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ABSTRACT

Over the last few years, several works have proposed deep learn-
ing architectures to learn dynamical systems from observation data
with no or little knowledge of the underlying physics. A line of work
relies on learning representations where the dynamics of the underly-
ing phenomenon can be described by a linear operator, based on the
Koopman operator theory. However, despite being able to provide
reliable long-term predictions for some dynamical systems in ideal
situations, the methods proposed so far have limitations, such as
requiring to discretize intrinsically continuous dynamical systems,
leading to data loss, especially when handling incomplete or sparsely
sampled data. Here, we propose a new deep Koopman framework
that represents dynamics in an intrinsically continuous way, lead-
ing to better performance on limited training data, as exemplified on
several datasets arising from dynamical systems.

Index Terms— Learning dynamical systems, Koopman opera-
tor, Forecasting, Data assimilation, Continuous dynamical systems.

1. INTRODUCTION

Learning dynamical systems from observation data with no or only
partial prior knowledge of the underlying physical phenomenon has
become an important topic in machine and deep learning in recent
years [1]. Many methods have been proposed to model dynami-
cal systems when we assume that the data has been generated from
some ordinary differential equation (ODE), usually considering only
one training trajectory of the observed system, i.e. the evolution of
the system starting from one given initial condition [2, 3]. Doing
so typically makes approaches less robust in inference phase when
considering different initial conditions than the one used for training.
Moreover, a large number of approaches require a discretization of
the system with a fixed time step. This can be problematic since
many dynamical systems, especially related to physical processes,
are intrinsically continuous and observations can be irregularly sam-
pled [4]. While one can easily design an ideal synthetic dataset
with regular high-frequency data (i.e. observations sampled at a high
rate), this is not always the case for natural data. For example, op-
tical satellite image time series are generally acquired every several
days, and some of the images can be partially or totally unexploitable
when the ground is covered by clouds, resulting in spatially and tem-
porally irregularly sampled data [5]. Therefore, there is a growing
need to be able to handle low-frequency or even irregularly-sampled
time series data. Models handling intrinsically continuous dynamics
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can naturally answer this issue, contrary to recent approaches that
need to re-sample irregular data on a fixed discrete grid [6, 7].

2. RELATION TO PRIOR WORK

Our approach is inspired by the Koopman operator theory [8, 9].
We assume that the state of our dynamics is described by a vector
x € X C R", n being the dimension of the system. The dynamics
can then be modeled by a discrete operator F' : X — X (assumed
autonomous here) such that

F(Xt) = Xt+1 (1)

where we write x; = x(t) at an integer time ¢ for simplicity. The
linear Koopman operator KC, which can be applied to any given mea-
surement function g : X — R of the dynamical system, consists in
composing functions by a time increment:

Kg(xt) = g(F(xt)) = g(Xe+1). @)

The Koopman operator K is linear, which makes it very powerful
since it enables to use linear algebra manipulations even for nonlin-
ear systems. Notably, one can explicitly find eigenfunctions of /C,
i.e. for a measurement function f which is a Koopman eigenfuction
with eigenvalue A, one has, for any time ¢, Kf(x:) = A\f(x:) =
f(x¢41). This offers much more interpretability than a purely non-
linear modeling. However, for most nonlinear systems, one needs
the Koopman eigendecomposition to be infinite-dimensional to ex-
actly model the dynamics. A line of work, starting from [10] which
introduces Koopman mode decomposition, has focused on finding
finite-dimensional approximations of the Koopman operator. No-
tably, [11] has evidenced a link between the Koopman mode decom-
position and the dynamic mode decomposition algorithm [12, 13].
The reader is referred to [14] for a detailed survey on those modern
developments of the Koopman operator theory.

Recently, several works have addressed the usage of deep learn-
ing architectures in relation with the Koopman operator theory [15,
16, 17, 18, 19, 20]. Some of those [20, 21] have discussed practical
ways to promote the long-term stability of the approximated opera-
tor. Most of these works do not aim at learning the full Koopman
operator, but rather its restriction to a finite set of functions, which
is a Koopman Invariant Subspace (KIS) [15]. Since such a set is sta-
ble by application of the Koopman operator, its restriction to the set
can be written as a matrix K € R?*?, d being the dimension of the
KIS. Thus, [15, 19, 18, 20] try to jointly learn a set of functions that
form a KIS and the restriction K of the Koopman operator to this
KIS. The KIS is typically learned by a neural autoencoding network,



which means that it has to be informative enough to reconstruct the
observation state. The present work also follows this line.

[17] chooses an alternative approach: they also train an autoen-
coder on the observation state yet they do not assume that it learns a
KIS and they rather try to model a continuous Koopman spectrum.
Therefore, they replace the matrix K by an auxiliary network which
takes a latent state as input and returns a matrix to multiply to it to
get the next state.

An important aspect of the Koopman framework is that it offers
tools to constrain the Koopman latent representation through spec-
tral properties of the linear operator, making learned models more
robust e.g. to changes in initial conditions. More importantly, in
this paper, we exploit the fact that working with a finite-dimensional
linear latent representation allows to propagate the dynamics in the
Koopman space to any time instant using a closed form integration
of the dynamics. Thus, the latent dynamics are essentially contin-
uous since we can query the state of the dynamical system for any
instant, starting from a known initial condition. This enables a very
natural and effective way to perform predictions that are not bound
to be discrete with the same sampling frequency as the training data.

3. PROPOSED METHOD

3.1. The discrete setting

In this setting, we use the same assumptions and notations as in equa-
tion (1). Our dataset is composed of m discrete trajectories of T
regularly sampled points. Given the m initial conditions x;,o corre-
sponding to each trajectory with index 1 < ¢ < m, one can write:

V1<i<mVO0<t<T, =xit=F'(xi0). 3)

The key to being able to represent the data with a finite-dimensional
linear operator is to find a Koopman invariant subspace [15] (KIS),
i.e. aset J of measurement functions such thatVg € J, K(g) € J.
While there exists trivial KIS, for example with observable functions
corresponding to constant values, we need to find one that contains
enough information to reconstruct the observation state x.

Our chosen architecture is composed of 3 trainable components:
(1) a deep encoder network ¢ : R” — R%, (2) the corresponding
decoder network 7 : R — R™ and (3) a square matrix K € R%*¢,
These components are the same as in the Linearly-Recurrent Au-
toencoder Network (LRAN) from [19]. The idea is that ¢ and v rep-
resent a nonlinear mapping from the space of observables to a KIS
and vice versa, while K corresponds to the restriction of the Koop-
man operator of the system to this KIS. In theory, these components
should allow us to make predictions with:

V1<i<m,V0<to<ts <T,xip, =K 0¢(xi))
“
In order to favor such behavior, we train our architecture using
compositions of the following generic loss function terms:

Lprea.nt (6,0, K, i, t) = [[xi.01a0 — DK p(xi1))])?
Liin,at(6, 9, K, i,t) = ||p(xii4ae) — KX d(xi0)])?

where ¢t and At are integers. Lyreq and Li;y, correspond respectively
to prediction and linearity loss terms. While the prediction loss di-
rectly favors the accuracy of predictions, the linearity loss rather en-
sures a coherent latent trajectory. Note that Ly,cq,0(¢, ¥, K, i,t) =
[|%s,c —¥(d(xi,4))||? is an autoencoding loss term, which is called
the reconstruction loss in [17], and that L;in,0 (¢, ¢, K, 4,t) = 0.

&)

The authors from [19] use a long-term loss function which we
rewrite here as

L(¢, 9, K) = >

1<i<m, 0<t<T—1
+ﬂ6tlen,t(¢7w7KalvO) +Q(¢7¢7K) (6)

where  determines the relative importance of the prediction and
linearity terms, €2 is a regularization term (included for generality
though the method from [19] does not use any) and § < 1 is used
to give more importance to the earliest time steps, making the op-
timization easier. In our own long-term loss function (9), we use
B =1, keep the same weight for all time steps (i.e. set 6 = 1), and
add the reconstruction loss for all samples.

A novelty of our work is that we softly enforce that K belongs
to the orthogonal group, which means that it defines a map close to
a Euclidean isometry in R?, and as such approximately preserves
norms in the latent space. Indeed, assuming that K is not orthogonal
would necessarily involve one of the two following options:

(1) Some of the eigenvalues have a modulus strictly greater
than one. Then the operator norm [||K]|| of K (the maximum
singular value of K) would be such that |||K||| > 1. Since
vt < T,||K'¢(x0)|] < |||K|||*||¢(x0)]||, for some initial con-
ditions (e.g. when ¢(xo) is an eigenvector corresponding to the
largest eigenvalue of K, i.e. when the bound is tight), the system
may quickly reach a region of the latent space that has never been
observed during training.

(2) Some of the eigenvalues have a modulus strictly smaller than
one. Then, for any initial condition, the latent state will converge to
a subspace of lower dimension spanned by eigenvectors correspond-
ing to the remaining eigenvalues. While this behavior makes sense
for systems that converge to a low-dimensional limit cycle, it can be
problematic when modeling a conservative dynamical system

Thus, the orthogonality of K enables to make stable predictions
on a far longer horizon. The Koopman operator framework could
allow us to enforce this orthogonality constraint exactly, by forcing
the eigenvalues of K to lie on the unit circle. However, we choose
to favor orthogonality in a soft way, through a loss term which was
previously discussed in the litterature (e.g. by [22] and [23]), and
which can be expressed as

6tLP7‘6d,t(¢7 1/)7 K7 7"7 0)

Lorin(K) = |[KK" — 1|7 (7

where I is the identity matrix and || - || the Frobenius norm. This
soft penalization is in practice more flexible than a hard constraint.

To sum up, our discrete models are first trained with a short-
term loss L1 and then re-trained with a long-term loss Lo, which are
expressed as follows:

L1(¢7/¢)7 K) = BlLOTﬁh(K) + Z

1<i<m, 0<t<T—5

+ Lp'red,l(i, t) + Lprcd,s(i7 t) + Llin,l (Z7 t) + le,s(i, t) (8)

Lp'red,[) (Za t)

La(¢,¢,K) = BaLortn(K) + Lpred,o(i,t)

1<i<m, 0<t<T—1
+ Lp'red,t (lv 0) + Llin,t (l7 O) (9)
where we dropped the dependencies of Ly,eq and L;;, on K,

¢ and v for clarity. Note that we did not observe a need for set-
ting relative weights between the different prediction and linearity



loss terms, while the regularizating orthogonality terms most often
require high weights 1 and (32 to have a practical influence on the
training. Also, L is an arbitrary combination of terms which proved
effective in most of our experiments, yet one could easily construct
another similar loss using different terms from (5), the most impor-
tant one probably being the reconstruction loss Lyred,o-

3.2. Generalizing a discrete model to a continuous setting

Let us assume that we are modeling a continuous dynamical sys-
tem and that, inside of the latent space spanned by the previously
described encoder ¢, there exists a linear infinitesimal operator, rep-
resented by a matrix D, such that:
do(x) _ dz _
& A Dz. (10)
By integrating this infinitesimal operator, one is now able to advance
time by any desired amount, not necessarily on a discrete and reg-
ular grid. In particular, knowing the initial condition of the system
z(to) = ¢(x(to)), one can write:

z(to + At) = exp(AtD)z(to) (1)

where exp stands for the matrix exponential.
In particular, with At = 1, one can identify that

K = exp(D). (12)

Such a real matrix D exists under technical conditions on the Jordan
normal form of K [24], which may only fail when K has real nega-
tive eigenvalues (close to —1, since this is the only possible negative
eigenvalue for an orthogonal matrix). This is unlikely to happen in
practice and never occurred in our experiments'.

To obtain a matrix logarithm efficiently, let us write the eigende-

composition of K in C:
K=VAV™ (13)

where V € C*? and A € C%*¢ s a diagonal matrix containing the
(complex) eigenvalues of K. Then we can efficiently compute D by
taking the principal logarithm of each (necessarily not real negative)
eigenvalue:

D = Viog(A)V™! (14)

where log(A) means the principal logarithm is applied to each diag-
onal element of A, and the off diagonal elements are 0.

4. EXPERIMENTS

We perform experiments on three dynamical systems: the simple
pendulum, a 3-dimensional dynamical system modeling the low-
dimensional attractor of a nonlinear high-dimensional fluid flow, and
the chaotic Lorenz-63 system. The first two benchmarks are taken
from [17] and we refer the reader to this paper for further detail. The
Lorenz system is a well-known 3-dimensional chaotic system with a
strange attractor, driven by the equations:

dr o dy
E - U(y 1')7 dt -

with parameters o = 10,7 = 28,b = 8/3.

% =xy —bz (15)

lr-2)-y S

!Should we constrain K to be perfectly orthogonal, a real logarithm would always
exist since O(d) is a matrix Lie group, whose Lie algebra is the set of skew-symmetric
matrices [25]

Fig. 1. Left: true Lorenz-63 system. Middle: our prediction starting
from a point in the attractor. Right: our prediction starting from a
point outside of the attractor.

All of our models evaluated in this section have the same archi-
tecture: the encoder network ¢ is a multi-layer perceptron (MLP)
with 3 layers, from which the hidden sizes are 256 and 128, with
ReLU nonlinearities and a final Koopman embedding of dimension
d = 16. The decoder also is a 3-layer MLP with symmetric hidden
sizes of 256 and 128. Only the size of the observation space varies: it
is 6 for the Lorenz-63 systems (the 3 variables and their derivatives),
2 for the pendulum (the angle 6 and its derivative) and 3 for the fluid
flow (the basic 3 variables of the system). The cumulated number of
parameters for ¢, 1 and K is about 70 000.

As for the Lorenz-63 system, despite the simplicity of our archi-
tecture, it is still able to learn to behave in a chaotic way, or at least to
simulate a chaotic behavior, even when the initialization is outside of
the attractor. We obtain Lyapunov exponents 0.61,0.07, —14.34 for
simulated trajectories of our model, which is close to the estimated
real exponents 0.9056, 0, —14.5721 of the Lorenz system [26]. We
also manage to model the attractor when initializing our predictions
outside of it. Note that, while the method from [17] is also able to
model the Lorenz-63 dynamics faithfully, classical models like re-
current neural networks are known to fail at this task. We plot our
simulated trajectories in figure 1.

For the pendulum dynamics, we use trajectories of 10 seconds
for training and validation. At the highest sampling frequency, this
corresponds to time series of length 1000. The trajectories all start
from a random initial angle with zero initial speed. There are 100
training trajectories and 25 validation trajectories, from which the
starting angles are sampled uniformly in a wide range of angles. The
models are then tested on a test set containing 10 trajectories also
covering a wide range of initial angles.

For the fluid flow dynamics, we use the exact same data as in
[17], with time series of length 121. This time, we did not keep
any of the training data for validation since we did not observe any
overfitting in our experiments.

Our evaluation criterion for the pendulum and fluid datasets is
the mean squared error, averaged over all time steps from all of the
testing trajectories. We chose this metric since, as one can see on
figure 2, the prediction error follows a complex pattern which does
not always increase with time. Thus, the error measured only at one
given time step is not representative of the accuracy of a prediction.
We compare our method against the state-of-the art [17], which we
refer to as DeepKoopman, and against an ablated version of our work
where we remove the orthogonality loss (7), i.e. set 1 = f2 = 0 in
loss functions L (8) and L2 (9), making the method similar to [19].

We evaluate two settings: the first one is a typical high-frequency
regular sampling setting, which was used in [17]. The second one
has an increased data sampling period: from 0.01s to 0.2s for the
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Fig. 2. Interpolation results. Top: pendulum, each color represents a different trajectory ; Bottom: fluid flow. Top left: comparison of our
predictions against DeepKoopman for 4 different testing trajectories. Top right: squared errors between these predictions and the groundtruth.
Bottom left: upsampled predictions from our model (blue), our ablated model (orange) and DeepKoopman (green) along with the low-
frequency (red) and high-frequency (magenta) sampling of a groundtruth fluid flow trajectory. Bottom right: The corresponding squared
errors from the 3 models, in logi¢ scale.



Dataset Our method DeepKoopman Our method (ablated)
Pendulum (HF) | 5.38 x 10~ % 1.41 x 104 4.42 x 1072
Pendulum (LF) | 6.82 x 10— % 1.62 x 10~ 8.02 x 1074
Fluid flow (HF) | 5.50 x 10~° 1.21 x 10~6 7.75 X 10~7
Fluid flow (LF) 8.89 x 10~° 2.31 x 1073 2.31 x 10~ ©

Table 1. Mean squared error averaged over all points from all high-
frequency testing trajectories. (HF) and (LF) stand respectively for
“high frequency” and “low frequency” settings.

pendulum, and from 0.02s to 0.4s for the fluid flow. This reduced
frequency results in an important gap between consecutive sampled
points, giving an incomplete view of the dynamical systems. We
evaluate the trained models in the original high frequency in or-
der to assess their ability to learn a continuous evolution from low-
frequency data. For our method, we compute a continuous operator
D from the learned matrix K to eventually provide high-frequency
predictions, as described in section 3.2. For the method from [17],
since it cannot be used to make predictions at a different frequency
from the one it has been trained on, we will simply perform a linear
interpolation between the points predicted at the low training fre-
quency. We interpolate in the latent space since it gives slightly bet-
ter results than interpolating directly in the observation space.

As expected, the original DeepKoopman framework is more ac-
curate than ours in some ideal settings. This is due to the auxiliary
network which enables to apply different linear transformations to
different latent states while our framework always applies the same
transformation. However, our framework outperforms this method
in low frequency settings, mostly because it is intrinsically able to
upsample its prediction to a higher frequency, resulting in a nontriv-
ial interpolation which is much better than the agnostic linear inter-
polation. One can visually assess the quality of the interpolation for
the compared models on figure 2.

The ablated version of our work notoriously fails at modeling
the pendulum system in high frequency, which shows that the or-
thogonality constraint is crucial to keep the predictions stable when
modeling very long time series, in particular for conservative models
such as this one. However, on the fluid flow dataset, the ablated ver-
sion performs better since the time series are shorter and the system
converges to the same limit cycle no matter the initial conditions, so
that the matrix K does not need to be orthogonal for this dataset.

5. CONCLUSION

In this paper, we proposed a deep learning implementation of the
Koopman operator based on autoencoders so as to construct a linear
infinitesimal operator, which enables a natural continuous formula-
tion of dynamical systems. The infinitesimal operator is constructed
from a discrete evolution matrix from which we softly enforce the
orthogonality. This enables our model to produce stable predic-
tions on a far longer time span than previous similar work [19], on
a time horizon comparable to methods that use an auxiliary network
to build a new matrix at each time step [17]. Using our continuous
formulation, one can easily interpolate low-frequency data in time to
obtain a convincing high-frequency prediction which is close to the
real dynamical system.

Possible extensions of our work include adapting it to controlled
dynamical systems, as already proposed by works close to ours [18],
and training our architecture jointly to forward and backward pre-
diction for more robustness [16, 20]. We have already conducted
promising early experiments on learning from irregular data, which

are not reported here. This paves the way for future application on
difficult natural data, like satellite image time series which are natu-
rally sparse and irregular due to the presence of clouds [5].
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