′𝑚+1_ℎ + 𝑋
2

2
𝑣′′𝑚+1 (_2ℎ + 𝜎2)ℎ + 𝑋

3

6
_𝜎2𝑣 (3)

𝑚+1
ℎ2 + ...

E [𝑣𝑚+1 (Zℎ (𝑋, 𝑢, 𝑧))] ≈ 𝑣𝑚+1 (𝑋) +𝑋𝑣′𝑚+1 (𝑟−^𝑋−𝑢)ℎ+
𝑋2

2
𝑣′′𝑚+1𝜎2ℎ+𝑜(ℎ).

Let us use it in (1.16). Then 𝑢 must solve

min
{
−𝛼𝑢 + 𝛽

ℎ2
(
𝑢2 − 2𝑢𝑢𝑚+1

)
− 𝑢𝑋𝑣′𝑚+1

}
, ⇒ 𝑢 = 𝑢𝑚+1 + ℎ

2

2𝛽
(𝛼 + 𝑋𝑣′𝑚+1)

Dynamic Programming versus Supervised Learning Chapter | 1 17Dynamic Programming versus Supervised Learning Chapter | 1 17Dynamic Programming versus Supervised Learning Chapter | 1 17

but comply also with the box constraints:

𝑢𝑚 = min
{
𝑢

𝑀
,max

{
𝑢𝑚, 𝑢

𝑚+1 + ℎ
2

2𝛽
(
𝛼 + 𝑋𝑣′𝑚+1

)}}
and

𝑣𝑚 ≈ 𝑣𝑚+1 + ℎ
(
𝑋𝑣′𝑚+1 (𝑟 − ^𝑋 − 𝑢𝑚) + 𝑋

2𝜎2

2
𝑣′′𝑚+1 + |𝑋 − 𝑋𝑑 |2 − 𝛼𝑢𝑚

+ 𝛽
ℎ2 |𝑢

𝑚+1 − 𝑢𝑚 |2
)
.

As this corresponds to an explicit discretization of a parabolic PDE, ℎ will have
to be extremely small: ℎ = 𝑂 (𝛿𝑋2), where 𝛿𝑋 is the mesh size.

1.6.1 Numerical Results

We have implemented the method using FreeFEM++ (9) with a slight change :
the term 𝑋2𝜎2

2 𝑣
′′𝑚+1 is changed to 𝑋2𝜎2

2 𝑣
′′𝑚 so as to increase numerical stability.

Numerical results shown on figure 1.9, 1.10 are obtained with the program
in file pagesbellmanstoch.edp and the following parameters:

𝑟 = 2, ^ = 1.2, 𝜎 = 0.3, 𝑋𝑑 = 1, 𝛼 = 0.01, 𝛽 = 0.1, 𝑢𝑚 = 0.5, 𝑢
𝑀

= 1.

The computational domain is 𝑋 ∈ (0, 3) divided in 400 intervals, 𝑡 ∈ (0, 2),
discretized with 40 time steps.

0 0.5 1 1.5 0
1

2

0.6

0.8

1

𝑡

𝑋

𝑢(𝑋, 𝑡)

FIGURE 1.9 Solution of the Dynamic Pro-
gramming equation: side view.

0
1

2
0

1

0.6

0.8

1

𝑋

𝑡

𝑢(𝑋, 𝑡)

FIGURE 1.10 Solution of the Dynamic
Programming equation: front view.

Once {𝑢𝑚 (𝑋)}𝑀−1
0 is known, for any realization of the fishing model we use

it as follows:

𝑋𝑚+1 = 𝑋𝑚 + ℎ𝑋𝑚 (𝑟 − ^𝑋𝑚 − 𝑢𝑚 (𝑋𝑚)) + 𝑋𝑚𝜎
√
ℎN𝑚0,1, 𝑋0 = 𝑋0.

Two such simulations are shown on figure 1.11,1.12.

181818

0 0.5 1 1.5 2

0.5

1

1.5

𝑡𝑖𝑚𝑒

𝑢
(𝑋
𝑡
,𝑡
),

𝑋
𝑡

𝑋𝑡 with quota
quota 𝑢𝑡

𝑋𝑡 without quota

FIGURE 1.11 Simulation of the fishing
model with a quota function computed by
Dynamic Programming and 𝑋0 = 0.8.

0 0.5 1 1.5 2

0.5

1

1.5

𝑡𝑖𝑚𝑒

𝑢
(𝑋
𝑡
,𝑡
),

𝑋
𝑡

𝑋𝑡 with quota
quota 𝑢𝑡

𝑋𝑡 without quota

FIGURE 1.12 Simulation of the fishing
model with a quota function computed by
Dynamic Programming and 𝑋0 = 1.2.

1.6.2 Analysis when 𝜷 = 0
Proposition 5. When 𝛽 = 0, the solution is always bang-bang.

Proof. With U = {𝑢 = (𝑢𝑚)𝑛, 𝑢𝑚 ∈ [𝑢𝑚, 𝑢𝑀
]} and 𝑢𝑚 > 0, 𝑋 being positive,

the optimal control 𝑢∗ must be such that if there are 0 < 𝑡1, 𝑡2 < 𝑇 such that for
all 𝑡 ∈ (𝑡1, 𝑡2), 𝑢(𝑋, 𝑡) is constant then
1. 𝑢∗ = 𝑢𝑚 when 𝑋𝜕𝑋𝑉 + 𝛼 < 0, leading to 𝜕𝑡𝑢∗ = 0 and

𝜕𝑡𝑉 + (𝑟 − ^𝑋 − 𝑢𝑚)𝑋𝜕𝑋𝑉 + 𝜎2𝑋2

2 𝜕𝑋𝑋𝑉 = 𝛼𝑢𝑚 − (𝑋 − 𝑋𝑑)2

2. 𝑢∗ = 𝑢
𝑀

when 𝑋𝜕𝑋𝑉 + 𝛼 > 0, leading to 𝜕𝑡𝑢∗ = 0 and

𝜕𝑡𝑉 + (𝑟 − ^𝑋 − 𝑢𝑀
)𝑋𝜕𝑋𝑉 + 𝜎2𝑋2

2 𝜕𝑋𝑋𝑉 = 𝛼𝑢
𝑀
− (𝑋 − 𝑋𝑑)2

3. Otherwise when 𝑢𝑚 < 𝑢∗ (𝑋, 𝑡) < 𝑢𝑀
, we must have 𝑉 (𝑇) = 0 and

0 = (𝑋 − 𝑋𝑑)2 − 𝛼𝑢∗ + 𝜕𝑡𝑉 + (𝑟 − ^𝑋)𝑋𝜕𝑋𝑉 + 𝜎
2𝑋2

2 𝜕𝑋𝑋𝑉, 𝑋𝜕𝑋𝑉 + 𝛼 = 0

The third option being impossible, the solution of the problem is bang-bang.

Remark 2. Note that this HJB dynamic solution is different from the non-
dynamic solution of figure 1.1.

1.6.3 Discretization

One way to find 𝑢∗ when it is neither 𝑢𝑚 nor 𝑢
𝑀

is to discretize in time and solve

inf
𝑢𝑚
𝑔(𝑢𝑚) :=

{
− 𝛼𝑢𝑚 + 𝛽

ℎ2 |𝑢
𝑚 − 𝑢𝑚+1 |2 − 𝑢𝑚𝑋𝜕𝑋𝑉

}
The stationary point is at

−𝛼 + 2𝛽
ℎ2 (𝑢

𝑚−1 − 𝑢𝑚) − 𝑋𝜕𝑋𝑉𝑚−1 = 0, i.e. �̄�𝑚−1 = 𝑢𝑚 + ℎ
2

2𝛽
(𝛼 + 𝑋𝜕𝑋𝑉𝑚−1).

Dynamic Programming versus Supervised Learning Chapter | 1 19Dynamic Programming versus Supervised Learning Chapter | 1 19Dynamic Programming versus Supervised Learning Chapter | 1 19

So we have to compare 𝑔(𝑢𝑚), 𝑔(�̄�𝑚) and 𝑔(𝑢
𝑀
) and choose the smallest. The

end result is very similar to the previous section.
Two simulations are done with 𝛽 = 0 and shown on figure 1.13,1.14. The

control is indeed bang-bang.

0 0.5 1 1.5 2

0.5

1

1.5

𝑡𝑖𝑚𝑒

𝑢
(𝑋
𝑡
,𝑡
),

𝑋
𝑡

𝑋𝑡 with quota
quota 𝑢𝑡

𝑋𝑡 without quota

FIGURE 1.13 Simulation of the fishing
model with a quota function computed by
HJB when 𝛽 = 0 and 𝑋0 = 0.8.

0 0.5 1 1.5 2

0.5

1

1.5

𝑡𝑖𝑚𝑒

𝑢
(𝑋
𝑡
,𝑡
),

𝑋
𝑡

𝑋𝑡 with quota
quota 𝑢𝑡

𝑋𝑡 without quota

FIGURE 1.14 Simulation of the fishing
model with a quota function computed by
HJB when 𝛽 = 0 and 𝑋0 = 1.2.

1.7 SOLUTION WITH THE KOLMOGOROV EQUATION

The Kolmogorov equation for the probability density 𝜌(𝑋, 𝑡) of {𝑋𝑡 }𝑇0 is:

𝜕𝑡 𝜌 + 𝜕𝑋 [(𝑟 − ^𝑋 − 𝑢)𝑋𝜌] − 𝜕𝑋𝑋 [𝑋
2𝜎2

2 𝜌] = 0, 𝜌(𝑋, 0) = 𝜌0 (𝑋), ∀𝑋 ∈ R+.
(1.17)

The optimal control problem (1.1) is: with (1.17)

min
𝑢∈U

𝐽 (𝑢) :=
∫
Q+

[
(𝑋 − 𝑋𝑑)2 − 𝛼𝑢(𝑋, 𝑡) + 𝛽 |𝜕𝑡𝑢(𝑋, 𝑡) |2

]
𝜌(𝑋, 𝑡)d𝑋d𝑡.

(1.18)

The conditions for having equivalence between the stochastic control written
as (1.1) and (1.18) are detailed in (13). To avoid using weighted Sobolev spaces
we make a change variable 𝑦 = log 𝑋 , set 𝑣 = 𝑟 − 𝜎2

2 − ^𝑒
𝑦 − 𝑢(𝑒𝑦 , 𝑡) so that

d𝑌𝑡 = 𝑣d𝑡 + 𝜎d𝑊𝑡 and then study the existence of a PDE for 𝑌𝑡 given by

𝜕𝑡 𝜌 + 𝜕𝑌 (𝑣𝜌) − 𝜕𝑌𝑌 [𝜎
2

2 𝜌] = 0, 𝜌(𝑌, 0) = 𝜌0 (𝑌), ∀𝑌 ∈ R, 𝑡 ∈]0, 𝑇 [. (1.19)

The PDE is understood in the sense that for all �̂� ∈ 𝐻1 (R),∫
R

[
�̂�𝜕𝑡 𝜌 − 𝑣𝜌𝜕𝑌 �̂� +

𝜎2

2
𝜕𝑌 𝜌𝜕𝑌 �̂�

]
= 0, 𝑎.𝑒. 𝑡 ∈]0, 𝑇 [; 𝜌(𝑌, 0) = 𝜌0 (𝑌), ∀𝑌 ∈ R.

Note that 𝑣 can be changed to 𝑣− 𝐿, 𝐿 ∈ R by changing 𝜌 to 𝜌𝑒−𝐿𝑡 . Hence when
lim𝑌→∞ 𝑢 = 𝑢∞ ≠ 0 we can take 𝐿 = 𝑟− 𝜎2

2 −𝑢∞ and assume that lim𝑌→∞ 𝑣 = 0.

202020

Proposition 6. If 𝑣 ∈ 𝑊1,1
𝑙𝑜𝑐
(R), 𝑣/(1 + |𝑦 |) ∈ 𝐿1 (R) ∩ 𝐿∞ (R), 𝜕𝑦𝑣 ∈ 𝐿∞ (R)

then 𝑌𝑡 has a PDF, 𝜌 ∈ 𝐿∞
(
𝐿2 (R) ∩ 𝐿∞ (R)

)
∩ 𝐿2 (𝐻1 (R)

)
, given by (1.19).

Consequently, for the problem to make sense, (𝑟 − ^𝑋 − 𝑢) needs to be
multiplied by a regular cutoff function, tending to zero fast enough when 𝑋 →
+∞. We shall henceforth assume that ^ is a function of 𝑋 which is zero when
𝑋 > 𝑋𝑀 , for some 𝑋𝑀 .

Theorem 2. Given 𝑋𝑑 , 𝜎, 𝛼, 𝛽, 𝐾, 𝑇, 𝑅 in R+, 𝑣𝑚, 𝑣𝑀 , 𝐾 in R and 𝜌0 ∈ [0, 1]
with

∫
R
𝜌0 (𝑢)d𝑢 = 1, let Q = R×]0, 𝑇 [and Q𝑅 =] − 𝑅, 𝑅[×]0, 𝑇 [and,

V =
{
𝑣 : 𝑣𝑚 ≤ 𝑣 ≤ 𝑣𝑀 , ‖𝜕𝑡𝑣‖𝐿2 (Q) ≤ 𝐾

}
and consider

min
𝑣∈V

𝐽 (𝑣) :=
∫
Q𝑅

[
(𝑒𝑌 − 𝑋𝑑)2 + 𝛼𝑣(𝑌, 𝑡) + 𝛽 |𝜕𝑡𝑣(𝑌, 𝑡) |2

]
𝜌(𝑌, 𝑡)d𝑌d𝑡

with 𝜕𝑡 𝜌 + 𝜕𝑌 (𝑣𝜌) − 𝜕𝑌𝑌 [𝜎
2

2 𝜌] = 0, 𝜌(𝑌, 0) = 𝜌0 (𝑌), ∀𝑌 ∈ R, 𝑡 ∈]0, 𝑇 [.

Problem (1.20) has a solution.
Proof. Note first that 𝐽 ≥ 𝛼𝑣𝑚. Note also that when 𝑢

𝑀
is large enough so that

𝑣 = 0 ∈ V, the solution of the PDE is �̃�(𝑌, 𝑡) = (4𝜋)− 1
2
∫
R
𝑒−

𝑋2
4𝑡 𝜌0 (𝑋 − 𝑌)d𝑋 .

As
∫ 𝑅
−𝑅 �̃�(𝑌, 𝑡)𝑒

2𝑌 is finite andV is non empty the infimum is finite. Multiplying
the PDE by 𝜌 and integrating over R leads to∫
R
[𝜕𝑡 |𝜌2 | + 𝜎2 |𝜕𝑌 𝑢 |2] ≤ 2

∫
𝑅

|𝑣 |𝜌𝜕𝑌 𝜌 ≤ 2‖𝑣 ‖∞ ‖𝜌 ‖𝐿2 (R) ‖𝜕𝑌 𝜌 ‖𝐿2 (R) , 𝑎.𝑒. 𝑡 ∈]0, 𝑇 [.

Consequently, and because ‖𝑣‖∞ ≤ 𝑣𝑀 , 𝜌 is bounded in 𝐿2 (𝐻1 (R)
)
∩

𝐿∞
(
𝐿2 (R)

)
∩ 𝐿2 (Q) and 𝜕𝑡 𝜌 is bounded in 𝐿2 (𝐻−1 (R)

)
. Consequently 𝜌

is compact in 𝐿2 (Q) when 𝑣 varies inV. From the maximum principle we also
know that 0 ≤ 𝜌𝑛 ≤ 1 in Q and that

∫
R
𝜌(𝑌, 𝑡)d𝑌 = 1 a.e.

Now let us take a minimizing sequence {𝑣𝑛}𝑛∈N for (1.20). Then 𝜌𝑛 is
bounded in 𝐿2 (𝐻2 (R)

)
∩𝐿∞

(
𝐿2 (R)

)
∩𝑊1,2 (𝐻−1 (R)

)
and compact in 𝐿2 (Q𝑅).

It follows from above that there is a 𝑣 such that, for a subsequence, 𝑣𝑛 → 𝑣 in𝐿∞-
weak-star and weakly in 𝐿2 (Q) and a 𝜌 such that 𝜌𝑛 → 𝜌 strongly in 𝐿2 (Q).
Hence

∫
R
𝑣𝑛𝜌𝑛𝜕𝑌 �̂� →

∫
R
𝑣𝜌𝜕𝑌 �̂� for any �̂� ∈ 𝐿2 (𝐻1 (R)

)
and consequently 𝜌

solves the PDE with 𝑣.
As 𝜌𝑛 ∈ [0, 1] and by Fatou’s lemma,

∫
Q𝑅
(𝑒𝑌 − 𝑋𝑑)2 ≥ lim inf

∫
Q𝑅
(𝑒𝑌 −

𝑋𝑑)2𝜌𝑛 ≥
∫
Q (𝑒

𝑌 − 𝑋𝑑)2𝜌. By the weak (resp. strong) convergence of 𝑣𝑛 (resp.
𝜌𝑛),

∫
Q𝑅
𝛼𝑣𝑛𝜌𝑛 →

∫
Q𝑅
𝛼𝑣𝜌.

To analyze the last term in the criteria we write it as

𝛽

∫
Q𝑅

|𝜕𝑡𝑣𝑛 |2𝜌𝑛 = 𝛽
∫
Q𝑅

|𝜕𝑡𝑣𝑛 |2𝜌 + 𝛽
∫
Q𝑅

|𝜕𝑡𝑣𝑛 |2 (𝜌𝑛 − 𝜌).

By the lower semi-continuity of semi-norms, lim𝑛→∞
∫
Q𝑅
|𝜕𝑡𝑣𝑛 |2𝜌 ≥

∫
Q𝑅
|𝜕𝑡𝑣 |2𝜌.

Finally the last term above is bounded by 𝛽‖(𝜕𝑡𝑣𝑛)2‖𝐿2 (Q𝑅) ‖𝜌𝑛 − 𝜌‖𝐿2 (Q𝑅) ≤
𝛽𝐾 ‖𝜌𝑛 − 𝜌‖𝐿2 (Q𝑅) → 0. Consequently, the criteria in (1.20) is l.s.c.

Dynamic Programming versus Supervised Learning Chapter | 1 21Dynamic Programming versus Supervised Learning Chapter | 1 21Dynamic Programming versus Supervised Learning Chapter | 1 21

Remark 3. If
∫
R+
𝑋2𝜌0 (𝑋)d𝑋 < ∞, it may be possible to let 𝑅 →∞.

1.7.1 Computation of gradients

Consider the variational form of the Kolmogorov equation: find 𝜌 ∈ 𝐿2 (0, 𝑇,𝑉)
such that, for all �̂� ∈ 𝑉 ,∫

R+

(
�̂�𝜕𝑡 𝜌 − (𝑟 − ^𝑋 − 𝑢)𝑋𝜌𝜕𝑋 �̂� +

𝜎2

2
𝜕𝑋 (𝑋2𝜌)𝜕𝑋 �̂�

)
= 0, 𝜌(0) given.

Calculus of variations (see (?? for details) leads to 𝛿𝜌(0) = 0 and∫
R+

(
�̂�𝜕𝑡𝛿𝜌 − (𝑟 − ^𝑋 − 𝑢)𝑋𝛿𝜌𝜕𝑋 �̂� +

𝜎2

2
𝜕𝑋 (𝑋2𝛿𝜌)𝜕𝑋 �̂�

)
= −

∫
R+
𝜌𝑋𝜕𝑋 �̂�𝛿𝑢.

Define the adjoint 𝑝′ by 𝑝′(𝑇) = 0 and, for all 𝑝 ∈ 𝑉 :∫
R+

(
𝑝𝜕𝑡 𝑝

′ + 𝑝(𝑟 − ^𝑋 − 𝑢)𝑋𝜕𝑋 𝑝′ −
𝜎2

2
𝜕𝑋 (𝑋2𝑝)𝜕𝑋 𝑝′

+ 𝑝1Ω
[
(𝑋 − 𝑋𝑑)2 − 𝛼𝑢 + 𝛽 |𝜕𝑡𝑢 |2

])
= 0.

Add the two equations above with �̂� = 𝑝′ and 𝑝 = 𝛿𝜌. It gives∫
R+
𝜕𝑡 (𝑝′𝛿𝜌) +

∫
Ω

[(𝑋 − 𝑋𝑑)2 − 𝛼𝑢 + 𝛽 |𝜕𝑡𝑢 |2]𝛿𝜌 =

∫
R+
𝜌𝑋𝜕𝑋 𝑝

′𝛿𝑢.

As 𝑝′(𝑇) = 0 and 𝛿𝜌(0) = 0, an integration in time gives∫
Ω×]0,𝑇 [

[(𝑋 − 𝑋𝑑)2 − 𝛼𝑢 + 𝛽 |𝜕𝑡𝑢 |2]𝛿𝜌 = −
∫
Q+
𝜌𝑋𝜕𝑋 𝑝

′𝛿𝑢.

Finally, from (1.18),

𝛿𝐽 = 〈grad𝑢𝐽, 𝛿𝑢〉

=

∫
Ω×[0,𝑇]

[(
(𝑋 − 𝑋𝑑)2 − 𝛼𝑢 + 𝛽 |𝜕𝑡𝑢 |2

)
𝛿𝜌 − 𝛼𝜌𝛿𝑢 + 2𝜌𝜕𝑡𝑢𝜕𝑡𝛿𝑢

]
= −

∫
Q+
𝜌𝑋𝜕𝑋 𝑝

′𝛿𝑢 +
∫
Ω×]0,𝑇 [

𝜌[−𝛼𝛿𝑢 + 2𝜕𝑡𝑢𝜕𝑡𝛿𝑢] .

1.7.2 Results

A steepest descent algorithm with fixed step size and projected gradient on the
box constraints is

𝑣 = 𝑢𝑘 − `grad𝑢𝐽
𝑘 , 𝑢𝑘+1 = max{𝑢𝑚,min{𝑢

𝑀
, 𝑣}}. (1.20)

222222

Note that we have constrained 𝑢 to satisfy 𝜕𝑡𝑢(0) = 𝜕𝑡𝑢(𝑇) = 0 so as to integrate
by parts the term 𝜕𝑡𝑢𝜕𝑡𝛿𝑢. This is only a slight loss of generality. The same
parameters as above have been used except that the computational domain is
(0, 5) instead of (0, 3). The PDF of 𝑋0 is a Gaussian curve with 𝜎0 = 0.2. The
computer program is in the file GPOP2dxt.edp. After 100 iterations 𝐽 is a fifth
of its initial value. Figure 1.15 shows the surfaces 𝑢, 𝑃 and 𝜌 versus 𝑋, 𝑡. Note
that (𝑋, 𝑡) ↦→ 𝑢(𝑋, 𝑡) is either 0.5 or 1, implying that all controls 𝑢(𝑋𝑡 , 𝑡) will
be bang-bang. Figures 1.16 and 1.17 show two applications, one with 𝑋0 = 0.8
and the other with 𝑋0 = 1.2. The method achieves a reasonable stabilization of
the fish biomass, but the quotas vary rapidly, as if the 𝛽-term was not playing its
regularizing role.

FIGURE 1.15 From left to right: optimal 𝜌,𝑝′,𝑢. Horizontal axis is 𝑋 ∈]0, 𝑋𝑀 [, vertical is
𝑡 ∈ [0, 𝑇] with 𝑋𝑀 = 5, 𝑇 = 2, 𝑋𝑑 = 1, 𝑢𝑚 = 0.5, 𝑢

𝑀
= 1. Note that (𝑋, 𝑡) ↦→ 𝑢 (𝑋, 𝑡) is either

0.5 or 1, implying that all controls 𝑢 (𝑋𝑡 , 𝑡) will be bang-bang. There is a vertical scale factor of 0.5
applied.

Dynamic Programming versus Supervised Learning Chapter | 1 23Dynamic Programming versus Supervised Learning Chapter | 1 23Dynamic Programming versus Supervised Learning Chapter | 1 23

0 0.5 1 1.5 2

0.5

1

1.5

𝑡𝑖𝑚𝑒

𝑢
(𝑋
𝑡
,𝑡
),

𝑋
𝑡

𝑋𝑡 with quota
quota 𝑢𝑡

𝑋𝑡 without quota

FIGURE 1.16 Optimal biomass and quota
function computed by Optimal Control and
compared with the solution with 𝑢 = 𝑢

𝑀

when 𝑋0 = 0.8.

0 0.5 1 1.5 2

0.5

1

1.5

𝑡𝑖𝑚𝑒

𝑢
(𝑋
𝑡
,𝑡
),

𝑋
𝑡

𝑋𝑡 with quota
quota 𝑢𝑡

𝑋𝑡 without quota

FIGURE 1.17 Optimal biomass and quota
function computed by Optimal Control and
compared with the solution with 𝑢 = 𝑢

𝑀

when 𝑋0 = 1.2.

1.8 SOLUTION BY ITÔ CALCULUS

In computational finance Itô calculus is preferred over the Kolmogorov setting,
primarily because the initial condition for the PDF are singular.

Consider again Problem (1.1). Itô calculus applied to

𝑗𝑡 =

∫ 𝑇

𝑡

E
[
(𝑋𝜏 − 𝑋𝑑)2 + 𝛽(𝜕𝑡𝑢)2 − 𝛼𝑢

]
d𝜏.

(1) yields

𝜕𝑡 𝑗 + (𝑟 − ^𝑋 − 𝑢)𝑋𝜕𝑋 𝑗 + 𝑋
2𝜎2

2 𝜕𝑋𝑋 𝑗 = −[(𝑋 − 𝑋𝑑)2 + 𝛽(𝜕𝑡𝑢)2 − 𝛼𝑢] .
(1.21)

Let us compute 𝑗 as the solution at 𝜏 = 0 and 𝑋 = 𝑋0 of the PDE, backward
in time and initiated by 𝑗 (𝑋,𝑇) = 0, ∀𝑋 ∈ R+, 𝜏 ∈]0, 𝑇 [:
The optimal control problem (1.1) is now

min
𝑢∈U

∫
R
𝑗 (𝑋, 0)𝜌0 (𝑋)d𝑋 : subject to (1.21) (1.22)

where 𝜌0 (𝑋) is the PDF of 𝑋0. We have to restrict 𝑋 < 𝑋𝑀 for the right hand
side of the PDE to be in 𝐿2 (R). On the open interval 𝐼 := (0, 𝑋𝑀) the variational

1. As a function of 𝑋𝑡 random, 𝑗 being deterministic has a PDE given by Itô calculus, roughly
speaking as follows:

d𝑡 𝑗 = 𝜕𝑡 𝑗d𝑡 + E [𝜕𝑋 𝑗d𝑋] + 1
2E [𝜕𝑋𝑋 𝑗d〈𝑋〉]

= d𝑡
(
𝜕𝑡 𝑗 + 𝜕𝑋 𝑗 (𝑟 − ^𝑋 − 𝑢)𝑋 +

𝑋2𝜎2

2
𝜕𝑋𝑋 𝑗

)
= −d𝑡 [(𝑋 − 𝑋𝑑)2 + 𝛽(𝜕𝑡𝑢)2 − 𝛼𝑢] .

242424

formulation of the PDE consists in finding 𝑗 in a weighted Sobolev space:

𝑗 ∈ 𝑉 := {𝑔 ∈ 𝐿2 (Ω) : 𝑋𝜕𝑋𝑔 ∈𝐿2 (𝐼)}, 𝑗 (·, 𝑇) = 0 and ∀ 𝑗 ∈ 𝑉, (1.23)∫
𝐼

(𝜕𝑡 𝑗+(𝑟 − ^𝑋 − 𝑢)𝑋𝜕𝑋 𝑗) 𝑗 −
∫
𝐼

𝜎2

2 𝜕𝑋 (𝑋
2 𝑗)𝜕𝑋 𝑗+ 𝜎

2

2 𝑋𝑀 𝑗 (𝑋𝑀) 𝑗 (𝑋𝑀)

= −
∫
𝐼

[(𝑋 − 𝑋𝑑)2 + 𝛽(𝜕𝑡𝑢)2 − 𝛼𝑢] 𝑗 .

1.8.1 Gradient computation

The gradient of 𝑗 with respect to 𝑢 results from the following calculus:∫
𝐼×]0,𝑇 [

grad𝑢 𝑗𝛿𝑢 :=
∫
𝐼

𝜌0𝛿 𝑗 (𝑋0, 0) subject to∫
𝐼

(𝜕𝑡𝛿 𝑗 + (𝑟 − ^𝑋 − 𝑢)𝑋𝜕𝑋𝛿 𝑗) 𝑗 −
∫
𝐼

𝜎2

2 𝜕𝑋 (𝑋
2 𝑗)𝜕𝑋𝛿 𝑗

+ 𝜎2

2 𝑋𝑀 𝛿 𝑗 (𝑋𝑀) 𝑗 (𝑋𝑀) =
∫
𝐼

𝑗
[
(𝑋𝜕𝑋 𝑗 + 𝛼)𝛿𝑢 − 2𝛽𝜕𝑡𝑢𝜕𝑡𝛿𝑢

]
, ∀ 𝑗 ∈ 𝑉.

Define 𝑝 by 𝑝(0) = 𝜌0 and∫
𝐼

(𝑝𝜕𝑡 𝑝 − (𝑝(𝑟 − ^𝑋 − 𝑢)𝑋𝜕𝑋 𝑝)+
∫
𝐼

𝜎2

2 𝜕𝑋 (𝑋
2𝑝)𝜕𝑋 𝑝− 𝜎

2

2 𝑋𝑀 𝑝(𝑋𝑀)𝑝(𝑋𝑀) = 0,

Then adding both equations with 𝑝 = 𝛿 𝑗 and 𝑗 = 𝑝 and remembering that
𝛿 𝑗 (𝑋,𝑇) = 0, leads to∫

𝐼

(𝑝𝜕𝑡𝛿 𝑗 + 𝛿 𝑗𝜕𝑡 𝑝) =
∫
𝐼×]0,𝑇 [

[𝑝(𝑋𝜕𝑋 𝑗 + 𝛼)𝛿𝑢 − 2𝛽𝜕𝑡𝑢𝜕𝑡𝛿𝑢] .

On the other hand,

−
∫
𝐼

𝜌0𝛿 𝑗 (𝑋, 0) =
∫
𝐼

𝛿 𝑗 (𝑋,𝑇)𝑝(𝑇) −
∫
𝐼

𝛿 𝑗 (𝑋, 0)𝑝(0) =
∫
𝐼×]0,𝑇 [

𝜕𝑡 (𝑝𝛿 𝑗).

Consequently∫
𝐼×]0,𝑇 [

grad𝑢 𝑗 𝛿𝑢 =

∫
𝐼

𝜌0 𝛿 𝑗 (𝑋0, 0) = −
∫
𝐼×]0,𝑇 [

[𝑝 (𝑋𝜕𝑋 𝑗 + 𝛼) 𝛿𝑢 − 2𝛽𝜕𝑡𝑢𝜕𝑡 𝛿𝑢] .

Hence this method is a minor variation of the method with the Kolmogorov
equation: 𝜌 and 𝑝 have similar equations and 𝑝′ and 𝑗 too.

1.9 LIMIT WITH VANISHING VOLATILITY

We have seen earlier that the optimal solution of the non-dynamic control is very
close to the solution of the deterministic control problem.

Dynamic Programming versus Supervised Learning Chapter | 1 25Dynamic Programming versus Supervised Learning Chapter | 1 25Dynamic Programming versus Supervised Learning Chapter | 1 25

We explore here the convergence of the PDE method to the deterministic
case by letting 𝜎 tend to zero. For clarity we take 𝛼 = 𝛽 = 0.

Consider again (1.22). Let 𝑌 (𝑋, 𝜏) be the solution of

¤𝑌 (𝜏) = (𝑟 − ^𝑌 (𝜏) − 𝑢(𝑌 (𝜏), 𝜏))𝑌 (𝜏), 𝑌 (𝑡) = 𝑋;

then 𝜕𝑡 𝑗 + (𝑟 − ^𝑋 − 𝑢)𝑋𝜕𝑋 𝑗 =
d
d𝜏
𝜌(𝑌 (𝜏, 𝑋), 𝜏) |𝜏=𝑡 .

(1.24)

Hence (1.21) is rewritten as

d
d𝜏
𝑗 (𝑌 (𝜏, 𝑋), 𝜏) |𝜏=𝑡 = − 𝜎

2

2 𝜕𝑋𝑋 (𝑋
2𝜌) − (𝑋 − 𝑋𝑑)2.

Consequently, when 𝜎 → 0, 𝑗 becomes equal to 𝑗 , the integral of −(𝑋 − 𝑋𝑑)2
on the streamline (1.24) which passes through 𝑋0 at 𝑡 = 0:

𝑗 (𝑌 (𝑇), 𝑇) − 𝑗 (𝑌 (0), 0) = − 𝑗 (𝑋0, 0) = −
∫ 𝑌 (𝑇)

𝑌 (0)
(𝑋 (𝑠) − 𝑋𝑑)2

𝑖.𝑒. 𝑗 (0) =
∫ 𝑇

0
(𝑋 (𝑡) − 𝑋𝑑)2d𝑡 : ¤𝑋 = (𝑟 − ^𝑋 − 𝑢)𝑋, 𝑋 (0) = 𝑋0.

(1.25)

This analysis shows that HJB becomes numerically singular when 𝜎 is too small.

1.10 CONCLUSION

Let us compare the 3 classes of methods:
1. Non-dynamic control (NDC) solved by Monte-Carlo.
2. Dynamic Programming in a stochastic setting (DP).
3. Dynamic Programming solved with Partial Differential equations (HJB).
NDC is a mathematical oddity because it does not take into account the necessity
of a Markovian solution forbidding an attempt to use the current noise level to
predict the next step (feedback); but from the practical point of view it is certainly
the best solution for the fishing site regulator, especially when it is coupled
with Supervised Learning. After all, provided that the model fits the reality, a
Markovian solution is not needed. By reinitializing the data every so often at
{𝑇𝑘 }𝐽0 and solving 𝐽 control problem on smaller time intervals [𝑇𝑗−1, 𝑇𝑗], on
could borrow from Model Predictive Control (see (5)). Yet, it can be seen on
figure 1.4 that the precision is hardly better at early times than at later times.

On this fishing site control problem DP and HJB are different implementa-
tions of the same approach. All four implementations gave mathematically sound
results, but hardly usable because bang-bang, because the Dirac 𝜕𝑢𝑡 when 𝑢 is
bang-bang, is not handled by the numerical algorithms. Note that a bang-bang
saturation of constraints gives a solution which is not far from the elementary
but intuitive strategy which consists in taking 𝑢𝑡 = 𝑢𝑚 when 𝑋𝑡 > 𝑋𝑑 and 𝑢

𝑀

otherwise; but we don’t want such discontinuous policies. In other words the

262626

penalization of |𝜕𝑡𝑢 | works for NDC but not for DP and HJB as implemented
here. A penalization of |𝜕𝑋𝑢 | is probably needed as well.

HJB with PDEs is the most taxing numerically and DP is much faster and also
capable of generating approximate solution which do not saturate the constraints
as much. NDC requires brute force Monte-Carlo, which is also very costly, yet
with supervised learning NDC outperform HJB and DP methods.

This problem belongs to a class for which the user cannot measure precisely
the random errors in the data and the model; the number of boats at sea and the
quantity of fish caught everyday may just reflect the roughness of the model rather
than the stochasticity of the measurements; nevertheless this point needs to be
investigated further and in the mean time the non-dynamic control problem makes
sense and gives better results. Furthermore, when coupled with a neural network
the optimization process is very fast, once the learning phase is done. Finally,
porting the trained network to a hand held device is also a major advantage.

ACKNOWLEDGEMENTS

We are thankful to François Murat for his help to minimize the hypotheses
necessary for the existence of a solution to the Kolmogorov control problem.

The computer programs in Python and FreeFEM++ can be obtained by email
from olivier.pironneau@sorbonne-universite.fr.

BIBLIOGRAPHY
[1] P. Auger and O. Pironneau, Parameter Identification by Statistical Learning of a Stochastic

Dynamical System Modelling a Fishery with Price Variation. Comptes-Rendus de l’Académie
des Sciences. May 2020.

[2] S. Balakrishnan and V. Biega. Adaptive-critic-based neural networks for aircraft optimal con-
trol. Journal of Guidance, Control and Dynamics, 19(4), 893–898. 1996.

[3] R. Bellman, Dynamic Programming, Princeton, NJ: Princeton University Press, 1957.
[4] D. Bertsekas, Reinforced Learning & Optimal Control. Athena Scientific, Belmont Mass.

2019.
[5] S. Boyd and C. Barratt: Linear Controller Design. Prentice-Hall, 1991.
[6] T. Brochier, P. Auger, D. Thiao, A. Bah, S. Ly, T. Nguyen Huu, P. Brehmer. Can overexploited

fisheries recover by self-organization? Reallocation of the fishing effort as an emergent form
of governance. Marine Policy, 95 (2018) 46-56.

[7] F. Chollet: Deep learning with Python. Manning publications (2017).
[8] I. Goodfellow, Y. Bengio and A. Courville (2016): Deep Learning, MIT-Bradford.
[9] F. Hecht (2012): New development in FreeFem++, J. Numer. Math., 20, pp. 251-265. (see also

www.freefem.org.)
[10] Jiongmin Yong and Xun Yu Zhou: Stochastic Controls Hamiltonian Systems and HJB Equa-

tions Application of Mathematics series vol 43. Springer 1991.
[11] R. Kamalapurkar and P. Walters and J. Rosenfeld and W. Dixon, Reinforcement Learning for

Optimal Feedback Control. Springer 2018.
[12] M. Lauriere and O. Pironneau: Dynamic Programming for mean-field type control J. Optim.

Theory Appl. 169 (2016), no. 3, 902–924.

Dynamic Programming versus Supervised Learning Chapter | 1 27Dynamic Programming versus Supervised Learning Chapter | 1 27Dynamic Programming versus Supervised Learning Chapter | 1 27

[13] C. Le Bris and P.L. Lions, Existence and uniqueness of solutions to Fokker-Planck type eqs.
with irregular coefficients. Comm. Partial Differential Eqs., 33, 1272-1317, 2008.

[14] G. Pagès, H. Pham and J. Printems: An Optimal Markovian Quantization Algorithm For
Multi-Dim. Stochastic Control Problems, Stochastics and Dynamics, 4(4):501–545, 2004.

[15] G. Pagès. Numerical Probability: An Introduction with Applications to Finance. Springer,
Berlin, 2018, 574p.

[16] G. Pagès, J. Printems. Optimal quadratic quantization for numerics: the Gaussian case, Monte
Carlo Methods and Appl., 9(2):135–165, 2003.

282828

APPENDIX A

1.11 A MODEL WITH FISHING QUOTA
Let 𝑋 (𝑡) be the biomass at time 𝑡, 𝐸 (𝑡) the fishing effort – interpreted as the number
of boats – and 𝑄(𝑡) is the fishing capacity per boat. In (6) 𝑄(𝑡) = 𝑞𝑋 (𝑡), with the
catchability 𝑞 constant, meaning that the more fish there is the more fishermen will catch
them. In this study a quota 𝑄(𝑡), given to each fisherman, is imposed on the maximum
weight of fish caught on a day 𝑡 ; hence the total amount of fish caught on a day is
min(𝑞𝑋 (𝑡), 𝑄(𝑡))𝐸 (𝑡). The modified model is an equation for 𝑋 (𝑡) which says that the
biomass changes due to the natural growth/decay rate 𝑟 , the long time limit ^′ of 𝑋 and
the depletion due to fishing:

¤𝑋 (𝑡) = 𝑋 (𝑡) (𝑟 − ^′𝑋 (𝑡)) −min(𝑞𝑋 (𝑡), 𝑄(𝑡))𝐸 (𝑡). (Biomass dynamics.)

Let 𝐹 (𝑡) = min(𝑞𝑋 (𝑡), 𝑄(𝑡)). The fishing effort is driven by the profit 𝑝𝐹 minus the
operating cost of a boat 𝑐, where 𝑝 being the price of fish.

¤𝐸 = 𝐸 (𝑝𝐹 − 𝑐) (Fishing effort driven by profit,)

The price is driven by the demand 𝐷 (𝑝) and the resource 𝐹𝐸 :

Φ ¤𝑝 = 𝐷 (𝑝) − 𝐹𝐸 with the demand 𝐷 (𝑝) = 𝑎′

1 + 𝛾𝑝

where Φ is the inverse time scale at which the fish market price adjusts. When Φ << 1, it
may be approximated by 𝐷 (𝑝) = 𝐹𝐸 i.e. 𝑝𝐹𝐸 = 𝑎′

𝛾 −
𝐹𝐸
𝛾 . With 𝑎 = 𝑎′/𝛾 and ^ = ^′𝛾,

the whole system is:

¤𝑋 = 𝑋 (𝑟 − ^
𝛾
𝑋) −min(𝑞𝑋 (𝑡), 𝑄(𝑡))𝐸, ¤𝐸 = 𝑎 −min(𝑞𝑋 (𝑡), 𝑄(𝑡)) 𝐸

𝛾
− 𝑐𝐸.

Now notice that by changing 𝑋0 → 𝑋0/𝛾 we may take 𝛾 = 1.

Remark 4. Finally with 𝑡 = 𝑡𝑞, �̃� = 𝑄/𝑞 and (𝑟, ˜̂”, �̃�, 𝑐) = (𝑟, ^, 𝑎, 𝑐)/𝑞 the above
system is identical but now 𝑞 = 1.

Remark 5. The ODE system is of the form ¤𝑌 (𝑡) = 𝜓(𝑌 (𝑡)), 𝑡 ∈]0, 𝑇 [, 𝜓 : R2 → R2.
Global existence of solution on [0, 𝑇] is not known because 𝜓 is only locally Lipschitz
and not sublinear for large 𝐸, 𝑋 .

A numerical simulation with and without optimal quota is shown on figure 1.18 with
the following parameters (see file fishingQuota0.py and for the definition of 𝛼 and 𝛽,
see below):

𝑟 = 2, ^ = 1.2, 𝑎 = 1, 𝑐 = 1, 𝑇 = 2, 𝑀 = 50, 𝑋𝑑 = 1, 𝑞 = 1.5
𝑋0 = 0.9, 𝐸0 = 2, 𝛼 = 0.01, 𝛽 = 0.001, 𝑢𝑚 = 0.5, 𝑢

𝑀
= 1.5.

Notice that 𝑞 is big enough so that min(𝑞𝑋 (𝑡), 𝑄(𝑡)) = 𝑄(𝑡), ∀𝑡. Notice also that without
quota the biomass tends to zero, in this case.

Dynamic Programming versus Supervised Learning Chapter | 1 29Dynamic Programming versus Supervised Learning Chapter | 1 29Dynamic Programming versus Supervised Learning Chapter | 1 29

FIGURE 1.18 Left: Quota (blue) and fishing effort (ochre). No quota means that 𝑄 (𝑡) = 1 for all
𝑡 . Right: biomass with (blue) and without quota (ochre).

1.12 REFORMULATION
To prevent extinction, a constraint is set on the total catch min(𝑞𝑋 (𝑡), 𝑄(𝑡))𝐸 (𝑡)). Op-
timization will then define 𝑄(𝑡). It is expected that 𝑄(𝑡) < 𝑞𝑋 (𝑡), otherwise the quotas
are irrelevant in the sense that the fisherman is given a maximum allowed catch which is
greater than what he could possibly catch.

So let us add a constraint 𝑄(𝑡) ≤ 𝑄𝑀 so that min(𝑞𝑋 (𝑡), 𝑄(𝑡)) = 𝑄(𝑡). Denote
𝑢(𝑡) = 𝐸 (𝑡)𝑄(𝑡)/𝑋 (𝑡). Then we need 𝑢(𝑡) ≤ 𝑞𝐸 (𝑡) and the problem becomes

min
𝑄′∈Q′

{
𝐽 :=

∫ 𝑇

0
(𝑋 (𝑡) − 𝑋𝑑 (𝑡))2d𝑡 : ¤𝑋 = 𝑋

(
𝑟 − ^′𝑋 − 𝑢(𝑡)

)
, 𝑋 (0) = 𝑋0}

In the paper, the optimization is performed without computing 𝐸 ; then 𝐸 is computed
with the optimal 𝑢 by solving ¤𝐸 = 𝑎 − 𝑐𝐸 − 𝑢𝑋, 𝐸 (0) = 𝐸0. As said before it is not
feasible to impose too small a quota, so finally U =

{
𝑢𝑚 ≤ 𝑢(𝑡) ≤ 𝑢𝑀

}
where 𝑢

𝑀
is

less than 𝑞𝐸 (𝑡) at all time.

1.12.1 More constraints on quotas
Low quotas are unpopular. To avoid them we may use penalty and add to the criteria
−
∫ 𝑇
0 𝛼𝑢(𝑡)d𝑡.
More over, it will be unpopular if 𝑢(𝑡) = 𝑢𝑚 one day and 𝑢(𝑡) = 𝑢

𝑀
the next day, so

to avoid too many changes we may add to the criteria a term like 𝛽 | 𝑑𝑢
𝑑𝑡
|2.

An optimal policy is a solution of

min
𝑄∈Q

𝐽 (𝑢) :=
∫ 𝑇

0

[
|𝑋 − 𝑋𝑑 |2 − 𝛼𝑢 + 𝛽 |

𝑑𝑢

𝑑𝑡
|2
]

: subject to

¤𝑋 = 𝑋
(
𝑟 − ^′𝑋 − 𝑢(𝑡)

)
, 𝑋 (0) = 𝑋0.

Figure 1.1 shows the solution with the same parameters as for figure 1.18. There are
differences because it is a different set of constraints. The policy given to each fisherman
is 𝑄(𝑡) for the full system and 𝑢(𝑡)𝑋 (𝑡)/𝐸 (𝑡) for the reduced one.

303030

1.13 AN ANALYTICAL SOLUTION FOR A SIMILAR PROBLEM
It was said earlier that 𝑌𝑡 = log 𝑋𝑡 simplifie the problem. If the goal 𝑋𝑡 ∼ 𝑋𝑑 , is changed
to 𝑌𝑡 ∼ 𝑌𝑑 , then with 𝑣𝑡 = 𝑟 − 𝜎2

2 − ^𝑒
𝑌𝑡 − 𝑢 the problem is

min
𝑢∈U

{ ∫ 𝑇

0
E [(𝑌𝑡 − 𝑌𝑑)2 − 𝛼𝑢 + 𝛽 |𝜕𝑡𝑢 |2 with d𝑌𝑡 = 𝑣𝑡 (𝑢)d𝑡 + 𝜎d𝑊𝑡 ,

}
⇒ 0 = inf

𝑢∈U

{
𝜕𝑡𝑉 + 𝑣𝜕𝑌𝑉 + 𝜎

2

2 𝜕𝑌𝑌𝑉 + (𝑌 − 𝑌𝑑)2 − 𝛼𝑢 + 𝛽 |𝜕𝑡𝑢 |2
}
.

If the constraints are not active, the equation for the optimality of 𝑢 is

𝜕𝑌𝑉 + 𝛼 + 2𝛽𝜕𝑡𝑡𝑢 = 0.

When 𝛼 = 0 there is a polynomial solution to this system: 𝑉 = 𝑎𝑌2 + 𝑏𝑌 + 𝑐, 𝑣 = 𝐾𝑌 + 𝑘
where 𝑎, 𝑏, 𝑐, 𝐾, 𝑘 are functions of time with 𝑎(𝑇) = 𝑏(𝑇) = 𝑐(𝑇) = ¥𝐾 (𝑇) = ¤𝐾 (𝑇) =
¥𝑘 (𝑇) = ¤𝑘 (𝑇) = 0. By identification for all 𝑌 it is found that:

¤𝑎 + 2𝑎𝐾 + 𝛽 ¤𝐾2 + 1 = 0, ¤𝑏 + 𝐾𝑏 + 2𝑎𝑘 + 2𝛽 ¤𝐾 ¤𝑘 = 0,

¤𝑐 + 𝑘𝑏 + 𝜎2𝑎 + 𝛽 ¤𝑘2 = 0, 𝛽 ¥𝐾 + 𝑎 = 0, 2𝛽 ¥𝑘 + 𝑏 = 0.

One must also check that 𝑢𝑡 = 𝑟 − 𝜎2

2 − ^𝑋𝑡 − 𝐾 (𝑡) log 𝑋𝑡 − 𝑘 (𝑡) is inU.
A solution procedure is to use the next to last equation in the first one and the last one

into the second one:

−𝐾 − 2𝐾 ¥𝐾 + ¤𝐾2 + 1
𝛽
= 0, ¥𝐾 (𝑇) = ¤𝐾 (𝑇) = 𝐾 (𝑇) = 0

−�̈� − 𝐾 ¥𝑘 + ¤𝐾 ¤𝑘 − ¥𝐾𝑘 = 0, ¥𝑘 (𝑇) = ¤𝑘 (𝑇) = 𝑘 (𝑇) = 0 ⇒ 𝑘 (𝑡) = 0 ∀𝑡.

Results, obtained with finite differences, are shown on figures 1.19 & 1.20.

0 0.5 1 1.5
1

2
30.6

0.8

1

𝑡

𝑋

𝑢(𝑋, 𝑡)

FIGURE 1.19 Solution of the Dynamic
Programming equation: side view.

0 0.5 1 1.5 2

0.5

1

1.5

2

𝑡𝑖𝑚𝑒

𝑢
(𝑋
𝑡
,𝑡
),

𝑋
𝑡

𝑋𝑡 with quota
quota 𝑢𝑡

𝑋𝑡 without quota

FIGURE 1.20 Optimal biomass and quota
when 𝑋0 = 0.8 and comparison with the
solution with 𝑢 = 𝑢

𝑀
.

