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THE YAMABE INVARIANT OF THE GRAVITATIONAL MONOPOLE.

GOURAB BHATTACHARYA

Abstract. We show the Yamabe invariant is non-positive due to the presence of the Gravitational Monopole

equations.

1. Introduction

In this short note we announce some results on the Yamabe invariant of a Gravitational monopole, the
notion of the Gravitational monopole was first introduced in [cf.1]. We shall give details of the proofs in a
different paper.

Let (Mn, g) a smooth, compact-oriented Riemannian n-manifold. As we know the Einstein-Hilbert action

(1.1) g 7→
∫
sgdvg =: Ig

with sg the scalar curvature and dvg is the volume form with respect to the metric g gives the Einstein
equations at the critical points of the action Ig with a volume constraint. The Yamabe problem is to
minimize Ig in a fixed conformal class of metric. Due to such a constraint, critical points of Ig have constant
scalar curvature.

Let us define now the Yamabe invariant Y (g),

(1.2) Y (g) := inf
g̃=e2wg

vol(g̃)−
(

n−2
n

) ∫
sg̃dvg̃.

Due to the extensive work of Yamabe, Aubin, Trudinger, and Schoen, we now know that every conformal
class on a compact manifold admits a metric that achieves Y (g) and therefore has constant scalar curvature.

Now in particular for n = 4, M4 is an oriented four-dimensional manifold. The Hodge ∗-operator induces
a splitting of the space of two-forms

(1.3)

2∧
=

2∧
+

⊕ 2∧
−

into the subspace of self-dual 2-forms
∧2

+ and anti-self-dual 2-forms
∧2

−. This decomposition induces a

splitting of the Weyl curvature (defined as a trace-free endomorphism of the
∧2

) into its self-dual and
anti-self-dual components W±. We have the Hirzebruch signature formula

(1.4) 12π2σ(M4) =

∫
M4

(|W+|2 − |W−|2)dvg.

Let us define the Weyl functionals W[g], W±[g] by

(1.5) W[g] :=

∫
|Wg|2dvg, W±[g] :=

∫
|W±

g |2dvg.

Due to the Hirzebruch signature formula (1.4), the study of the Weyl functional W[g] is equivalent to the
study of the self-dual functional W+[g].

The signature formula implies the following fact,
1
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Proposition 1.

(1.6) W+[g] ≥ max{12π2σ(M4), 0}.

The condition

(1.7) W+[g] = max{12π2σ(M4), 0}.

is true if and only if W+ ≡ 0 or W− ≡ 0, that is g is half-conformally flat.

The following formula is useful

(1.8) |W |2 = |W+|2 + |W−|2,

also since W is conformally invariant, W± are conformally invariant pieces of W .
The following result is due to Taubes: for any (closed, compact, orientable) four-dimensional manifold

N4, the manifold M4 = N4#kCP 2 admits anti-self-dual metrics (i.e. W− = 0) for all k sufficiently large.
It is a classical result that using the conformal invariance of the Bach tensor, one concludes that any

metric which is (locally) conformally Einstein is critical for W+.

2. The Gravitational Monopole Equations

In [1], the following equations are introduced (sometimes we omit the mapping c, and denote by ” · ” the
Clifford multiplication (or composition) and the dimension 4 for the convenience of computations):

/∇ψ = (d+ d∗)ψ = 0,

c(W+
g ) =

1

4
⟨ei · ejψ,ψ⟩ei ∧ ej ,

(2.1)

One can rewrite (2.1) in the following form

/∇ψ = 0,

c(W+
g ) = ψ∗ ⊗ ψ − |ψ|2

2
Id,

(2.2)

therefore we have the following proposition

Proposition 2.

(2.3) |W+|2 =
|ψ|4

8
.

3. Constraint on the Yamambe invariant due to the Gravitational Monopole Equations.

We have the following propositions.

Proposition 3. Let (M4, g0) be a compact, oriented, four-dimensional manifold with a SpinC-structure. Let
E the trace-free part of the Ricci tensor. We also assume the validity of (2.2) on M4. We further assume

(3.1)

∫
3|ψ|4dvg0 = 32π2(2χ(M4) + 3σ(M4)),

then there is a metric g = e2wg0 such that

(3.2) 6∆sg + 3|ψ|4 + 12|E|2 = s2g.

It was also shown in [2] without the existence of the Gravitational monopole hypothesis that

Proposition 4. Let (M4, g0) be a compact, oriented, four-dimensional manifold. Let E the trace-free part
of the Ricci tensor. Assume

(3.3)

∫
|W+|2dvg0 =

4

3
π2(2χ(M4) + 3σ(M4)),
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then there is a metric g = e2wg0 such that

(3.4) ∆sg = −4|W+|2 − 2|E|2 + 1

6
s2g.

Also,

(1) if Y (g0) > 0, then sg > 0.
(2) if Y (g0) = 0, then g is Ricci-flat anti-self-dual metric.

Since the Gravitational monopole puts the restriction on the scalar curvature sg0 ≤ 0 of M4 [cf. 1], and
since Proposition (4) implies whenever Y (g0) > 0, then sg > 0, we therefore conclude, the following theorem:

Theorem 3.1. Let (M4, g0) be a compact, oriented, four-dimensional manifold with a SpinC-structure. Let
E the trace-free part of the Ricci tensor. We also assume the validity of (2.2) on M4. We further assume

(3.5)

∫
3|ψ|4dvg0 = 32π2(2χ(M4) + 3σ(M4)),

then there is a metric g = e2wg0 such that

(3.6) Y (g0) ≤ 0.

Since Y (g0) = 0 implies Ricci-flatness and anti-self-duality, it requires a special attention.

Proposition 5. Let (M4, g0) be a compact, oriented, four-dimensional manifold with a SpinC-structure. Let
E the trace-free part of the Ricci tensor. We also assume the validity of (2.2) on M4. We further assume

(3.7) 0 <

∫
3|ψ|4dvg0 < 32π2(2χ(M4) + 3σ(M4)),

then there is a metric g = e2wg0 such that

(1)

Y (g0) ≤ 0.

(2) There is no metric g0 satisfying (3.7) with Y (g0) = 0, therefore,

Y (g0) < 0.

(3)

24∆sg + 3(4 + ϵ1)|ψ|4 + 48|E|2 + 4s2g = 0,

for some ϵ1 > 0.

Proposition 6. Let (M4, g0) be a compact, oriented, four-dimensional manifold with a SpinC-structure. Let
E the trace-free part of the Ricci tensor. We also assume the validity of (2.2) on M4. We further assume

(3.8)

∫
|ψ|4dvg0 = 16π2(2χ(M4) + 3σ(M4)),

then

(1)

Y (g0) ≤ 0.

(2) there is a metric g = e2wg0 such that [cf. 2]

∆sg = −3

2
|E|2 + 1

8
s2g.

Proposition 7. Let (M4, g0) be a compact, oriented, four-dimensional manifold with a SpinC-structure. Let
E the trace-free part of the Ricci tensor. We also assume the validity of (2.2) on M4. We further assume

(3.9) 0 <

∫
|ψ|4dvg0 = 16π2(2χ(M4) + 3σ(M4)),

then
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(1)
Y (g0) ≤ 0.

(2) there is a metric g = e2wg0 such that [cf. 2]

∆sg + ϵ2|ψ|4 + 12|E|2 = s2g,

for some ϵ2 > 0.
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