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THE YAMABE INVARIANT OF THE GRAVITATIONAL MONOPOLE

We show the Yamabe invariant is non-positive due to the presence of the Gravitational Monopole equations.

Introduction

In this short note we announce some results on the Yamabe invariant of a Gravitational monopole, the notion of the Gravitational monopole was first introduced in [cf .1]. We shall give details of the proofs in a different paper.

Let (M n , g) a smooth, compact-oriented Riemannian n-manifold. As we know the Einstein-Hilbert action (1.1) g → s g dv g =: I g with s g the scalar curvature and dv g is the volume form with respect to the metric g gives the Einstein equations at the critical points of the action I g with a volume constraint. The Yamabe problem is to minimize I g in a fixed conformal class of metric. Due to such a constraint, critical points of I g have constant scalar curvature. Let us define now the Yamabe invariant Y (g),

(1.2) Y (g) := inf g=e 2w g vol( g) -n-2 n s g dv g .
Due to the extensive work of Yamabe, Aubin, Trudinger, and Schoen, we now know that every conformal class on a compact manifold admits a metric that achieves Y (g) and therefore has constant scalar curvature. Now in particular for n = 4, M 4 is an oriented four-dimensional manifold. The Hodge * -operator induces a splitting of the space of two-forms

(1.3) 2 = 2 + 2 -
into the subspace of self-dual 2-forms 2 + and anti-self-dual 2-forms 2 -. This decomposition induces a splitting of the Weyl curvature (defined as a trace-free endomorphism of the 2 ) into its self-dual and anti-self-dual components W ± . We have the Hirzebruch signature formula

(1.4) 12π 2 σ(M 4 ) = M 4 (|W + | 2 -|W -| 2 )dv g . Let us define the Weyl functionals W[g], W ± [g] by (1.5) W[g] := |W g | 2 dv g , W ± [g] := |W ± g | 2 dv g .
Due to the Hirzebruch signature formula (1.4), the study of the Weyl functional W[g] is equivalent to the study of the self-dual functional

W + [g].
The signature formula implies the following fact, Proposition 1.

(1.6) W + [g] ≥ max{12π 2 σ(M 4 ), 0}.
The condition

(1.7) W + [g] = max{12π 2 σ(M 4 ), 0}.
is true if and only if

W + ≡ 0 or W -≡ 0, that is g is half-conformally flat.
The following formula is useful

(1.8) |W | 2 = |W + | 2 + |W -| 2 ,
also since W is conformally invariant, W ± are conformally invariant pieces of W .

The following result is due to Taubes: for any (closed, compact, orientable) four-dimensional manifold N 4 , the manifold M 4 = N 4 #kCP 2 admits anti-self-dual metrics (i.e. W -= 0) for all k sufficiently large.

It is a classical result that using the conformal invariance of the Bach tensor, one concludes that any metric which is (locally) conformally Einstein is critical for W + .

The Gravitational Monopole Equations

In [START_REF] Bhattacharya | Gourab Gravitational Monopoles[END_REF], the following equations are introduced (sometimes we omit the mapping c, and denote by " • " the Clifford multiplication (or composition) and the dimension 4 for the convenience of computations):

/ ∇ψ = (d + d * )ψ = 0, c(W + g ) = 1 4 ⟨e i • e j ψ, ψ⟩e i ∧ e j , (2.1) 
One can rewrite (2.1) in the following form

/ ∇ψ = 0, c(W + g ) = ψ * ⊗ ψ - |ψ| 2 2 Id, (2.2) 
therefore we have the following proposition Proposition 2.

(2.3)

|W + | 2 = |ψ| 4 8 .

Constraint on the Yamambe invariant due to the Gravitational Monopole Equations.

We have the following propositions.

Proposition 3. Let (M 4 , g 0 ) be a compact, oriented, four-dimensional manifold with a Spin C -structure. Let E the trace-free part of the Ricci tensor. We also assume the validity of (2.2) on M 4 . We further assume

(3.1) 3|ψ| 4 dv g0 = 32π 2 (2χ(M 4 ) + 3σ(M 4 )),
then there is a metric g = e 2w g 0 such that (3.2) 6∆s g + 3|ψ| 4 + 12|E| 2 = s 2 g . It was also shown in [START_REF] Gursky | The Weyl functional, de Rham cohomology, and Kähler-Einstein metrics[END_REF] without the existence of the Gravitational monopole hypothesis that Proposition 4. Let (M 4 , g 0 ) be a compact, oriented, four-dimensional manifold. Let E the trace-free part of the Ricci tensor. Assume

(3.3) |W + | 2 dv g0 = 4 3 π 2 (2χ(M 4 ) + 3σ(M 4 )),
then there is a metric g = e 2w g 0 such that

(3.4) ∆s g = -4|W + | 2 -2|E| 2 + 1 6 s 2 g .
Also,

(1) if Y (g 0 ) > 0, then s g > 0.

(2) if Y (g 0 ) = 0, then g is Ricci-flat anti-self-dual metric.

Since the Gravitational monopole puts the restriction on the scalar curvature s g0 ≤ 0 of M 4 [cf. 1], and since Proposition (4) implies whenever Y (g 0 ) > 0, then s g > 0, we therefore conclude, the following theorem: Theorem 3.1. Let (M 4 , g 0 ) be a compact, oriented, four-dimensional manifold with a Spin C -structure. Let E the trace-free part of the Ricci tensor. We also assume the validity of (2.2) on M 4 . We further assume

(3.5) 3|ψ| 4 dv g0 = 32π 2 (2χ(M 4 ) + 3σ(M 4 )),
then there is a metric g = e 2w g 0 such that

(3.6) Y (g 0 ) ≤ 0.
Since Y (g 0 ) = 0 implies Ricci-flatness and anti-self-duality, it requires a special attention.

Proposition 5. Let (M 4 , g 0 ) be a compact, oriented, four-dimensional manifold with a Spin C -structure. Let E the trace-free part of the Ricci tensor. We also assume the validity of (2.2) on M 4 . We further assume

(3.7) 0 < 3|ψ| 4 dv g0 < 32π 2 (2χ(M 4 ) + 3σ(M 4 )),
then there is a metric g = e 2w g 0 such that (1) Y (g 0 ) ≤ 0. (2) There is no metric g 0 satisfying (3.7) with Y (g 0 ) = 0, therefore, Y (g 0 ) < 0.

(3) 24∆s g + 3(4 + ϵ 1 )|ψ| 4 + 48|E| 2 + 4s 2 g = 0, for some ϵ 1 > 0. Proposition 6. Let (M 4 , g 0 ) be a compact, oriented, four-dimensional manifold with a Spin C -structure. Let E the trace-free part of the Ricci tensor. We also assume the validity of (2.2) on M 4 . We further assume

(3.8) |ψ| 4 dv g0 = 16π 2 (2χ(M 4 ) + 3σ(M 4 )), then (1) 
Y (g 0 ) ≤ 0. (2) there is a metric g = e 2w g 0 such that [cf. 2]

∆s g = - 3 2 |E| 2 + 1 8 s 2 g .
Proposition 7. Let (M 4 , g 0 ) be a compact, oriented, four-dimensional manifold with a Spin C -structure. Let E the trace-free part of the Ricci tensor. We also assume the validity of (2.2) on M 4 . We further assume (3.9) 0 < |ψ| 4 dv g0 = 16π 2 (2χ(M 4 ) + 3σ(M 4 )), then

Y (g 0 ) ≤ 0. (2) there is a metric g = e 2w g 0 such that [cf. 2] ∆s g + ϵ 2 |ψ| 4 + 12|E| 2 = s 2 g , for some ϵ 2 > 0.