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UNIQUENESS OF THE CAUCHY DATUM FOR THE

TEMPERED-IN-TIME RESPONSE AND CONDUCTIVITY

OPERATOR OF A PLASMA

OLIVIER LAFITTE1,2 AND OMAR MAJ3,4

Abstract. We study the linear Vlasov equation with a given electric field
E ∈ S, where S is the space of Schwartz functions. The associated damped

partial differential equation has a unique tempered solution, which fixes the

needed Cauchy datum. This tempered solution then converges to the causal
solution of the linear Vlasov equation when the damping parameter goes to

zero. This result allows us to define the plasma conductivity operator σ, which

gives the current density j = σ(E) induced by the electric field E. We prove
that σ is continuous from S to its dual S′. We can treat rigorously the case

of uniform non-magnetized non-relativistic plasma (linear Landau damping)

and the case of uniform magnetized relativistic plasma (cyclotron damping).
In both cases, we demonstrate that the main part of the conductivity operator

is a pseudo-differential operator and we give its expression rigorously. This
matches the formal results widely used in the theoretical physics community.
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1. Introduction

A plasma is a collection of a sufficiently large number of electrically charged
particles of various species (electrons, protons, and ions of different elements), sub-
ject to electromagnetic fields. In kinetic theory, the configuration of a plasma is
specified by a family of functions fs : R ×R3 ×R3 → R+, labeled by the index of
particle species s and defined so that fs(t, x, p) gives the density of particles of the
species s at the time t, position x and relativistic momentum p.

The equations governing the evolution of the distribution functions {fs}s, to-
gether with the electric field E : R×R3 → R3 and the magnetic field B : R×R3 →
R3, are given by the relativistic Vlasov-Maxwell-Landau system, which writes

(1)



∂tfs + vs · ∇xfs + qs
(
E+ vs × B/c

)
· ∇pfs = Cs({fs′}s′),

∂tE− c∇× B = −4π
∑
s

qs

∫
R3

vs(p)fs(t, x, p)dp,

∂tB = −c∇× E,

∇ · B = 0,

∇ · E = 4π
∑
s

qs

∫
R3

fs(t, x, p)dp,

where the relativistic velocity vs is defined by vs(p) = p/[msγs(p)], with γs(p) =(
1+p2/m2

s c
2
)1/2

, Cs is the relativistic Landau collision operator [6, 13] and depends
on {fs′}s′ , c is the speed of light, ms is the mass of particles of the species s, and qs
is their electric charge (c.g.s. units are used throughout the paper).

However, a variety of reduced models are also in use for modeling plasmas and
gases in special cases. For instance, at moderate energies the non-relativistic version
is used, which follows from (1) by setting γs(p) = 1, so that vs(p) = p/ms, and by
replacing Cs with the non-relativistic Landau collision operator. When the collision
operator Cs can be neglected, one recovers the Vlasov-Maxwell system both in the
relativistic and non-relativistic versions. The Vlasov-Maxwell system can be further
reduced, when all effects of the magnetic field can be neglected; then Maxwell’s
equations are replaced by the Poisson equation for the electrostatic potential ϕ,
E = −∇ϕ, and the Vlasov-Maxwell system reduces to the Vlasov-Poisson system.
For electrically neutral particles (a gas), qs = 0, the electromagnetic part of the
system can be dropped and the collision operator Cs is given by the Boltzmann
operator. This gives the Boltzmann equation [16]. One can also replace the collision
operator by simpler models, such as the BGK (Bhatnagar, Gross and Krook [8])
operator, leading to the BGK kinetic model [16].

The cases mentioned above are just some of the most common kinetic models for
plasmas and gases but other “combinations” of self-consistent forces and collision
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operators are also considered. The literature on kinetic models is vast and has
many applications. We shall not attempt to give a review here.

In this paper we are particularly interested in applications to the study of high-
frequency electromagnetic waves in high-temperature plasmas. For such problems,
relativistic effects have to be accounted for (at least for the electrons), but collisions
can be neglected, i.e. Cs = 0, since the time scale of interest is much shorter than the
collision time. In addition, the wave is a small perturbation of the electromagnetic
fields of the plasma so that a formal linearization of the Vlasov equation can be
physically justified. As a result, the linearized relativistic Vlasov-Maxwell system is
the physically appropriate model for such applications. Simpler models such as the
linearized non-relativistic Vlasov-Maxwell or the linearized Vlasov-Poisson system,
even in reduced dimension d < 3, can be interesting as well, for fundamental plasma
theory.

It is however worth starting from an overview of the mathematical results for the
non-linear models, in order to understand the expected regularity of the distribution
functions and the electromagnetic field. The mathematical works on such a large
class of models focus in particular on the associated Cauchy problem [25, 21, 41,
and references therein].

1.1. Known results on existence and uniqueness. For the non-relativistic
Vlasov-Maxwell system, i.e. equation (1) with γ = 1 and Cs = 0, Wollman [56]
obtained a local existence and uniqueness result: for a single-species non-relativistic
plasma and with initial data in Hs, s ≥ 5, and with compactly supported initial
particle distribution, there is a time T > 0 depending on the initial conditions such
that a unique solution f ∈ C

(
[0, T ], Hs(R6)

)
∩ C1

(
[0, T ], Hs−1(R6)

)
exists. Later

Asano and Ukai [3], Degond [19], and Schaeffer [53] independently proved similar
results on the local existence and uniqueness of a solution (fs,E,B) with lifespan
independent of the speed of light c. The fact that the lifespan is independent of c
allowed them to take the limit c→ ∞ and to show convergence to a solution of the
Vlasov-Poisson system. E.g., Degond showed the local existence and uniqueness of
the solution in Sobolev spaces Hs with s ≥ 3; specifically, if the initial data are
in H3, and the initial distribution function is non-negative, f0s ≥ 0, and compactly
supported in velocity, Degond has shown that there exist a time T > 0, depending
on the initial data but not on the speed of light c, and a solution (fs,E,B) in
L∞(0, T ;H3(R6) ×H3(R3) ×H3(R3)

)
. Wollman [57] improved his earlier result:

again for a single-species non-relativistic plasma, he showed local existence of a C1

solution with initial data f0 ∈ C1
0 (R

6) and E0,B0 ∈ H3(R3); specifically there is T >
0 depending on the initial condition such that there exists a solution f ∈ C1([0, T ]×
R6) which is unique as an element of L1

(
0, T ;H3(R6)

)
∩ C

(
[0, T ], H2(R6)

)
.

For the relativistic Vlasov-Maxwell system with multiple species Glassey and
Strauss [27] proved existence of a unique global solution in C1(R×R3 ×R3) with
initial data f0s ∈ C1

0 (R
3 × R3), E0,B0 ∈ C2(R3) under the a priori assumption

that a solution fs is compactly supported in momenta and the radius of the sup-
port is bounded by a continuous function of time. A simpler proof was given by
Bouchut, Golse and Pallard [12], and a variant of this result has been proposed by
Klainerman and Staffilani [36]. Existence and uniqueness of a global C1 solution
for t ∈ [0,+∞), (x, p) ∈ R6 has been shown by Glassey and Schaeffer [26] with
compactly supported initial data satisfying appropriate conditions that require, in
particular, the initial distribution function and electromagnetic fields to be small
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in C1 and C2 norms respectively. We note also the results on global existence with
small data for the relativistic Vlasov-Maxwell system obtained by Horst [32]. The
key observation is that the decay of ∥E(t)∥2L2 + ∥B(t)∥2L2 for t → +∞ completely
determine the electromagnetic field, without initial conditions. Horst makes use of
a fixed-point argument to show global existence of solutions: given the electromag-
netic fields (E,B) in a suitable class of functions, he constructs the characteristic
flow for the kinetic equation, from which he computes the charge and electric current
densities that generate new electromagnetic fields (E′,B′). This defines an operator
Q : (E,B) 7→ (E′,B′) which is a contraction if the initial distribution f0 and its
derivatives are small enough. In this construction, the field (E′,B′) is obtained as
the solution of Maxwell’s equations with the condition ∥E(t)∥2L2 +∥B(t)∥2L2 → 0 for
t→ +∞, [32, definition 2.6 and 3.5].

Global existence of weak solution without small data assumption is due to
Di Perna and Lions [22]: for the non-relativistic case and with one particle species,
given initial data f0 ∈ L1 ∩ L2(R3 ×R3) and E0,B0 ∈ L2(R3) with the conditions
f0 ≥ 0 and ∫

R3×R3

|v|2f0dxdv < +∞,

they prove existence of

f ∈ L∞(
0,+∞;L1(R3 ×R3)

)
, E,B ∈ L∞(

0,+∞;L2(R3)
)
,

that satisfy the non-relativistic Vlasov-Maxwell system in the sense of distributions.
The conditions on the data are the natural ones since f(t, ·, ·) is a phase-space density
of particles (and thus must be non-negative and in L1) and the quantity

E =
1

2
m

∫
R3×R3

|v|2fdxdv + 1

8π

(
∥E∥2L2 + ∥B∥2L2

)
,

is the total energy of the system. Di Perna and Lions have shown that for such global
weak solutions, one has E(t) ≤ E(0), that is, they are finite-energy solutions. The
key idea of this proof is the use of renormalized solutions [21, 41], and this idea has
been applied to the Boltzmann equation [23] as well. More recently, the relativistic
version has been addressed by Rein [51], while time-periodic weak solutions in
bounded (in space) domains have been considered by Bostan [11].

As for the Vlasov-Poisson system the study of the Cauchy problem developed
along the same lines, moving from local-in-time classical solutions up to global
weak solutions [26, 21, and references therein]. Particularly, the works by Asano
and Ukai, Degond, and Schaeffer cited above give results on the existence and
uniqueness of local solutions the Vlasov-Poisson system. There are however earlier
results on local solutions [30, 31] and on global weak solutions [2, 33]. Existence of
a global C1 solutions with small initial data has been established by Bardos and
Degond [5]. The first results on global classical solutions is due to Pfaffelmoser
[47], where “classical” here means that the characteristics system for the Vlasov
equation has a unique classical solution and f is constant along the characteristics.

All these results are for the fully nonlinear problem. In this work, however, we
address the linearized problem and we focus specifically on the associated linear
kinetic equation. Wollman [57, section 3] reports the classical results on the exis-
tence of C1 solutions for such linear problems, the proof of which is based on the
standard method of characteristics. Specifically, if the electric and magnetic fields
E,B are in C

(
[0, T ];H3(R3)

)
with H3-norm bounded uniformly in time, the linear
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non-relativistic equation with initial datum f0 ∈ C1
0 (R

3×R3) has a unique classical
solution f ∈ C1([0, T ]×R3 ×R3). Here T is the life-span of the fields and does not
depend on the initial distribution.

1.2. Framework of this paper. In this paper, we consider a given stationary
configuration {Fs,0(x, p)}s of the particle distribution functions, with zero electric
field E0 = 0, and a constant magnetic field B0. Then we address the linearized
system around the stationary solution ({Fs,0}s, E0, B0). The associated unknowns
are the linear perturbations ({fs}s, E,B), where fs is the perturbed distribution
function for the particle species s, while E and B are the perturbations of electric
and magnetic field, respectively.

Since we consider a linearized problem, the solution for fs is not necessarily non-
negative, but Fs,0 + fs ≥ 0 (essentially, if Fs,0 + fs fails to be non-negative, we no
longer are in the linear regime). We need to keep the assumption on the existence
of the velocity moments of fs and the L1-in-x behavior (or L1

loc in the idealized case
of a plasma with an infinite number of particles, e.g., a uniform plasma over the
whole space).

We could expect to need and to be able to consider given arbitrary initial data.
Our aim however is characterizing and determining what is referred to as the dielec-
tric response of the plasma in the physics literature [14, 54, 38, 10]. The underlying
physical idea is that the application of a small-amplitude electromagnetic perturba-
tion determines a small change in the distribution functions fs, which represents the
response of the plasma to the imposed electromagnetic disturbance. It is similar
to the construction of the operator Q in Horst’s fixed-point argument mentioned
above. In addition however, physical reasoning suggests that the response of the
plasma should be uniquely determined by and depend continuously on this imposed
perturbation, hence there should be no need to prescribe a Cauchy datum.

The evolution of a small perturbation fs induced by an externally imposed small
electric field disturbance E is governed by the linear relativistic Vlasov equation
[9, 14, 35, 54],

(2) ∂tfs + vs · ∇xfs + qs
(
vs ×B0/c

)
· ∇pfs = −qs

(
E + vs ×B/c

)
· ∇pFs,0,

where the electric field E of the disturbance is given, e.g., E ∈ [S(R4)]3, and the
magnetic field depends linearly on the electric field via the Faraday law,

(3) ∂tB + c∇× E = 0.

Since E is given, this is a system of partial differential equations for (fs, B) which
reads {

∂tfs + vs · ∇xfs + qs(vs ×B0/c) · ∇pfs = −qs
(
E + vs ×B/c

)
· ∇pFs,0,

∂tB = −c∇× E.

From this system, by introducing the new unknown gs = ∂tfs, one deduces the
decoupled system

(4)

{
∂tgs + vs · ∇xgs + qs(vs ×B0/c) · ∇pgs = −qs

(
∂tE − vs ×∇× E

)
· ∇pFs,0,

∂tB = −c∇× E.

The associated homogeneous equation for gs is

H(gs) := ∂tgs + vs · ∇xgs + qs
(
vs ×B0/c

)
· ∇pgs = 0.



6 O. LAFITTE AND O. MAJ

We shall see that if we impose a control of the growth at t → ±∞, the modified
equation H(gs,ν) + νgs,ν = 0 for any ν > 0 has the unique solution gs,ν = 0. This
is similar to scattering theory [39], in which the scattered field is determined by
conditions at infinity. The introduction of the damping term νgs,ν is analogous
to the limiting absorption principle [39, 24, 52] for elliptic equations of the form
Au = (λ + iε)u + f for ε → 0+ (resp. ε → 0−), where one constructs two resol-
vents for the elliptic operator A. A classical application of the limiting absorption
principle consists in selecting the unique outgoing-wave solution of the Helmholtz
equation. Other examples include the solution of elliptic equations, as well as the
extension of the resolvent of the operator −∆+V [24, 45, 15, and references therein].
Recently the idea of using scattering theory for the linearized Vlasov-Maxwell sys-
tem has been developed by Després in order to prove linear Landau damping for
inhomogeneous equilibrium distributions [20]. In this paper, however, we shall not
take advantage of scattering theory, but rather focus on the solution selected by
the growth conditions at infinity in time and the limiting absorption principle.

The main idea here is to apply the limiting absorption principle to either the
inhomogeneous problem (2) or (4). We shall see that for ν > 0, there is a unique
tempered solution, which has a limit for ν → 0+, and the limit itself is a tempered
solution of either (2) or (4) without damping. We will find that the limit amounts
exactly to the solution which is referred to as the causal solution in the physics
literature and which describes the response of the plasma to the imposed E.

Finding the response of a system is classical. For example, in the modeling of
electric circuits with capacitance C inductance L and resistance R, the electric
charge q : t 7→ q(t) satisfies the ordinary differential equation

LCq̈ +RCq̇ + q = CU0 cos(ωt),

which leads to the response

q(t) = Re
[ CU0e

iωt

1− LCω2 + iωRC

]
,

even though one has infinitely many solutions (depending on Cauchy data).
Returning to the linearized Vlasov equation, one can also envisage the use of

other dissipation mechanisms such as the Fokker-Planck operator ν∇v · (∇vf − vf)
or the collision operators mentioned above, but this is not addressed here.

Having identified the unique solution of the linearized Vlasov equation which
describes the response of the plasma to the imposed electric field disturbance, the
corresponding unique perturbation of the electric current density is defined by

(5) j(t, x) :=
∑
s

qs

∫
R3

vs(p)fs(t, x, p)dp,

which requires that the solution fs is at least in L1 (the relativistic velocity is
bounded by the speed of light, |vs(p)| < c). We shall generalize such integrals to
the case of distributional solutions and see that, since fs depends linearly on E, the
induced current density j is given by the action of a linear operator on the electric
field E, namely,

(6) j = σ(E).

This is referred to as the linear constitutive relation of the plasma and the operator
σ is the conductivity operator. Equation (6) is also referred to as (generalized)
Ohm’s law.
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A precise mathematical analysis of the response of a plasma is important be-
cause it is the basis for the construction of constitutive relations for linear plasma
waves, the simplest of which being the Ohm’s law. Together with Maxwell’s equa-
tions, it determines the linear wave equation describing plasma waves [10]. The
same problem has been considered by Omnes for a bounded plasma [46]. More
recently, Cheverry and Fontaine [18, 17] have addressed the characteristic variety
(or dispersion relation) for the linearized Maxwell-Vlasov system using asymptotic
methods, but here we focus on the properties of the plasma constitutive relation as
an operator.

We carry out this ideas for the one-dimensional non-relativistic linearized Vlasov
equation without background magnetic field (non-magnetized) and for the three-
dimensional relativistic linearized Vlasov equation with uniform background and
with constant magnetic field.

1.3. Main results 1: the non-relativistic, one-dimensional case. We con-
sider first the case of a non-magnetized, non-relativistic plasma in one dimension in
space and velocity. We also restrict ourselves to the case of a single particle species
(and thus drop the index s). This last simplification does not imply any further
loss of generality as the current density is the sum of the currents carried by the
individual species. With background distribution F0 ∈ S(R) depending on v ∈ R
only, and E ∈ S(R2), we consider the linear kinetic equation

(7) Lf := ∂tf + v∂xf = − q

m
EF ′

s,0,

which is a reduced version of equation (2). The damped form is

(8) Lνfν := ∂tfν + νfν + v∂xfν = − q

m
EF ′

0.

If f is a generic distribution (not necessarily a solution of (7)) with finite first
velocity moment, i.e., with v 7→ vf(t, x, v) in L1 for all (t, x), we define the operator

(9) J(f)(t, x) := q

∫
R

vf(t, x, v)dv,

which gives the associated current density, cf. equation (5), in the one-dimensional,
non-relativistic case.

Theorem 1.1. Let F0 ∈ S(R) be given.

(i) If ν > 0, for any E ∈ S(R2) equation (8) has a solution fν ∈ S(R3) which
is unique as an element of S ′(R3), and jν = J(fν) ∈ S(R2).

(ii) For ν → 0+, fν and jν have pointwise limits f ∈ C∞
b (R3) and j ∈ C∞

b (R2),
respectively; in addition, fν → f , and jν → j also in the topology of S ′.

(iii) The limit f is a solution of equation (7) and j = J(f).

By the limiting absorption principle of theorem 1.1, to each E ∈ S(R2) we thus
can associate a unique f , and thus a unique current density j. The conductivity
operator is then defined as the map

(10) σ : S(R2) ∋ E 7→ j ∈ C∞
b (R2) ⊂ S ′(R2).

For any χ ∈ C∞
0 (R) with χ = 1 in a neighborhood of zero, we also introduce the

following Fourier multiplier (cf. appendix A for definitions and notations)

(11) F
(
σ1−χ(E)

)
(ω, k) =

(
1− χ(k)

)
σ̂ph(ω, k)Ê(ω, k),
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where F denotes the Fourier transform and σ̂ph is the physical conductivity tensor
(explicit formula given in equation (33)).

Theorem 1.2. The map σ defined by equation (10) is linear and continuous from
S(R2) → S ′(R2) and for every χ ∈ C∞

0 (R) with χ = 1 near zero, σ(E) = σ1−χ(E)

for all E satisfying Ê(ω, k) = 0 if k ∈ suppχ.

Remark 1.

(1) The limit f established in theorem 1.1 coincides with the causal solution
of (7), which is reviewed in appendix C.

(2) Expressions for the solutions fν , f , their Fourier transforms, the associated
currents, and the operators σν and σ are given in section 3.

(3) The operator σχ := σ−σ1−χ is well defined and σχ(E) = 0 when Ê(ω, k) =
0 for k small. Expressions of both σ and σχ are available (see proposi-
tion 3.5).

(4) Theorem 1.1 can be straightforwardly generalized to the case of a non-
magnetized non-relativistic plasma with a spatially non-homogeneous equi-
librium distribution of the form F0(x, v) = n0(x)F̃0(v), for which the veloc-
ity distribution is the same at any point in space. For such equilibria, σ1−χ
is a pseudo-differential operator. The expression of the symbol is obtained
in section 3.2, remark 7.

1.4. Main results 2: relativistic, three-dimensional case. The second case
under consideration is the relativistic Vlasov equation with a uniform background
magnetic field, that is, B0 in equation (2) is taken constant and non-zero. We choose
B0 = |B0|e∥ directed along the third axis of a Cartesian frame {e1, e2, e3 = e∥}. It
is natural to normalize the relativistic momentum p to msc, and thus to introduce
normalized momentum variables

(12) u := p/(msc) u⊥ := (u21 + u22)
1/2, u∥ := u3.

We define the relativistic cyclotron frequency for the considered species,

(13) Ωs(u) :=
1

γ(u)

qs|B0|
msc

= sgn(qs)
ωc,s
γ(u)

> 0,

which has the sign of the charge qs and depends on u2 through γ(u) = (1 + u2)1/2,
whereas the classical cyclotron frequency ωc,s := |qsB0|/(msc) > 0 is a positive
constant.

The background distribution functions are taken uniform and gyrotropic, i.e.,
Fs,0 is constant in time t and space x and depends only on u∥, u⊥, namely,

(14) Fs,0(t, x, p) =
ns,0

(msc)3
Gs(u∥, u⊥),

where ns,0 > 0 is the constant background particle density and Gs is such that

u 7→ Gs(u3, (u
2
1 + u22)

1/2
)
belongs to S(R3). Such property is usually satisfied

by the background distribution functions of practical interest. The momentum
distribution Gs has unit norm in L1(R×R+, 2πu⊥du∥du⊥).

Instead of addressing equation (2) directly, we consider the kinetic equation in (4)
for gs = ∂tfs, which amounts to

(15) Vsgs = −qs
(
∂tE − vs ×∇× E

)
· ∇pFs,0,
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where

(16) Vs = ∂t + vs · ∇x + sgn(qs)
ωc,s
γ

(u× e∥) · ∇u,

with vs = p/(msγs) = cu/γ(u) being the relativistic velocity as a function of the
normalized momentum.

We add to equation (15) a damping term, with the idea of applying the limit-
ing absorption principle. Because of the u-dependent relativistic factor ωc,s/γ the
damping coefficient will be multiplied by γ after Fourier transform in time and
space of equation (15). It is therefore convenient to allow the damping coefficient
νs to depend on the species s and on momentum u from the beginning, subject to
the conditions

(17)


νs ∈ C∞(R3),

there exists ν0 > 0 : γ(u)νs(u) ≥ ν0,

(u1∂u2
− u2∂u1

)νs(u) = 0,

and there exists m ∈ R : |∂αu νs(u)| ≤ Cα(1 + u2)m, ∀u ∈ R3,∀α ∈ N3
0,

where Cα ∈ R are constants depending only on the order α of the derivatives. For
example, if νs ∈ C∞

b (R3) is a function of u21 + u22 and u3 only, then conditions (17)
are fulfilled with m = 0. We shall see that the dissipation-less limit is independent
of the choice of this damping function.

For ε > 0 and for any function νs, satisfying conditions (17), we consider the
regularized equation

(18) Vs,εgs,ε = −qs
(
∂tE − v ×∇× E

)
· ∇pFs,0,

where Vs,ε = Vs + ενs.
If gs are generic distributions with finite first velocity moment, i.e., gs(t, x, ·) ∈

L1(R3) for every (t, x), we define

(19) K({gs})(t, x) :=
∑
s

qs(msc)
3

∫
R3

vs(u)gs(t, x, u)du,

which gives the time-derivative of the current (5) when gs = ∂tfs. For this model,
the limiting absorption principle parallels theorem 1.2.

Theorem 1.3. Let Fs,0 ∈ S(R3) be given uniform gyrotropic distribution functions
and let νs be any function satisfying conditions (17).

(i) If ε > 0, for any E ∈ [S(R4)]3 equation (18) has a solution gs,ε ∈ S(R7)
which is unique as an element of S ′(R7), ∂tjε = K({gs,ε}) ∈ [S(R4)]3.

(ii) For ε→ 0+, gs,ε and ∂tjε have limits gs and ∂tj in S ′, independent of νs.
(iii) The limit gs belongs to C

∞
b (R7) and is a classical solution of equation (15);

in addition gs belongs to the domain of K and ∂tj = K({gs}) ∈ C∞
b (R4).

Therefore we can define the map

(20) ς : [S(R4)]3 ∋ E 7→ ∂tj ∈ [S ′(R4)]3.

We shall see that it can be represented by a Fourier multiplier if we exclude the
hyperplane ω = 0 in Fourier space. For any cut-off function χ ∈ C∞

0 (R) with χ = 1
in a neighborhood of zero, we define the Fourier multiplier ς1−χ by

(21) F(ς1−χ(E))(ω, k) =
(
1− χ(ω)

)
ς̂0(ω, k)Ê(ω, k),



10 O. LAFITTE AND O. MAJ

where ς̂0(ω, k) is the limit established in proposition 5.10. An expression for ς̂0 is
given in equation (81), and proposition 5.10 establishes that ς̂0 is continuous for
ω ̸= 0 and C∞ where ω2 ̸= c2k2 + n2ω2

c,s for all n ∈ Z and all species s.

Theorem 1.4. The map ς defined in (20) is continuous and for any χ ∈ C∞
0 (R)

with χ = 1 in a neighborhood of zero, ς(E) = ς1−χ(E) if Ê(ω, k) = 0 for ω ∈ suppχ.

Remark 2.

(1) The hypothesis that νs is in the kernel of the operator u1∂u2
− u2∂u1

ex-
presses the fact that νs must be gyrotropic.

(2) The solution gs is the unique causal solution of (15) (defined in appendix C).
(3) We also have pointwise convergence of gs,ε → gs.
(4) Existence and uniqueness of the solution gs,ε is established via Fourier trans-

form, while the causal solution is obtained by integration along the charac-
teristics, cf. appendix C. Hence the proof of theorem 1.3 (iii) establishes a
link between the formulations in Fourier and physical variables.

(5) An explicit expression of the linear operator ς valid without restriction of
the support of E is given below in proposition 5.9.

1.5. Concluding remarks and structure of the paper. Theorems 1.2 and 1.4
in particular show that the response of a uniform plasma to oscillatory electromag-
netic disturbances can be expressed by a Fourier multiplier. Although limited to
a simple plasma equilibrium, these results support the physics theories that rely
on the pseudo-differential form of the conductivity operator [37, 7, 44, 42, 43, 10].
More precisely, even though the response of a plasma is rigorously not a pseudo-
differential operator, it can be written as the sum of a pseudo-differential operator
plus a remainder which vanishes if the spectrum of the electric-field disturbance is
supported away from ω = 0 (or k = 0 in the simpler case of theorem 1.1); this is
typically the case in the envisaged applications, since the frequency of the pertur-
bation is set by an external source and it is tuned to resonate with the cyclotron
motion of a particle species.

In order to illustrate these specific applications at least qualitatively, we return
to the linearized Vlasov-Maxwell system, that is,

(22)


∂tfs + vs(p) · ∇xfs + qs(vs ×B0/c) · ∇pfs = −qs(E + vs ×B/c) · ∇pFs,0,

∂tE − c∇×B = −4π
∑
s

qs

∫
R3

vsfsdp,

∂tB + c∇× E = 0,

for fs, E, and B. The two equations for the electromagnetic field (E,B) imply
(formally at least, by taking the time-derivative of the Ampère-Maxwell law)

∂2tE + c2∇×
(
∇× E

)
+ 4π∂tj = 0,

where ∂tj = K({∂tfs}). This equation depends on the time-derivative of the in-
duced current ∂tj rather than on j alone, and the map (20) give ∂tj = ς(E) when
E ∈ S(R4). However, if the solution is highly oscillatory (high-frequency waves),

Ê(ω, k) = 0 near ω = 0 and we can replace ς by the Fourier multiplier (21) with
the low-frequency cut-off, obtaining

(23) D(i∂t,−i∂x)E := ∂2tE + c2∇×
(
∇× E

)
+ 4πς1−χ(E) = 0,
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which is a constant-coefficients pseudo-differential equation for the electric field
only. Theorem 1.4 implies that the operator D(i∂t,−i∂x) : [S(R4)]3 → [S ′(R4)]3

is continuous and we have established regularity results for its symbol in proposi-
tion 5.10. The symbol, in particular, is polynomially bounded and thus the operator
extends to

D(i∂t,−i∂x) : [H(s)(R
4)]3 → [H(s−m)(R

4)]3, s ∈ R,

where H(s)(R
4) is the space of w ∈ S ′(R4) such that (1 + (ωω̂ )

2 + ( ckω̂ )2)
s
2 ŵ ∈

L2(R4), with the normalization frequency chosen by ω̂ := maxs |ωc,s| and with
m = max{2M, 2} where the integer M being the degree of the polynomial bound
for ς̂0 established in proposition 5.10 in section 5.4.

The semi-classical methods commonly used to find approximate solutions of the
wave equation (23) (cf. the work of Prater et al. [48] for an overview of com-
putational tools) are valid under strong assumptions on the symbol of the oper-
ator D. These assumptions are smoothness of the symbol and the fact that its
anti-Hermitian part is small in a certain sense (weakly non-Hermitian operators)
[37, 7, 44, 42, 43, 10]. In this paper we analyze the construction of the operator
in detail. Theorem 1.4 shows that the full operator ς defined in (21) has an addi-
tional contribution that accounts for the low-frequency response of the plasma. For
the high-frequency part (operator (21)), smoothness of the symbol is established
almost everywhere in Fourier space, cf. proposition 5.10. As for the assumption of
weak anti-Hermitian part, this is always violated near cyclotron resonances and the
application of standard computational methods is justified by heuristic arguments
only. Propagation near a resonance has been addressed in the physics literature
[55, 4] but a satisfactory theory is not available. Then the only rigorous approach
to the problem would be the direct numerical computation of the solution of the
linearized Vlasov-Maxwell system, which is computationally too expensive in real-
istic cases. The precise characterization of response operators may help to improve
the available methods toward including resonances.

In section 2, a simple case study is presented in order to illustrate the ideas. The
rest of the paper is dedicated to the proofs. In section 3 the case of a non-relativistic
isotropic plasma in one dimension is addressed, while section 5 is dedicated to rela-
tivistic uniform magnetized plasmas. An overview of notations and standard defini-
tions together with technical results can be found in the appendices. In appendix C
in particular a precise definition of causal solution is given for advection equations
associated to global-in-time flows.

2. Characterization of the response operator: a simple case study

In this section, we study a simple model which however contains the essential
elements of the full problem. The aim of these simple considerations is showing
how the limiting absorption principle determines the causal solution of a hyperbolic
equation. All proofs are straightforward and reported in appendix B for the reader’s
convenience.

Given v ∈ S(R1+d), we consider the equation

∂tu(t, x) = v(t, x), u(0, ·) = u0 ∈ C∞
b (Rd),

where C∞
b is the space of smooth bounded functions with bounded derivatives, cf.

appendix A for the precise definition.
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Proposition 2.1. For v ∈ S(R1+d), there exists a unique solution u in C∞
b (R1+d)

of the equation ∂tu = v such that limt→−∞ u(t, x) = 0 pointwise in x, and

u(t, x) =

∫ t

−∞
v(s, x)ds.

The map v 7→ u is a continuous linear operator both from S(R1+d) → S ′(R1+d)
and from S(R1+d) → L∞(R1+d).

If we think of u as the response to a localized perturbation v, causality requires
that u→ 0 for t→ −∞ since the perturbation decreases faster than any polynomial
when t → −∞. Hence, the solution given in proposition 2.1 is referred to as the
causal solution. Since v ∈ S(R1+d),∫ 0

−∞
v(s, ·)ds

is finite. The causality principle selects a unique initial condition u0 given by

u0(x) =

∫ 0

−∞
v(s, x)ds,

thereby allowing us to define the linear continuous operator v 7→ u, which we view
as the response of the operator ∂t for a perturbation v. We also note that the limit
for t→ +∞ of the solution gives the time integral of the perturbation

∫
R
v(s, x)ds.

The following simple result provides us with a characterization of the causal
solution, that is used in this paper for more general problems.

Proposition 2.2. The damped problem ∂tu
ν + νuν = v in S ′(R1+d) with ν > 0

and v ∈ S(R1+d) has a unique solution uν ∈ S ′(R1+d). It belongs to S(R1+d) and
it is given by

uν(t, x) =

∫ t

−∞
e−ν·(t−t

′)v(t′, x)dt′.

Furthermore, uν → u in S ′(R1+d) as ν → 0+, where u is the causal solution
obtained in proposition 2.1.

Remark 3. The integral in the definition of uν is absolutely convergent as t− t′ ≥ 0
on the domain of integration and v(·, x) ∈ L1(R). The fact that uν ∈ S(R1+d) is
proven by showing that the Fourier transform ûν is in S(R1+d).

Proposition 2.2 establishes that the admissible solution u of the model without
dissipation (in the sense that u → 0 when t → −∞) is the limit of the unique
solution uν in S ′ of the model with dissipation.

3. Uniform isotropic plasmas in one spatial dimension:
the standard linear Landau damping

Here we consider in detail the case of a non-magnetized non-relativistic plasma
in one spatial dimension and for a single particle species. Coupled to the Poisson
equation this is the textbook example for linear Landau damping. Equation (2)
reduces to

(24) ∂tf(t, x, v) + v∂xf(t, x, v) = −(q/m)E(t, x)F ′
0(v),
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where F0 ∈ S(R) is the equilibrium distribution function, and E ∈ S(R2) is the
electric field perturbation. We drop the species index s since we consider one species
only. In this case the linearized Vlasov operator is the free-transport operator

L = ∂t + v∂x.

Viewed as an operator from S ′(R3) into itself, L has a non-trivial null space given
by all tempered distributions with partial Fourier transform in (t, x) of the form

f̂ = 2πκ∗(δ⊗h) for h ∈ S ′(R2) and with κ : (ω, k, v) 7→ (ω−kv, k, v) being a volume-
preserving diffeomorphism of R3, and κ∗ denotes the pull-back of distributions.

Usually, this is formally written as f̂(ω, k, v) = 2πδ(ω − kv)ĥ(k, v), in the physics
literature. In particular, (24) has infinitely many solutions in S ′.

We consider a damped version of the advection operator and then pass to the
limit to recover a solution of the original problem (limiting absorption principle).
More precisely, for a given F0 ∈ S(R), we first prove the existence and uniqueness
of the solution fν in S ′(R3) of (8). We find that the unique solution fν ∈ S ′(R3)
is an element of S(R3) and we thus define a map from S(R2) to S(R3). We
first calculate the Fourier transform of fν in (t, x) (proposition 3.1), from which
we deduce the function itself. We obtain from this unique solution the damped
current jν(t, x) :=

∫
R
vfν(t, x, v)dv through its Fourier transform, and the limits

when ν → 0+, respectively in S ′(R3) and in S ′(R2) of fν (proposition 3.2) and of
jν (proposition 3.3). This shows that limν→0+ jν = σ(E) where σ is an operator
(called the conductivity operator), for which we give expressions. Indeed, equality
(34) below gives its pointwise limit as a Fourier multiplier and its global expression
is described in proposition 3.5, which rewrites using the plasma physics language
as proposition 3.6 on the object called conductivity.

3.1. Solution of the linearized Vlasov equation. In this section we prove ex-
istence and uniqueness of the solution of the damped problem (8), which reads

Lνfν = −(q/m)EF ′
0,

where Lν = L+ ν = ∂t + v∂x + ν. Let us also define the function

fν,∗(x, v) := −(q/m)F ′
0(v)

∫ 0

−∞
eνsE

(
s, x+ vs

)
ds,

the integral being absolutely convergent.

Proposition 3.1. For any ν > 0, E ∈ S(R2) and F0 ∈ S(R), equation (8) has a
solution fν ∈ S(R3), given by its Fourier transform

(25) f̂ν = −i(q/m)
ÊF ′

0

ω − kv + iν
.

This is the unique solution in S ′(R3) and the unique (classical) solution of the
Cauchy problem

Lνfν(t, x, v) = −(q/m)E(t, x)F ′
0(v), fν(0, x, v) = fν,∗(x, v),

with initial condition given at t = 0.

Remark 4. In proposition 3.1, we distinguish between the equation in S ′ and the
equation stated for C1(R2) functions.
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Proof. For F0 ∈ S(R), E ∈ S(R2) and ν > 0, after partial Fourier transform in
(t, x) we observe that necessarily a solution in S ′ of the considered equation is given
by (25). Since the function (ω, k, v) 7→ (ω − kv + iν)−1 belongs to C∞ and has

polynomially bounded derivatives, from equation (25) we check that f̂ν ∈ S(R3),
and thus fν ∈ S(R3). However the sequence {fν}ν is not uniformly bounded in S.

The inverse partial Fourier transform gives

(26) fν(t, x, v) = −(q/m)F ′
0(v)

∫ t

−∞
e−ν·(t−s)E

(
s, x− v · (t− s)

)
ds,

and we note that

X(s, t, x, v) = x− v · (t− s), V (s, t, x, v) = v,

is the solution of the equations for the characteristic curves of Lν integrated back-
ward in time from (t, x, v). Therefore (26) is the classical solution as claimed. □

Remark 5. This result shows that the requirement fν ∈ S ′(R3) leads to the selection
of a specific initial condition fν,∗ for the Cauchy problem, thus uniquely determining
the solution. Conversely, the solution of the Cauchy problem with initial condition
fν,∗ is an element of S and thus of S ′.

As an alternative way to illustrate how the condition fν ∈ S ′(R3) leads to the
selection of a specific Cauchy datum, one can consider for fν,0 ∈ L2(R2) the initial
value problem in C1

(
R, L2(R2)

)
,{

∂tfν(t, x, v) + v∂xfν(t, x, v) + νfν(t, x, v) = −(q/m)E(t, x)F ′
0(v),

fν(0, x, v) = fν,0(x, v).

Performing the Fourier transform in space, we obtain an ordinary differential equa-
tion almost everywhere in the (k, v)-space,{

∂tf̃ν(t, k, v) + ikvf̃ν(t, k, v) + νf̃ν(t, k, v) = −(q/m)Ẽ(t, k)F ′
0(v),

f̃ν(0, x, v) = f̃ν,0(k, v),

the solution of which is

f̃ν(t, k, v) = e−(ν+ikv)t
[
f̃ν,0(k, v)− (q/m)F ′

0(v)

∫ t

0

e(ν+ikv)sẼ(s, k)ds
]
.

We see that fν , f̃ν ∈ C∞(
R, L2(R2)

)
. The integral factor has a finite limit for

t→ −∞,

f̃ν,∗(k, v) = (q/m)F ′
0(v) lim

t→−∞

∫ t

0

e(ν+ikv)sẼ(s, k)ds

= −(q/m)F ′
0(v)

∫ 0

−∞
e(ν+ikv)sẼ(s, k)ds,

and f̃ν,∗ ∈ L2(R2). We show that if f̃ν,0 ̸= f̃ν,∗, then the solution f̃ν , or equivalently
fν , is not tempered in time for any k, v fixed. With this aim we write

f̃ν(t, k, v) = e−(ν+ikv)t
[
f̃ (0)ν (k, v)− f̃ν,∗(k, v)

]
− qF ′

0(v)

m

∫ t

−∞
e−(ν+ikv)(t−s)Ẽ(s, k)ds,

and one observes that, for every k, v, the second term on the right-hand side belongs
to C∞

b (R) and thus to S ′(R). As for the the first term on the right-hand side, for
any k, v, and ν > 0 the function t 7→ e−νt+ikvt is not tempered, since there exists
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a test function φ(t) = e−ν
√
1+t2−ikvt in S(R) such that

∫
e−νt+ikvtφ(t)dt = +∞.

Hence the first term cannot be the partial Fourier transform of a distribution, which
was the hypotheses that allowed us to write the equation in Fourier space.

It follows that we have f̃ν ∈ S ′ if and only if the initial condition satisfies

f̃
(0)
ν (k, v) = f̃ν,∗(k, v) almost everywhere, that is,

f̃ν,0(k, v) = f̃ν,∗(k, v) = −(q/m)F ′
0(v)

∫ 0

−∞
e(ν+ikv)sẼ(s, k)ds.

The corresponding solution amounts to

f̃ν(t, k, v) = −(q/m)F ′
0(v)

∫ t

−∞
e−(ν+ikv)(t−s)Ẽ(s, k)ds,

and this is the unique solution in S ′(R3). Upon inserting the full Fourier transform
of E(t, x), one can check that this gives (26).

We apply now the limiting absorption principle, that is we consider the limit of
the distribution function fν for ν → 0+.

Proposition 3.2. For any E ∈ S(R2) and F0 ∈ S(R), the solution fν defined
in (26) has a pointwise limit for ν → 0+ given by

f(t, x, v) = −(q/m)F ′
0(v)

∫ t

−∞
E
(
s, x− v · (t− s)

)
ds,

which is in C∞
b (R3), with f(t, x, ·) ∈ S(R), and solves L0f = −(q/m)EF ′

0.

Proof. We observe that for ν > 0 and s < t the function

s 7→ e−ν·(t−s)E
(
s, x− v · (t− s)

)
,

is bounded by∣∣E(
s, x− v · (t− s)

)∣∣ ≤ 1

(1 + s2)m
sup
t,x

∣∣(1 + t2 + x2)mE(t, x)
∣∣,

for all m ≥ 0. If we choose m > 1/2, then 1/(1 + s2)m is integrable and by the
dominated convergence theorem, for any (t, x, v) ∈ R3,

fν(t, x, v)
ν→0+−−−−→ f(t, x, v) := −(q/m)F ′

0(v)

∫ t

−∞
E
(
s, x− v · (t− s)

)
ds.

We observe that the pointwise limit is the causal solution of linear advection equa-
tion L0f = −(q/m)F ′

0E in the sense of appendix C and the characteristic flow sat-
isfies the hypothesis of proposition C.1. Hence proposition C.2 gives f ∈ C∞

b (R3).
Since f(t, x, v) is proportional to F ′

0(v), we have f(t, x, ·) ∈ S(R). □

Remark 6. We can deduce other properties of the solution f . Since f(t, x, ·) is
rapidly decreasing, we also have f(t, x, ·) ∈ L1(R) as it should be (in view of its
meaning as particle density). Continuity implies that f(t, ·, ·) is in L1(K ×R) for
every compact K ⊂ R, and this is physically appropriate for such an idealized
model, which, being spatially uniform, has an infinite number of particles: only the
number of particles ∥f(t, ·, ·)∥L1(K×R) in a compact spatial domain K has to be
finite.

The pointwise limit obtained in proposition 3.2 is referred to as the response of
the plasma to the perturbation E.
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3.2. Current density and conductivity operator. We can now compute the
electric current density via equation (5), namely,

(27) jν(t, x) = q

∫
R

vfν(t, x, v)dv,

and jν ∈ S(R2). The map E 7→ jν = σν(E) defines a linear continuous operator
σν : S(R2) → S(R2) which is given by the Fourier multiplier

(28) ȷ̂ν(ω, k) = σ̂ν(ω, k)Ê(ω, k), σ̂ν(ω, k) = −i q
2

m

∫
R

vF ′
0(v)

ω − kv + iν
dv.

The continuity of σν in particular follows from the estimate∣∣∂αω∂βk σ̂ν(ω, k)∣∣ ≤ C

να+β+1

∫
R

∣∣vβ+1F ′
0(v)

∣∣dv,
for any non-negative integers α, β, where the constant C depends only on q2/m,
α, and β. We observe that this estimate is not uniform in ν as expected, since the
sequence fν is not uniformly bounded in S.

For the slightly more general case of non-homogeneous equilibria of the form
F0(x, v) = n0(x)F̃0(v) with n0 ∈ C∞

b , one can define σ̃ν : S(R2) → S(R2) as the
Fourier multiplier with symbol

(29) ̂̃σν(ω, k) = −i q
2

m

∫
R

vF̃ ′
0(v)

ω − kv + iν
dv,

and obtain the induced current

(30) ȷ̂ν(ω, k) = ̂̃σν(ω, k)n̂0E(ω, k).

In this case the conductivity operator is

jν = σν(E) := σ̃ν(n0E),

and it amounts to the pseudo-differential operator

(31) jν(t, x) =
1

(2π)2

∫
e−iω(t−t

′)+ik(x−x′)n0(x
′)̂̃σν(ω, k)E(t′, x′)dt′dx′dωdk,

where the integral is in the sense of oscillatory integrals and the symbol of the

operator is σ̂ν(x
′, ω, k) = n0(x

′)̂̃σν(ω, k).
By using the dominated convergence theorem we have that the limit of the

current density jν is equal to the current carried by the limit distribution function
f . Specifically we have

Proposition 3.3. With E ∈ S(R2) and F0 ∈ S(R), the function defined by

j(t, x) = −q
2

m

∫
Dt

vF ′
0(v)E

(
s, x− v · (t− s)

)
dsdv,

with Dt = (−∞, t]×R, belongs to C∞
b (R2), hence to S ′. The map σ : E 7→ j = σ(E)

is a linear continuous operator from S(R2) → S ′(R2).

Proof. In the domain Dt = (−∞, t] ×R, we change variables to s′ = t − s, v′ = v
for (s, v) ∈ Dt, and thus (s′, v′) ∈ [0,+∞)×R. Then

j(t, x) = −q
2

m

∫ +∞

0

∫
R

vF ′
0(v)E(t− s, x− vs)dvds.
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The integrand E(t, x, s, v) = vF ′
0(v)E(t− s, x− vs) is such that

∂αt ∂
β
xE(t, x, s, v) = vF ′

0(v)∂
α
t ∂

β
xE(t− s, x− vs) ≤ |vF ′

0(v)|(
1 + (t− s)2

)m ∥E∥α+β+2m.

For any t ∈ R, this upper bound belongs to L1(R2). By the dominated convergence
theorem, we deduce that j ∈ C∞

b (R2) and |∂αt ∂βx j(t, x)| ≤ Cm∥E∥α+β+2m.
As C∞

b (R2) ⊂ S ′(R2) and ∥j∥L∞(R2) ≤ C∥E∥2m, one has that the map E 7→ j
from S → S ′ is continuous. □

Proposition 3.4. When ν → 0+, the sequence jν defined in equation (28) con-
verges to j both pointwise in R2 and in S ′(R2).

Proof. With E(t, x, s, v) = vF ′
0(v)E

(
s, x−v·(t−s)

)
as in the proof of proposition 3.3,

we have

jν(t, x)− j(t, x) =
q2

m

∫
Dt

(
1− e−ν(t−s)

)
E(t, x, s, v)dsdv.

Since e−ν(t−s) ≤ 1 for (s, v) ∈ Dt, we have(
1− e−ν(t−s)

)∣∣E(t, x, s, v)∣∣ ≤ ∥F0∥2m2+2∥E∥2m1

(1 + s2)m1(1 + v2)m2

and form1,m2 > 1/2 the bound is in L1. The dominated convergence theorem then
yields pointwise convergence: lim

(
jν(t, x) − j(t, x)

)
= 0 for all (t, x) ∈ R2. The

same estimate also gives convergence in S ′(R2): for any test function ϕ ∈ S(R2),

⟨jν − j, ϕ⟩ = q2

m

∫
R2

∫
Dt

(
1− e−ν(t−s)

)
E(t, x, s, v)dsdv ϕ(t, x) dtdx,

and the integrand is bounded by ∥F0∥2m2+2∥E∥2m1
(1+ s2)−m1(1+ v2)−m2 |ϕ(t, x)|

which is integrable. Again the dominated convergence theorem allows us to pass
to the limit in the integral and obtain ⟨jν − j, ϕ⟩ → 0. □

For an explicit calculation of the conductivity operator we consider the limit
ν → 0+ in Fourier space. As a tempered distribution, ȷ̂ν acts on ψ ∈ S(R2) by

(32) ⟨ȷ̂ν , ψ⟩ = −i(q2/m)

∫
R2×R

vF ′
0(v)

Ê(ω, k)ψ(ω, k)

ω − kv + iν
dωdkdv.

We now want to pass to the limit for ν → 0+. We use the Hilbert transform
(appendix D).

Let G(v) = vF ′
0(v)/n0 where n0 > 0 is the uniform background plasma density

and let ωp =
√
4πq2n0/m be the plasma frequency of the considered species. For

(ω, k) ∈ R2, k ̸= 0, let

(33) σ̂ph(ω, k) := −i
ω2
p

4π

1

k

[
πH(G)(ω/k)− iπG(ω/k)

]
,

where H(G) is the Hilbert transform of G. The tensor σ̂ph is the same as the one
obtained formally in the physics literature. We have 4πiωσ̂ph(ω, k) = ω2

pH(ω/k) for
k ̸= 0, where the function H ∈ C∞(R) is given by H(z) = z[πH(G)(z) − iπG(z)].
Then we have

(34) lim
ν→0+

σ̂ν = σ̂ph pointwise in (ω, k) ∈ R2, k ̸= 0,
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since σ̂ν(ω, k) = −i(ω2
p/4π)Aν(ω, k), where Aν is defined in appendix D, and equa-

tion (34) follows from lemma D.2.
Let us introduce λ > 0, a cut-off function χ ∈ C∞

0 (R), χ(z) = 1 for |z| ≤ 1/2 and
suppχ ⊂ (−1, 1), and let χλ(k) = χ(λk). The real number λ can be interpreted as
a scale-length in the frequency domain. Then we define two operators σλ,1−χ, σλ,χ :
S(R2) → S ′(R2) given by

(35) σλ,1−χ(E) := F−1
(
(1− χλ)σ̂phÊ

)
, σλ,χ(E) := σ − σλ,1−χ.

We note that σλ,1−χ is continuous since it is the composition of continuous opera-
tions, and we have shown in proposition 3.3 that σ is continuous, therefore σλ,χ is
continuous.

Proposition 3.5. The operators σ and σλ,χ defined in proposition 3.3 and equa-
tion (35), respectively, are such that

⟨F
(
σλ,χ(E)

)
, ψ̂⟩ = i

ω2
p

4π

∫
R2

χλ(k)G(v)
[
πH

(
Êψ̂(·, k)

)
(kv) + iπÊψ̂(kv, k)

]
dkdv,

⟨F
(
σ(E)

)
, ψ̂⟩ = i

ω2
p

4π

∫
R2

G(v)
[
πH

(
Êψ̂(·, k)

)
(kv) + iπÊψ̂(kv, k)

]
dkdv,

for all E,ψ ∈ S(R2).

Proof. Let G(v) = vF ′
0(v)/n0, ω

2
p = 4πq2n0/m, and for any ϕ ∈ S(R2), let Aν and

Bν be the integrals defined in appendix D. Let

Iνλ,1−χ(ϕ) := −i
ω2
p

4π

∫
R3

(
1− χλ(k)

)
G(v)

ϕ(ω, k)

ω − kv + iν
dωdkdv

= −i
ω2
p

4π

∫
R2

(
1− χλ(k)

)
ϕ(ω, k)Aν(ω, k)dωdk,

Iνλ,χ(ϕ) := −i
ω2
p

4π

∫
R3

χλ(k)G(v)
ϕ(ω, k)

ω − kv + iν
dωdkdv

= −i
ω2
p

4π

∫
R2

χλ(k)G(v)Bν(v, k)dkdv.

Since k ̸= 0 in the support of 1−χλ, the integrands have a pointwise limit as ν → 0+

computed in lemma D.2. In addition, lemma D.2 shows that the integrands are
bounded by a function in L1 uniformly in ν. The dominated convergence theorem
applies and we can pass to the limit ν → 0+ in the integrals, obtaining

Iνλ,1−χ(ϕ) → −i
ω2
p

4π

∫
R2

(
1− χλ(k)

)
ϕ(ω, k)

1

k

[
πH(G)(ω/k)− iπG(ω/k)

]
dωdk,

Iνλ,χ(ϕ) → −i
ω2
p

4π

∫
R2

χλ(k)G(v)
[
− πH

(
ϕ(·, k)

)
(kv)− iπϕ(kv, k)

]
dkdv.

Particularly, Iνλ,1−χ(ϕ) →
∫ (

1− χλ(k)
)
σ̂ph(ω, k)ϕ(ω, k)dωdk. Then we have

⟨ȷ̂ν , ψ̂⟩ = Iνλ,1−χ(Êψ̂) + Iνλ,χ(Êψ̂)
ν→0+−−−−→

〈
F
(
σλ,1−χ(E)

)
, ψ̂

〉
+ i

ω2
p

4π

∫
R2

χλ(k)G(v)
[
πH

(
Êψ̂(·, k)

)
(kv) + iπÊψ̂(kv, k)

]
dkdv.
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On the other hand we know from proposition 3.4 that as ν → 0+, jν → j = σ(E)
in S ′, hence

⟨ȷ̂ν , ψ̂⟩
ν→0+−−−−→

〈
F
(
σ(E)

)
, ψ̂

〉
,

and by definition σ(E) = σλ,1−χ(E) + σλ,χ(E). Uniqueness of the limit gives the
claimed expression for σλ,χ.

The claimed expression for σ(E) follows analogously on noting that

⟨ȷ̂ν , ψ̂⟩ = Iν(Êψ̂) := −i
ω2
p

4π

∫
R2

G(v)Bν(v, k)dkdv,

where the function Bν is now computed with ϕ = Êψ̂, i.e.,

Bν(ω, k) =

∫
R

Ê(ω, k)ψ̂(ω, k)

ω − kv + iν
dω.

As ν → 0+ the right-hand side converges to ⟨F
(
σ(E)

)
, ψ̂⟩, while the limit of the

left-hand side is dealt with as in the case of Iνλ,χ. □

The operator σλ,χ does not play any role when the electric field perturbation is
supported away from k = 0, i.e., for non-constant fields. More precisely we have
the following result, which expresses the usual Ohm’s law for a uniform plasma.

Corollary 3.6. If E ∈ S(R2) is such that Ê(ω, k) = 0 for |k| ≤ 1/λ , then

ȷ̂ ∈ C∞(R2) and ȷ̂(ω, k) = σ̂ph(ω, k)Ê(ω, k).

Proof. By hypothesis χλ(k)Ê(ω, k) = 0 for all (ω, k) ∈ R2, hence, σλ,χ(E) = 0; this
follows directly from the expression given in proposition 3.5 since, in particular,

χλ(k)H
(
Êψ̂(·, k)

)
(kv) = H

(
χλÊψ̂(·, k)

)
(kv). Then

F
(
σ(E)

)
= F

(
σλ,1−χ(E)

)
= (1− χλ)σ̂phÊ = σ̂phÊ,

since (1 − χλ)Ê = Ê. The fact that ȷ̂ is in C∞ follows from the properties of
the Hilbert transform summarized in proposition D.1, that imply in particular,
H(G) ∈ H∞(R). □

Remark 7. In the case of non-homogeneous equilibria of the form F0(x, v) =

n0(x)F̃0(v), the statement of corollary 3.6 remains true with G and Ê replaced

by vF̃0(v) and n̂0E, respectively. Particularly, one has

F
(
σλ,1−χ(E)

)
(ω, k) =

(
1− χλ(k)

)̂̃σph(ω, k)n̂0E(ω, k),

where ̂̃σph is obtained from (29) in analogy with σ̂ph. Then, the operator

σλ,1−χ(E)(t, x) =
1

(2π)2

∫
e−iω(t−t

′)+ik(x−x′)

× [n0(x
′)
(
1− χλ(k)

)̂̃σph(ω, k)]E(t′, x′)dt′dx′dωdk

is pseudo-differential with symbol n0(x
′)
(
1−χλ(k)

)̂̃σph(ω, k), recovering an expres-
sion similar to (31).
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3.3. Proof of the main results for the non-magnetized non-relativistic
one-dimensional case (section 1.3). We collect at last the partial results of
this section and give the proofs of the two theorems stated in section 1.3.

Proof of theorem 1.1. (i) The fact that fν belongs to S(R3) and is the unique so-
lution of equation (8) in S ′(R3) is proven in proposition 3.1. The current density
jν and the operator σν are given in equation (27) and (28) and related comments.

(ii) and (iii) Pointwise convergence fν → f is established in proposition 3.2 and
an expression for the solution f is given there. In proposition 3.2, it is also proven
that f(t, x, ·) ∈ S(R) for every (t, x) ∈ R2. As for the convergence of fν → f in the
topology of S ′, proposition 3.2 establishes pointwise (but not uniform) convergence
fν → f with limit f ∈ C∞

b ; in addition, for any integer m ≥ 1/2, we have∣∣fν(t, x, v)∣∣ ≤ ∥qF ′
0/m∥0 · ∥E∥2m

∫ +∞

−∞

ds

(1 + s2)m
,

uniformly in ν ∈ [0,+∞). Therefore for every φ ∈ S(R3), the function (fν − f)φ
satisfies ∣∣fν(t, x, v)− f(t, x, v)

∣∣∣∣φ(t, x, v)∣∣ ≤ C
∣∣φ(t, x, v)∣∣.

As |φ| ∈ L1, (fν−f)φ satisfies the hypothesis of the dominated convergence theorem
and

⟨fν − f, ϕ⟩ =
∫
R3

(fν − f)ϕdtdxdv → 0, for all ϕ ∈ S(R3).

In proposition 3.3, it is shown that j = J(f) ∈ C∞
b (R2), and proposition 3.4

establishes the limit jν → j both pointwise and in S ′(R2). □

Proof of theorem 1.2. Proposition 3.3 also establishes the continuity of the oper-
ator σ : E 7→ j. The relation to the physical conductivity operator is proven in
corollary 3.6. □

4. Study of a PDE with parameters of the form
−(u1∂u2 − u2∂u1)φ(θ, u)− ia(θ, u)φ(θ, u) = ψ(θ, u)

In this section we establish existence and uniqueness results for a partial differ-
ential equation with parameters that arises in the study of the relativistic, linear
Vlasov equation with uniform magnetic field B0, addressed below in section 5.
Specifically the equation is

(36) −(u1∂u2
− u2∂u1

)φ(θ, u)− ia(θ, u)φ(θ, u) = ψ(θ, u),

where a, ψ ∈ C∞(Rl × R3) are given complex-valued functions of u ∈ R3 and
depend on parameters θ ∈ Rl. The operator −(u1∂u2

− u2∂u1
) originates from the

Lorentz force term q(v × B0) · ∇p with q > 0 and B0 constant and directed along
the third axis. Eventually, the parameters θ will be related to the Fourier variables
(τ, ξ), and a to aε defined in equation (56) of section 5 below. Therefore, we assume
that a satisfies a condition similar to (17), that is,

(37a) a ∈ C∞(Rl ×R3,C), (u1∂u2
− u2∂u1

)a(θ, u) = 0,
∣∣ Im a(θ, u)

∣∣ ≥ η > 0,

for a given constant η > 0. As we need to control the growth of derivatives of the
solution at infinity, we shall also assume that

(37b) |∂αθ ∂βua(θ, u))| ≤ Cα,β(1 + θ2 + u2)m, ∀α ∈ Nl0, ∀β ∈ N3
0,
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uniformly in (θ, u) ∈ Rl × R3 for a given m ∈ R and with constants Cα,β > 0
depending on the multi-indices.

First we establish the uniqueness of the solution under rather general conditions.

Lemma 4.1. Let a ∈ C∞(Rl × R3) satisfy condition (37a), Θ ⊆ Rl be an open
set, and let φ ∈ L2

loc(Θ × R3) be a function with weak derivatives ∂u1φ, ∂u2φ ∈
L2
loc(Θ×R3) and such that

−(u1∂u2
− u2∂u1

)φ− iaφ = 0, a.e. in Θ×R3.

Then, φ = 0 a.e. in Θ×R3.

Proof. For almost all (θ, u3) ∈ Θ × R, the function φ̃(u1, u2) := φ(θ, u1, u2, u3)
belongs to H1

(
Br(0)

)
for every r > 0, where Br(0) ⊂ R2 is the open ball of radius

r and centered in zero in R2. From the equation we deduce

−(u1∂u2
− u2∂u1

)|φ̃|2 + 2 Im(a)|φ̃|2 = 0.

The first term amounts to the divergence of the vector field (−u2, u1)|φ̃|2 which is
tangent to ∂Br(0), hence Gauss theorem for the divergence, which holds for H1

functions, gives

0 =

∫
Br(0)

(u1∂u2 − u2∂u1)|φ̃|2du1du2 = 2

∫
Br(0)

Im a |φ̃|2du1du2,

for every radius r > 0. We can now conclude upon accounting for hypotheses (37a).
If Im a ≥ η > 0, we have

0 ≤ η

∫
Br(0)

|φ̃|2du1du2 ≤
∫
Br(0)

Im a |φ̃|2du1du2 = 0.

If instead − Im a ≥ η > 0,

0 ≤ η

∫
Br(0)

|φ̃|2du1du2 ≤ −
∫
Br(0)

Im a |φ̃|2du1du2 = 0.

In both cases we deduce ∫
Br(0)

|φ̃|2du1du2 = 0,

and thus φ̃ = 0 a.e. in Br(0) for all r and for almost all (θ, u3) ∈ Θ×R. It follows
that φ = 0 a.e. in Θ×R3. □

In the remaining part of this section, we first give an existence result for the
case in which the source term ψ is a polynomial in (u1, u2); this is based on an
algebraic argument. Then, we prove the existence of a smooth solution φ ∈ C∞

when ψ ∈ C∞ and of a solution φ ∈ S when ψ ∈ S. The latter implies uniqueness
of the solution in S ′.

4.1. Equation with a polynomial source term. Let the source term in equa-
tion (36) be a polynomial of the form

(38) ψ(θ, u) =
∑

0≤m+n≤L

Ym,n(θ, u3)um1 un2 , Ym,n ∈ C∞,

and let us consider for z ∈ C \Z the equation

(39) −(u1∂u2
− u2∂u1

)φ̃(z; θ, u)− izφ̃(z; θ, u) = ψ(θ, u).
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We can search for solutions of the form

(40) φ̃(z; θ, u) =
∑

0≤m+n≤L

Xm,n(z; θ, u3)um1 un2 ,

that is, a polynomial with at most the same degree as the source term. Substitution
into (39) yields

−
∑
m=1

∑
n=0

(n+ 1)Xm−1,n+1u
m
1 u

n
2 +

∑
m=0

∑
n=1

(m+ 1)Xm+1,n−1u
m
1 u

n
2

− iz
∑
m=0

∑
n=0

Xm,num1 un2 =
∑
m=0

∑
n=0

Ym,num1 un2 ,

where the sums are all finite since m+n ≤ L. We observe that only the coefficients
Xm,n with m + n = ℓ for ℓ = 0, 1, 2, . . . are coupled. For every integer 0 ≤ ℓ ≤ L,
we define

xℓ = (Xℓ−j,j)ℓj=0, yℓ = (−iYℓ−j,j)ℓj=0,

then the linear equation for the coefficients splits into (ℓ+1)-dimensional blocks of
the form

(41) (Aℓ − z)xℓ = yℓ, 0 ≤ ℓ ≤ L,

where the matrix Aℓ ∈ C(ℓ+1)×(ℓ+1) is defined and given in appendix E. For each ℓ,
equation (41) has a unique solution when z is not an eigenvalue of the matrix Aℓ.
Lemma E.1 shows that the spectrum of Aℓ is given by {2s − ℓ : s = 0, 1, . . . , ℓ}
and it is contained in the set of relative integers Z for any ℓ. Hence, if z ∈ C \ Z
equation (41) has a unique solution for all ℓ.

Lemma 4.2. If z ∈ C \ Z and ψ is given by (38), equation (39) has a solution
which is of the form (40) with Xm,n(·; θ, u3) analytic in C \ Z, and Xm,n(z; ·) ∈
C∞(Rl ×R).

Proof. Lemma E.1 establishes that the matrix Aℓ is diagonalizable with eigenvalues
2s− ℓ, s = 0, . . . , ℓ. We denote by S and T = S−1 the matrices (explicitly given in
the proof of lemma E.1) such that TAℓS is diagonal. Then, for z ∈ C \ Z, Aℓ − z
is invertible and equation (41) has a unique solution xℓ = (Xm,n)m+n=ℓ given by

Xℓ−j,j(z; θ, u3) =
ℓ∑

r,s=0

SjrTrs
2r − ℓ− z

Yℓ−s,s(θ, u3),

which is analytic in z ∈ C \Z, and C∞ in (θ, u3). □

We can now use φ̃ to construct the unique solution of (36).

Proposition 4.3. Let a ∈ C∞(Rl ×R3,C) satisfy the condition (37a), ψ be given
in the form (38), φ̃ be the solution established in lemma 4.2, and let

φ(θ, u) := φ̃
(
a(θ, u); θ, u).

Then φ ∈ C∞(Rl ×R3) is the unique solution of (36).

Proof. The fact that φ ∈ C∞ is a solution follows by equation (39) and assump-
tion (37a) which in particular implies

−(u1∂u2
− u2∂u1

)φ(θ, u) = −(u1∂u2
− u2∂u1

)φ̃(z; θ, u)|z=a(θ,u).
Uniqueness has been proven in lemma 4.1. □
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4.2. Equation with source term in S and uniqueness in S ′. If φ ∈ C1 is
a solution of (36) and (u⊥, ϕ) ∈ R+ × [0, 2π] are polar coordinates defined by
u1 = u⊥ cosϕ, u2 = −u⊥ sinϕ, then the functions

U(r, ϕ) = φ(θ, u⊥ cosϕ,−u⊥ sinϕ, u3),

V (r, ϕ) = ψ(θ, u⊥ cosϕ,−u⊥ sinϕ, u3),

with parameter r = (θ, u⊥, u3) satisfy

(42) ∂ϕU(r, ϕ)− iã(r)U(r, ϕ) = V (r, ϕ), U(r, 0) = U(r, 2π),

with

ã(r) = a(θ, u⊥ cosϕ,−u⊥ sinϕ, u3),

which is independent of ϕ because of condition (37a).

Remark 8. The choice of the angle ϕ, in the clockwise direction, is unusual for polar
coordinates. This is motivated by the fact that, with this definition, ϕ increases in
the direction of gyration of a positively charged particle under the Lorentz force.

For smooth solutions φ ∈ C∞ of (36), we find that the derivatives ∂αθ ∂
β
uφ with

the same order of differentiation in (u1, u2) are related to the solution of an ordinary
differential equation analogous to (42). In fact, differentiating equation (36) yields

∂αθ ∂
β
u [−(u1∂u2

− u2∂u1
)φ] = −(u1∂u2

− u2∂u1
)(∂αθ ∂

β
uφ)

− β1∂
α
ϑ∂

β1−1
u1

∂β2+1
u2

∂β3
u3
φ+ β2∂

α
ϑ∂

β1+1
u1

∂β2−1
u2

∂β3
u3
φ,

for any multi-index α ∈ Nl0 and β = (β1, β2, β3) ∈ N3
0. This can be shown either

directly using the identities

∂β1
u1
∂β2
u2
(u1∂u2

φ) = u1∂
β1
u1
∂β2+1
u2

φ+ β1∂
β1−1
u1

∂β2+1
u2

φ,

∂β1
u1
∂β2
u2
(u2∂u1

φ) = u2∂
β1+1
u1

∂β2
u2
φ+ β2∂

β1+1
u1

∂β2−1
u2

φ,

or by induction over β1 and β2. Therefore, the (ℓ+1)-dimensional complex-vector-
valued function defined by

(43) φα,β,ℓ(θ, u) =
(
∂αθ ∂

β
uφ(θ, u)

)
β1+β2=ℓ

=
(
∂αθ ∂

ℓ−j
u1

∂ju2
∂β3
u3
φ(θ, u)

)ℓ
j=0

,

satisfies the system of partial differential equations

(44) −(u1∂u2
− u2∂u1

)φα,β,ℓ − i(a+ tAℓ)φα,β,ℓ = ψα,β,ℓ,

where Aℓ are the same matrices introduced in equation (41) and studied in appen-
dix E, and the right-hand side is the (ℓ+ 1)-dimensional-vector-valued function

(45) ψα,β,ℓ =
(
∂αθ ∂

β
uψ + i

∑
α′<α

∑
β′<β

(
α

α′

)(
β

β′

)
(∂α−α

′

θ ∂β−β
′

u a)(∂α
′

θ ∂
β′

u φ)
)ℓ
j=0

,

with β = (β1, β2, β3), β1 = ℓ− j and β2 = j, j = 0, . . . , ℓ. For (u1, u2) ̸= (0, 0), let

Uα,β,ℓ(r, ϕ) = φα,β,ℓ(θ, u⊥ cosϕ,−u⊥ sinϕ, u3),

Vα,β,ℓ(r, ϕ) = ψαβ,ℓ(θ, u⊥ cosϕ,−u⊥ sinϕ, u3).

Then, if φ ∈ C∞ is a solution of (36), necessarily it must hold that

(46)

{
∂ϕUα,β,ℓ(r, ϕ)− i

(
ã(r) + tAℓ

)
Uα,β,ℓ(r, ϕ) = Vα,β,ℓ(r, ϕ),

Uα,β,ℓ(r, 0) = Uα,β,ℓ(r, 2π).
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For ℓ = 0 the matrix Aℓ reduces to A0 = 0, hence equation (42) is a special case
of (46) obtained for α = β = 0 and ℓ = 0. In general, equation (46) is a system
of ℓ+1 first-order ordinary differential equations on [0, 2π] with periodic boundary
conditions, for which we have the following result.

Proposition 4.4. For ℓ ∈ N0, let Mℓ be a (ℓ+1)× (ℓ+1) diagonalizable, complex
matrix with eigenvalues λℓ,j ∈ C \ Z, j = 0, 1, . . . , ℓ. Then, for any function
Vℓ ∈ C∞([0, 2π],Cℓ+1) satisfying Vℓ(0) = Vℓ(2π), there exists a unique solution
Uℓ ∈ C∞([0, 2π],Cℓ+1) of

U ′
ℓ(ϕ)− iMℓUℓ(ϕ) = Vℓ(ϕ), Uℓ(0) = Uℓ(2π),

given in Fourier series by

Uℓ(ϕ) =
∑
n∈Z

[i(Mℓ − n)−1V̂ℓ,n]e
+inϕ, V̂ℓ,n =

1

2π

∫ 2π

0

Vℓ(ϕ)e
−inϕdϕ,

and if Imλℓ,j ̸= 0, the solution satisfies, for all ϕ ∈ [0, 2π],

|Uℓ(ϕ)|∞ ≤ κℓ
λℓ,m

max
ϕ′∈[0,2π]

|Vℓ(ϕ′)|∞,

where, for z = (z0, z1, . . . , zℓ) ∈ Cℓ+1, |z|∞ := maxj |zj | is the L∞ norm in Cℓ+1,
κℓ is a constant depending only on Mℓ, and λℓ,m = minj | Imλℓ,j |.

Proof. Since Vℓ ∈ C∞([0, 2π],Cℓ+1), for any µ ∈ N0, the Fourier coefficients satisfy

|n|µ|V̂ℓ,n|∞ ≤ maxϕ′ |∂µϕVℓ(ϕ′)|∞, hence the corresponding Fourier series converges

in Ck([0, 2π],Cℓ+1) for every k ∈ N0. Dini’s test implies that the sum of the Fourier
series is equal to Vℓ, that is, Vℓ can be represented by a Fourier series.

Analogously a function Uℓ ∈ C1([0, 2π],Cℓ+1) can be represented by a Fourier
series, with convergence in C1([0, 2π],Cℓ+1) and it is a solution if and only if the

Fourier coefficients Ûℓ,n satisfy

(Mℓ − n)Ûℓ,n = iV̂ℓ,n.

As it was assumed that Mℓ is diagonalizable, that is, there exists a non-singular
complex matrix Sℓ such that S−1

ℓ MℓSℓ = Λℓ where Λℓ = diag(λℓ,0, λℓ,1, . . . , λℓ,ℓ) is

the diagonal matrix of eigenvalues. Then Mℓ − n = Sℓ(Λℓ − n)S−1
ℓ is non-singular

for all n ∈ Z, if and only if λℓ,j ̸∈ Z. Since this is the case, the Fourier coefficients

of the solution are uniquely determined and given by Ûℓ,n = i(Mℓ − n)−1V̂ℓ,n. The
norm of the Fourier coefficients can be readily estimated by

|Ûℓ,n|∞ ≤ |Sℓ|∞ · |(Λℓ − n)−1|∞ · |S−1
ℓ |∞ · |V̂ℓ,n|∞ ≤ κℓ

δℓ
|V̂ℓ,n|∞,

where κℓ = |Sℓ|∞|S−1
ℓ |∞ is the condition number of the matrix Sℓ and thus depends

only onMℓ, while δℓ = minj,n |λℓ,j−n| > 0 measures the distance of the eigenvalues

from Z. Since for n ̸= 0, |V̂ℓ,n|∞ = O(|n|−µ) for all µ ∈ N0, the Fourier series of
Uℓ converges in Ck([0, 2π],Cℓ+1) for every k ∈ N0, hence the sum Uℓ belongs to
C∞([0, 2π],Cℓ+1) and it is the unique classical solution of the problem.

We obtain an equivalent representation of the classical solution. In fact Uℓ must
necessarily satisfy (

e−iMℓϕUℓ(ϕ)
)′

= e−iMℓϕVℓ(ϕ),
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and the general solution of this equation, with arbitrary initial condition Uℓ(0), is

e−iMℓϕUℓ(ϕ) = Uℓ(0) +

∫ ϕ

0

e−iMℓϕ
′
Vℓ(ϕ

′)dϕ′.

Then the periodic boundary condition Uℓ(0) = Uℓ(2π) amounts to(
e−2πiMℓ − 1

)
Uℓ(0) =

∫ 2π

0

e−iMℓϕ
′
Vℓ(ϕ

′)dϕ′.

The matrix on the left-hand side is diagonalizable with eigenvalues e−2πiλℓ,j − 1;
for λℓ,j ∈ C \ Z the eigenvalues are all non-zero, the matrix is invertible, and the
integration constant Uℓ(0) is uniquely determined. At last one finds that there is a
unique periodic solution given by

(47) Uℓ(ϕ) = [e−2πiMℓ−1]−1

∫ 2π

0

e+iMℓ(ϕ−ϕ′)Vℓ(ϕ
′)dϕ′+

∫ ϕ

0

e+iMℓ(ϕ−ϕ′)Vℓ(ϕ
′)dϕ′.

Equation (47) shows that Uℓ ∈ C∞([0, 2π],Cℓ+1). The components of the vector
S−1
ℓ Uℓ are given by

(48)
(
S−1
ℓ Uℓ(ϕ)

)
j
=

1

e−2πiλℓ,j − 1

∫ 2π

0

e+iλℓ,j(ϕ−ϕ′)
(
S−1
ℓ Vℓ(ϕ

′)
)
j
dϕ′

+

∫ ϕ

0

e+iλℓ,j(ϕ−ϕ′)
(
S−1
ℓ Vℓ(ϕ

′)
)
j
dϕ′.

Therefore,

∣∣(S−1
ℓ Uℓ(ϕ)

)
j

∣∣ ≤ max
ϕ′

∣∣(S−1
ℓ Vℓ(ϕ

′)
)
j

∣∣[∣∣∣ 1

e−2πiλℓ,j − 1

∣∣∣ ∫ 2π

0

e− Imλℓ,j(ϕ−ϕ′)dϕ′

+

∫ ϕ

0

e− Imλℓ,j(ϕ−ϕ′)dϕ′

]
.

For the factor in square brackets, we use∣∣1− e−2πiλℓ,j
∣∣ ≥ ∣∣1− |e−2πiλℓ,j |

∣∣ = ∣∣1− e2π Imλℓ,j
∣∣,

so that ∣∣∣ 1

e−2πiλℓ,j − 1

∣∣∣ ≤ 1

|e2π Imλℓ,j − 1|
.

For any ϕ1 > 0 and y ̸= 0 we have∫ ϕ1

0

e−y(ϕ−ϕ
′)dϕ′ =

e−yϕ

y

(
eyϕ1 − 1

)
=
e−yϕ

|y|
∣∣eyϕ1 − 1

∣∣,
and the two needed integrals are obtained for ϕ1 = 2π and ϕ1 = ϕ. Hence,∣∣(S−1

ℓ Uℓ(ϕ)
)
j

∣∣ ≤ 1

| Imλℓ,j |

[
e− Imλℓ,jϕ +

∣∣1− e− Imλℓ,jϕ
∣∣]max

ϕ′

∣∣(S−1
ℓ Vℓ(ϕ

′)
)
j

∣∣.
If Imλℓ,j > 0, the term in square brackets is equal to one and we obtain

(49)
∣∣(S−1

ℓ Uℓ(ϕ)
)
j

∣∣ ≤ 1

| Imλℓ,j |
max
ϕ′

∣∣(S−1
ℓ Vℓ(ϕ

′)
)
j

∣∣.
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If Imλℓ,j < 0, we consider
(
S−1
ℓ Uℓ(2π−ϕ)

)
j
and upon changing integration variable

in (48) we obtain

(
S−1
ℓ Uℓ(2π − ϕ)

)
j
= −

[
1

e2πiλℓ,j − 1

∫ 2π

0

e−iλℓ,j(ϕ−ϕ′)
(
S−1
ℓ Vℓ(2π − ϕ′)

)
j
dϕ′

+

∫ ϕ

0

e−iλℓ,j(ϕ−ϕ′)
(
S−1
ℓ Vℓ(2π − ϕ′)

)
j
dϕ′

]
.

The factor in square brackets has the same form as the right-hand side of (48) with
λℓ,j replaced by −λℓ,j and now Im(−λℓ,j) > 0. Hence we obtain∣∣(S−1

ℓ Uℓ(2π − ϕ)
)
j

∣∣ ≤ 1

| Imλℓ,j |
max
ϕ′

∣∣(S−1
ℓ Vℓ(ϕ

′)
)
j

∣∣.
Since ϕ is arbitrary, this is equivalent to (49) for Imλℓ,j < 0. Since | Imλℓ,j | ≥
λℓ,m > 0, taking the maximum over j in (49) yields∣∣S−1

ℓ Uℓ(ϕ)
∣∣
∞ ≤ 1

λℓ,m
max
j

max
ϕ′

∣∣(S−1
ℓ Vℓ(ϕ

′)
)
j

∣∣ = 1

λℓ,m
max
ϕ′

∣∣S−1
ℓ Vℓ(ϕ

′)
∣∣
∞.

Then ∣∣Uℓ(ϕ)∣∣∞ ≤
∣∣Sℓ∣∣∞∣∣S−1

ℓ Uℓ(ϕ)
∣∣
∞ ≤ κl

λℓ,m
max
ϕ′

∣∣Vℓ(ϕ′)∣∣∞,
which is the claimed estimate. □

As a corollary we obtain the solution of the problem stated in proposition 4.4
with generic parameters r ∈ O ⊆ Rm, where O is an open set.

Corollary 4.5. For m ∈ N, O ⊆ Rm, and ℓ ∈ N0, let Mℓ ∈ C∞(O,R(ℓ+1)×(ℓ+1))
and Vℓ ∈ C∞(O × [0, 2π],Cℓ+1) be such that

1) for any r ∈ O, there is a non-singular matrix Sℓ(r) for which Λℓ(r) =
Sℓ(r)

−1Mℓ(r)Sℓ(r) is diagonal with eigenvalues λℓ,j(r) ∈ C \ R satisfying
| Imλℓ,j(r)| ≥ η > 0 for j = 0, . . . ℓ, r ∈ O and for a given η > 0,

2) V (r, 0) = V (r, 2π) for r ∈ O, and
3) Sℓ, S

−1
ℓ , and λℓ,j are of class C∞(O).

Then, the problem

∂ϕUℓ(r, ϕ)− iMℓ(r)Uℓ(r, ϕ) = Vℓ(r, ϕ), Uℓ(r, 0) = Uℓ(r, 2π),

has a unique solution Uℓ ∈ C∞(O × [0, 2π],Cℓ+1), and, for all ϕ ∈ [0, 2π],

|Uℓ(r, ϕ)| ≤
κℓ
η

max
ϕ′∈[0,2π]

|Vℓ(r, ϕ′)|.

Proof. A function Uℓ is a solution if and only if, for any r ∈ O, Uℓ(r, ·) solves the
ordinary differential equation in proposition 4.4. Assumptions 1) and 2) imply that
all the hypotheses of proposition 4.4 are verified and we note that λℓ,m(r) ≥ η
uniformly for r ∈ O. Therefore, for any r ∈ O, there is a unique solution Uℓ(r, ·)
to the problem of corollary 4.5. The fact that Uℓ is in C∞(O × [0, 2π]) follows
from the explicit formula (47) and assumption 3) by using the classical results
of differentiation in the integral. The estimates follow from the ones proven in
proposition 4.4. □
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We can now give the general result for equation (36) with right-hand side in C∞

and then in the Schwartz space, which will immediately imply uniqueness in S ′.
Uniqueness of the C∞ solution, in particular, is a special case of lemma 4.1, but
here we give a different more explicit argument.

Proposition 4.6. Let a ∈ C∞(Rl × R3) satisfy condition (37a). Then for any
ψ ∈ C∞(Rl ×R3), equation (36) has a unique solution φ ∈ C∞(Rl ×R3).

Proof. Uniqueness of a C1 solution. If φ ∈ C1(Rl × R3) is a solution of (36),
evaluating the equations at (u1, u2) = (0, 0) yields

φ(θ, 0, 0, u3) = iψ(θ, 0, 0, u3)/a(θ, 0, 0, u3),

while for (u1, u2) ̸= (0, 0),
φ(θ, u) = U(r, ϕ),

where U is the unique solution of (42) constructed in using corollary 4.5. These
conditions completely define the value of a C1 solution everywhere in Rl ×R3.

Existence of a C∞ solution. First we address the special case

(50) ψ(θ, u) =
∑

m+n=k

um1 u
n
2 ψ̃m,n(θ, u),

where ψ̃m,n ∈ C∞(Rl × R3) and k ≥ 2 is a given integer. Let us consider the
ordinary differential equation (42) with source term V determined by the ψ given
in (50). This equation is a special cases of the problem addressed in corollary 4.5
with ℓ = 0; particularly, because of assumption (37a), M0(r) = ã(r) satisfies the
hypotheses of the corollary. Therefore, equation (42) has a unique solution U ∈
C∞(O × [0, 2π]). Due to the special choice of ψ and the estimate in corollary 4.5,
one deduces that for any given point (θ, u3) and δ > 0, there are constants cU,θ,u3,δ

and cV,θ,u3,δ > 0 for which∣∣U(r, ϕ)
∣∣ ≤ uk⊥cU,θ,u3,δ,

∣∣V (r, ϕ)
∣∣ ≤ uk⊥cV,θ,u3,δ,

uniformly in u⊥ ∈ (0, δ] and ϕ ∈ [0, 2π]. Let us construct the function

φ(θ, u) :=

{
U(r, ϕ), for (u1, u2) ̸= (0, 0),

0, for (u1, u2) = (0, 0).

Since polar coordinates in the region (u1, u2) ̸= (0, 0) define a diffeomorphism
which maps the partial differential equation (36) into the ordinary differential equa-
tion (42), the function φ is of class C∞ and solves equation (36) in the open set
{(θ, u) ∈ Rl × R3 : (u1, u2) ̸= (0, 0)}. We also have |φ(θ, u)| ≤ cU,θ,u3,δ|(u1, u2)|k,
and thus φ is continuous on whole domain Rl ×R3.

We now show that φ ∈ Ck−1(Rl × R3). We need to check the existence
of derivatives at (u1, u2) = (0, 0) and their continuity. With this aim we col-
lect the derivatives of φ with the same order ℓ of differentiation in (u1, u2) into
the vector-valued functions φα,β,ℓ, as defined in (43); analogously let ψα,β,ℓ be
given by (45). For (u1, u2) ̸= (0, 0), φ is of class C∞ and solves equation (36),
so that φα,β,ℓ satisfies equation (44) with source ψα,β,ℓ. In polar coordinates
those equations amount to ordinary differential equations (46) for the vector-valued
functions given by Uα,β,ℓ(r, ϕ) = φα,β,ℓ(θ, u⊥ cosϕ,−u⊥ sinϕ, u3) and with source
Vα,β,ℓ(r, ϕ) = ψα,β,ℓ(θ, u⊥ cosϕ,−u⊥ sinϕ, u3). From lemma E.1 we know that the
matrices Aℓ, and thus tAℓ, are diagonalizable with integer eigenvalues. It follows
that the matrices Mℓ(r) = ã(r) + tAℓ in equation (46) are diagonalizable and the
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imaginary part of the eigenvalues coincides with Im ã. In view of assumption (37a),
we have | Im ã| ≥ η > 0, and the hypotheses of corollary 4.5 are therefore satisfied.
We can conclude that

(51)
∣∣Uα,β,ℓ(r, ϕ)∣∣∞ ≤ κℓ

η
max
ϕ′

∣∣Vα,β,ℓ(r, ϕ′)∣∣∞.
We can use this estimate to show that, for (u1, u2) ̸= (0, 0) we have

(52) |∂αθ ∂βuφ(θ, u)| ≤ Kα,β(θ, u3)u
k−ℓ
⊥ with ℓ = β1 + β2, and 0 < |(u1, u2)| ≤ δ.

We prove this by induction over α, β3 and ℓ = β1 + β2. For α = 0, β3 = 0, and
ℓ = 0 the claim follows directly from the estimate in corollary 4.5 and V = uk⊥VR.
For the induction step, let us assume that the claim holds for all α′ < α, β′

3 < β3,
and ℓ′ = β′

1 + β′
2 < ℓ = β1 + β2. Then from (45) we deduce∣∣Vα,β,ℓ(r, ϕ)∣∣∞ =

∣∣ψα,βℓ(θ, u)∣∣∞ ≤ cψα,β(θ, u3)u
k−ℓ
⊥ ,

and from estimate (51) we deduce that, if β1 + β2 = ℓ,∣∣∂αθ ∂βuφ(θ, u)∣∣ ≤ ∣∣φα,β,ℓ(θ, u)∣∣∞ =
∣∣Uα,β,ℓ(r, ϕ)∣∣∞ ≤ κℓ

η
cψα,β(θ, u3)u

k−ℓ
⊥ ,

which is (52) as claimed. Therefore,

|∂αθ ∂βuφ(θ, u)|
|(u1, u2)|

≤ Kα,β(θ, u3)|(u1, u2)|k−ℓ−1, for β1 + β2 = ℓ ≤ k − 2,

which implies that the derivatives ∂αθ ∂
β
uφ(θ, 0, 0, u3) exist and are zero for β1+β2 ≤

k−1. Continuity of ∂αθ ∂
β
uφ follows from inequality (52). Hence φ ∈ Ck−1(Rl×R3)

as claimed. Since k ≥ 2, φ ∈ C1(Rl × R3) and equation (36) is satisfied also at
(u1, u2) = (0, 0) since all terms vanish if u1 = u2 = 0.

For the general case ψ ∈ C∞(Rl ×R3), for any integer k ≥ 2 we write

ψ = ψk−1 + ψr,k,

where ψk−1 is the Taylor polynomial of degree k−1 in (u1, u2) centered at (u1, u2) =
(0, 0) and ψr,k is the remainder, which is of the form (50). Hence the above argument
applies to ψr,k. Let φr,k ∈ Ck−1(Rl × R3) be the unique solution obtained with
ψr,k as a source term. On the other hand proposition 4.3 established the existence
of a unique solution φk−1 ∈ C∞(Rl×R3) for the case with source term ψk−1. The
sum φ = φk−1 + φr,k is of class Ck−1 and it is the unique solution of (36). Since k
is arbitrary we conclude that φ ∈ C∞(Rl ×R3). □

Corollary 4.7. Let a ∈ C∞(Rl×R3) satisfy both conditions (37) and let m ∈ R be
the constant in (37b). Then the unique solution φ ∈ C∞(Rl×R3) of equation (36)
obtained in proposition 4.6 is such that:

(i) If there are m0 ∈ R and n0 ∈ N0 such that∣∣∂αθ ∂βuψ(θ, u)∣∣ ≤ Cψα,β(1 + θ2 + u2)m0 , |α|+ |β| ≤ n0,

then∣∣∂αθ ∂βuφ(θ, u)∣∣ ≤ Cφη,α,β(1 + θ2 + u2)mα,β , |α|+ |β| ≤ n0,

where mα,β = m0 if m ≤ 0, and mα,β = m0 + (|α|+ |β|)m if m > 0.
(ii) If ψ ∈ S(Rl ×R3), then φ ∈ S(Rl ×R3).
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Proof. (i) We proceed by induction as in the proof of (52). For α = 0 and β = 0, the
claim follows directly from the estimate in corollary 4.5 since for u21 + u22 ≥ ρ2 > 0,∣∣φ(θ, u)∣∣ = ∣∣U(r, ϕ)

∣∣ ≤ 1

η
max
ϕ

∣∣V (r, ϕ)
∣∣ ≤ 1

η
Cψ0,0(1 + θ2 + u2)m0 .

The constant is independent of the radius ρ, hence the claim. For the induction
step, if the claim is true for all multi-indices α′ < α and β′ < β, where α and β are
any multi-indices satisfying |α| + |β| ≤ n0, then, again for u21 + u22 ≥ ρ2 > 0, we
estimate

∣∣Vα,β,ℓ(r, ϕ)∣∣∞ =
∣∣ψα,β,ℓ(θ, u)∣∣∞ by∣∣Vα,β,ℓ∣∣∞ ≤ max

{∣∣∂αθ ∂βuψ∣∣+ ∑
α′<α

∑
β′<β

(
α

α′

)(
β

β′

)∣∣∂α−α′

θ ∂β−β
′

u a
∣∣ |∂α′

θ ∂
β′

u φ
∣∣}

≤ max
{
Cψα,β(1 + θ2 + u2)m0 +

∑
α′<α

∑
β′<β

Cα,βη,α′,β′(1 + θ2 + u2)m+mα′,β′
}
,

where the maximum is computed over all (β1, β2) such that β1 + β2 = ℓ, holding α
and β3 fixed. We observe that, if m ≤ 0, then m+mα′,β′ = m+m0 ≤ m0 = mα,β ,
while if m > 0, m+mα′,β′ = m0 + (|α′|+ |β′|+ 1)m ≤ m0 + (|α|+ |β|)m = mα,β .
In both cases we have

max
ϕ

∣∣Vα,β,ℓ(r, ϕ)∣∣∞ ≤ C̃ψη,α,β3,ℓ
(1 + θ2 + u2)mα,β .

We can now apply inequality (51) and deduce∣∣∂αθ ∂βuφ(θ, u)∣∣ ≤ κℓ
η
C̃ψη,α,β3,ℓ

(1 + θ2 + u2)mα,β ,

where ℓ = β1 + β2; this proves the claim for α and β satisfying |α|+ |β| ≤ n0.
(ii) If ψ ∈ S(Rl×R3), then it satisfies the assumption of item (i) for all m0 ∈ R

and for all α, β. For any µ ∈ R, α ∈ Nl0, and β ∈ N3
0, let us apply the estimate

proven in item (i) with m0 = µ−(|α|+ |β|)m; we obtain
∣∣∂αθ ∂βuφ(θ, u)∣∣ ≤ Cφη,α,β(1+

θ2 + u2)µ. Hence φ ∈ S(Rl ×R3) as claimed. □

The existence of a solution φ ∈ S(Rl×R3) of equation (36) implies (by duality)
uniqueness in S ′(Rl ×R3) for the linear equation

(53) −(u1∂u2
− u2∂u1

)h− iah = s,

for s ∈ S ′(Rl ×R3) and a satisfying conditions (37).

Proposition 4.8. If a ∈ C∞(Rl ×R3) satisfies all conditions (37), equation (53)
has at most one solution in S ′.

Proof. We show that the only solution of the associate homogeneous equation is
the trivial solution h = 0. Explicitly, this means that if〈

h,+(u1∂u2
− u2∂u1

)χ− iaχ
〉
= 0,

for all χ ∈ S(Rl ×R3), then h = 0.
Given an arbitrary test function ψ ∈ S(Rl ×R3) let us consider the equation

(u1∂u2 − u2∂u1)φ− iaφ = ψ.

Since −a satisfies conditions (37), we have established in corollary 4.7 that this
equation has a unique solution φ ∈ S. Then for any ψ ∈ S,

⟨h, ψ⟩ =
〈
h,+(u1∂u2

− u2∂u1
)φ− iaφ

〉
= 0,
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and thus h = 0 as a tempered distribution. □

5. Response of a uniform magnetized plasma

In this section we address the case of a uniform magnetized plasma and prove the
results stated in section 1.4. With this aim we shall rely heavily on the preparatory
results of section 4 and on a stationary-phase argument postponed to section 6.

5.1. Notation. We shall make use of normalized momentum (12) and for (u1, u2) ̸=
(0, 0) we define the two additional systems of cylindrical coordinates

(54) u1 = u⊥ cosϕ, u2 = ∓u⊥ sinϕ, u3 = u∥,

with u⊥ ∈ R+ and ϕ ∈ [0, 2π]. We re-write the linearized Vlasov equation in one
of these two cylindrical coordinate systems depending on the electric charge of the
considered particle species: we choose the sign − (resp., +) for a positively (resp.,
negatively) charged particle species.

With normalized Fourier variables

(55) τ := ω/ωc,s, ξ := ck/ωc,s, and with κs(u) := γ(u)νs(u)/ωc,s,

we define the quantities

(56)

aε(τ, ξ, u) :=
ω + iεν − k3v3

ωc,s/γ
= γ(u)τ − ξ3u3 + iεκs(u),

bi(ξ, u) :=
kiv⊥
ωc,s/γ

= u⊥ξi, i = 1, 2.

Written in terms of normalized variables, the functions a0 := aε|ε=0, bi, and γ are
independent of the particle species.

With Gs defined in (14), the functions of u ∈ R3 defined by

(57) Fs(u) :=
1

u⊥

∂Gs

∂u⊥
(u∥, u⊥), Gs(u) :=

∂Gs

∂u∥
(u∥, u⊥)−

u∥

u⊥

∂Gs

∂u⊥
(u∥, u⊥),

belong S(R3) because of the assumptions on Gs.
Next we define the first-order partial differential operators

(58) Qs,j(τ, ξ, u, ∂ξ) := Fs(u)Φj(τ, ξ, u, ∂ξ) + Gs(u)Ψj(τ, ξ, u, ∂ξ),

where Φj ,Ψj , for j = 1, 2, 3, are given in terms of the coefficients

Γ0(τ, ξ, u) := τγ(u)e±i(ξ1u2−ξ2u1),(59a)

Γj(τ, ξ, u) := ξje
±i(ξ1u2−ξ2u1), j = 1, 2, 3,(59b)

by
Φ1 := ±Γ0∂ξ2 ,

Ψ1 := ±Γ3∂ξ2 ,

Φ2 := ∓Γ0∂ξ1 ,

Ψ2 := ∓Γ3∂ξ1 ,

Φ3 := iu∥Γ0,

Ψ3 := iΓ0 ∓
(
Γ1∂ξ2 − Γ2∂ξ1

)
.

The coefficients Γj all satisfy

|∂ατ,ξ,uΓj(τ, ξ, u)| ≤ Cα(1 + τ2 + ξ2 + u2)1+|α|,

for all α ∈ N7
0, and thus multiplication by Γj is closed in S.

We also introduce the functions of b = (b1, b1) given by

(60) A±
n (b) :=

∑
k,ℓ∈Z: k±ℓ=n

(±i)ℓJk(b1)Jℓ(b2),
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where Jk are the Bessel’s functions of the first kind. If b = (b1, b2) = (0, 0), the
only non-zero term in the series is the one for k = 0 and ℓ = 0, hence A±

n (0) = 1
for n = 0, and A±

n (0) = 0 for n ̸= 0; if, on the other hand, b = (b1, b2) ̸= (0, 0) we
can write b1 = |b| cos θ, b2 = ∓|b| sin θ and

(61) A±
n (b) = Jn(|b|)e−inθ, b ̸= 0,

This identity follows from Jacobi-Anger expansions [1, p.361]

eiz cosϕ =
∑
n∈Z

inJn(z)e
inϕ, eiz sinϕ =

∑
n∈Z

Jn(z)e
inϕ,

for z ∈ C and ϕ ∈ R, that imply

(62) e±i(b2 cosϕ±b1 sinϕ) =
∑
n∈Z

A±
n (b)e

inϕ.

With b1 = |b| cos θ and b2 = ∓|b| sin θ, one computes∑
n∈Z

A±
n (b)e

inϕ = ei|b| sin(ϕ−θ) =
∑
n∈Z

Jn(|b|)ein(ϕ−θ),

which yields identity (61). At last let

(63)

r±ε (τ, ξ, u) :=

∫ +∞

0

eiaε(τ,ξ,u)λ−i(ξ1u1+ξ2u2) sinλ±i(ξ2u1−ξ1u2) cosλdλ

=
i

2

e−iπaε(τ,ξ,u)

sin
(
πaε(τ, ξ, u)

)P±
ε (τ, ξ, u),

with

(64) P±
ε (τ, ξ, u) :=

∫ 2π

0

eiaε(τ,ξ,u)λ−i(ξ1u1+ξ2u2) sinλ±i(ξ2u1−ξ1u2) cosλdλ.

The quantities defined in equations (59)-(64) are independent on the particle species.

Lemma 5.1. For ε > 0 and for each choice of the sign, the equation

∓(u1∂u2 − u2∂u1)r
±
ε − iaεr

±
ε = e±i(ξ2u1−ξ1u2),

has a unique solution in C∞(R7) given by (63) and for every α ∈ N4
0, β ∈ N3

0 there
are constants Cα,β,ε,ν > 0 and mα,β ∈ R such that

|∂ατ,ξ∂βur±ε (τ, ξ, u)| ≤ Cα,β,ε,ν(1 + τ2 + ξ2 + u2)mα,β ,

uniformly in (τ, ξ, u).

Proof. For both choices of the sign, the equation for r±ε is of the form (36) with
right-hand side in C∞ and with θ = (τ, ξ). (For r−ε in particular, one can multiply
the equation by −1 and set a = −aε and ψ = −e±i(ξ2u1−ξ1u2).) For ε > 0, the
function aε defined in (56) is such that all conditions (37) are true. Therefore
proposition 4.6 ensures the existence a unique solution r±ε ∈ C∞(R7) for each
choice of the sign. For the claimed estimates it is enough to show that for any
n0 ∈ N0 the right-hand side of the equation satisfies the hypothesis of corollary 4.7
(i), and this is straightforward.

The integral expressions (63) can be checked by direct substitution into the
equation. In fact if I±ε (τ, ξ, u;λ) denotes the integrand in (63), we have the identity[

∓ (u1∂u2
− u2∂u1

)− iaε(τ, ξ, u)
]
I±ε (τ, ξ, u;λ) = − ∂

∂λ
I±ε (τ, ξ, u;λ),
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and I±ε (τ, ξ, u; 0) = e±i(ξ2u1−ξ1u2). For the second form of r±ε , we notice that,
following Qin et al. [49],

r±ε (τ, ξ, u) =

∫ +∞

0

eiaε(τ,ξ,u)λ−i(ξ1u1+ξ2u2) sin(λ+2π)±i(ξ2u1−ξ1u2) cos(λ+2π)dλ,

and changing integration variable we have

r±ε (τ, ξ, u) = e−2πiaε(τ,ξ,u)

∫ +∞

2π

eiaε(τ,ξ,u)λ−i(ξ1u1+ξ2u2) sinλ±i(ξ2u1−ξ1u2) cosλdλ

= e−2πiaε(τ,ξ,u)

[
r±ε (τ, ξ, u)

−
∫ 2π

0

eiaε(τ,ξ,u)λ−i(ξ1u1+ξ2u2) sinλ±i(ξ2u1−ξ1u2) cosλdλ

]
,

hence,

r±ε (τ, ξ, u) =
−e−2πiaε(τ,ξ,u)

1− e−2πiaε(τ,ξ,u)

∫ 2π

0

eiaε(τ,ξ,u)λ−i(ξ1u1+ξ2u2) sinλ±i(ξ2u1−ξ1u2) cosλdλ,

from which the second expression for r±ε follows. □

5.2. The roots of a0 − n and the distribution limε→0+(1/ sinπaε). From ex-
pression (63), one can see that the main issue in computing the limit for ε→ 0+ of
r±ε consists in the sets of points (τ, ξ, u) ∈ R×R3 ×R3 for which

a0(τ, ξ, u) = γ(u)τ − ξ3u3 ∈ Z.

We note a few preliminary facts about such points.

Remark 9. The condition a0(τ, ξ, u) = n ∈ Z is equivalent to

ω − k3v3 = nΩs(u), n ∈ Z,

which defines the cyclotron resonances: particles of the species s that satisfy this
condition along their orbit, for some integer n, resonate to a plane wave with
frequency and wave vector (ω, k). For resonant particles, the Doppler-shifted wave
frequency ω − k3v3 matches a multiple (also referred to as a harmonic) of the
gyration frequency Ωs of the particle’s orbit around the magnetic field.

For any given n ∈ Z and (τ, ξ) ∈ R×R3, τ ̸= 0, let

(65) Rn(τ, ξ) = {u ∈ R3 : a0(τ, ξ, u) = n}.

Physically Rn(τ, ξ) is the set of normalized particle momenta u that resonate with
the n-th harmonic of the cyclotron frequency when the wave field is a plane wave
with frequency and wave vector are given by (τ, ξ). Since a0 is constant in (ξ1, ξ2),
the sets Rn(τ, ξ) for a fixed harmonic number n depend only on τ , and ξ3. In
addition it is enough to study them for τ > 0 and ξ3 ≥ 0, in view of the symmetries
of the function a0. (The hyperplane τ = 0 will be excluded in our main results.) A
necessary condition for u ∈ Rn(τ, ξ) is

(τ2 − ξ23)u
2
3 + τ2(1 + u21 + u22)− 2nξ3u3 − n2 = 0.

which defines a family of surfaces of revolution obtained by the rotation of conics
around the u3-axis. Specifically we find ellipsoids for τ2 > ξ23 , a paraboloid for
τ2 = ξ23 , and one branch of a hyperboloid for τ2 < ξ23 . We shall speak of elliptic,
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parabolic, and hyperbolic resonances, with reference these three conditions, respec-
tively. In the elliptic case, Rn(τ, ξ) is non-empty if and only if nτ > 0, that is
when, τ and n are both non-zero and have the same sign; ellipsoids degenerate to
a point when τ2 − ξ23 = n2 > 0. In the hyperbolic case one can check that Rn(τ, ξ)
is non-empty for all integers n. The special case n = 0 is a particular hyperbolic
resonance, to be referred to as Landau resonance, for which R0(τ, ξ) is non empty
only if τ2 < ξ23 .

We shall study the limit in S ′(R3) of functions of the form

(66) r̃ε(τ, ξ, u) =
P̃ε(τ, ξ, u)

sin
(
πaε(τ, ξ, u)

) ,
where P̃ε is a family of functions parameterized by ε ∈ [0, ε0] for a fixed ε0 > 0.

The choices of P̃ε relevant to our analysis are P̃ε = ie−iπaεΦjP
±
ε /2 and P̃ε =

ie−iπaεΨjP
±
ε /2, with notation of section 5.1. With this aim, it will be sufficient to

consider a family of functions P̃ε that satisfy the following conditions:

(67)


P̃ε ∈ C∞(R7), ∀ε ∈ [0, ε0],∣∣∂µP̃ε(τ, ξ, u)∣∣ ≤ ĉµ(1 + τ2 + ξ2)m̂µ(1 + u2)n̂µ , ∀ε ∈ [0, ε0], ∀µ ∈ N7

0,

P̃ε(τ, ξ, u) → P̃0(τ, ξ, u) for ε→ 0+, ∀(τ, ξ, u) ∈ R7,

where the constants ĉµ, m̂µ, n̂µ ∈ R are independent of ε ∈ [0, ε0] and (τ, ξ, u) ∈ R7.
We state the main result for the limit of (66) as ε→ 0+. We shall see that it is

sufficient to consider the case κs = 1, or νs = ωc,s/γ; then aε is independent of the
particle species. This is a valid choice of the damping coefficient νs, since it satisfies
conditions (17).

Proposition 5.2. Let ε0, τ0 > 0, and let r̃ε be the family of functions defined for
ε ∈ (0, ε0] in equation (66) with P̃ε satisfying condition (67), and with κs = 1.
Then, for every (τ, ξ), τ ̸= 0, there is r̃0(τ, ξ, ·) ∈ S ′(R3), such that

(i) in the limit ε→ 0+, r̃ε(τ, ξ, ·) → r̃0(τ, ξ, ·) in S ′(R3);
(ii) for every ϕ ∈ S(R3) the function (τ, ξ) 7→

〈
r̃0(τ, ξ, ·), ϕ

〉
is continuous on

(R \ {0}) × R3, and C∞ near points (τ, ξ) such that τ2 ̸= ξ23 + n2 for all
integers n ≥ 0;

(iii) for any ϕ ∈ S(R3) there are reals K0,M > 0, such that∣∣〈r̃ε(τ, ξ, ·), ϕ〉∣∣ ≤ K0(1 + τ2 + ξ2)M ,

for all (τ, ξ) with |τ | ≥ τ0 and ε ∈ [0, ε0].

Remark 10 (Degenerate resonances). The varieties τ2 = ξ2 + n2 for n ≥ 1 in the
Fourier space correspond to plane waves for which the elliptic resonance Rn(τ, ξ)
degenerates to a point. The special case n = 0, that is τ2 − ξ2 = 0, corresponds
to the parabolic resonance which separates elliptic and hyperbolic resonances. The
function (τ, ξ) 7→

〈
r̃0(τ, ξ, ·), ϕ

〉
is smooth away from such topological transitions,

where we can show continuity only.

For the proof of proposition 5.2, we need a few preparatory results. Let us choose
a cut-off function χ ∈ C∞

0 (R) such that

0 ≤ χ(z) ≤ 1, χ(z) = 1, for |z| < 1

4
, χ(z) = 0, for |z| ≥ 1

3
,
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and for any n ∈ Z, δ ∈ (0, 1) let

χδ,n(τ, ξ, u) = χ
(
(a0(τ, ξ, u)− n)/δ

)
.

One can see that χδ,n ∈ C∞(R7) but it is not necessarily compactly supported; in
fact, χδ,n(τ, ξ, ·) is localized around Rn(τ, ξ) which is unbounded when τ2 ≤ ξ23 .

Lemma 5.3. If (τ, ξ, u) ∈ supp(χδ,n) for a certain n ∈ Z then χδ,m(τ, ξ, u) = 0 for
all m ̸= n.

Proof. The set suppχδ,n is given by the condition |a0 − n| ≤ δ/3, so that

|a0(τ, ξ, u)−m| ≥ |m− n| − |a0(τ, ξ, u)− n| > 1− δ/3 > δ/3,

and thus χδ,m(τ, ξ, u) = 0. □

It follows from lemma 5.3 that the sum

(68) χδ =
∑
n∈Z

χδ,n,

is locally finite and thus it defines a family of smooth functions χδ for δ ∈ (0, 1).

Lemma 5.4. For every δ ∈ (0, 1), the cut-off function χδ in (68) is such that∣∣ cos (πa0(τ, ξ, u))∣∣ ≥ cos(πδ/3) > 0, for (τ, ξ, u) ∈ supp(χδ),∣∣ sin (πa0(τ, ξ, u))∣∣ ≥ sin(πδ/4) > 0, for (τ, ξ, u) ∈ supp(1− χδ).

Proof. For every point (τ, ξ, u) in the support of χδ, there is an integer n such that

|a0 − n| ≤ δ/3, | cos(πa0)| =
∣∣ cos (π(a0 − n)

)∣∣ ≥ cos(πδ/3) > 0.

Analogously, on the support of 1− χδ,

|a0 − n| ≥ δ/4, | sin(πa0)| =
∣∣ sin (π(a0 − n)

)∣∣ ≥ sin(πδ/4) > 0,

for all integers n. □

The cut-off function χδ allows us to isolate the singularities of (66) when ε→ 0+.
If νs in equation (55) is chosen so that κs = 1, for (τ, ξ, u) ∈ supp(χδ) we can write

sin(πaε) = cos(πa0)
[
tan(πa0) cosh(πε) + i sinh(πε)

]
,

and

(69)
1

sin(πaε)
=

−i
cos(πa0)

∫ +∞

0

eiλ[tan(πa0) cosh(πε)+i sinh(πε)]dλ.

Therefore, for any ψ ∈ C∞
0 (R3),

(70) ⟨r̃ε(τ, ξ, ·), ψ⟩ = −i
∫ +∞

0

e−λ sinh(πε)Icδ,ε(ψ)(τ, ξ, λ)dλ+ Isδ,ε(ψ)(τ, ξ),

where we have defined the functions

ϑε(τ, ξ, u) := tan
(
πa0(τ, ξ, u)

)
cosh(πε),(71a)

Icδ,ε(ψ)(τ, ξ, λ) :=
∫
R3

eiλϑε(τ,ξ,u)
P̃ε(τ, ξ, u)ψ(u)

cos
(
πa0(τ, ξ, u)

)χδ(τ, ξ, u)du,(71b)

Isδ,ε(ψ)(τ, ξ) :=
∫
R3

P̃ε(τ, ξ, u)ψ(u)

sin
(
πaε(τ, ξ, u)

)(1− χδ(τ, ξ, u)
)
du.(71c)
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We also define

Icδ,0(ψ)(τ, ξ, λ) :=
∫
R3

eiλ tan(πa0(τ,ξ,u))
P̃0(τ, ξ, u)ψ(u)

cos
(
πa0(τ, ξ, u)

)χδ(τ, ξ, u)du,(71d)

Isδ,0(ψ)(τ, ξ) :=
∫
R3

P̃0(τ, ξ, u)ψ(u)

sin
(
πa0(τ, ξ, u)

)(1− χδ(τ, ξ, u)
)
du.(71e)

The main step in the proof of proposition 5.2 consists of an application of the
stationary phase formula [29, Chapter 7] in order to prove that Icδ,ε(ψ)(τ, ξ, ·) is

bounded in L1 uniformly in ε. The real-valued phase is given by ϑε and the pa-
rameter is λ ≥ 1. All technical results needed in the proof of proposition 5.2 are
collected in section 6, below.

Proof of proposition 5.2. We start from identity (70),

⟨r̃ε(τ, ξ, ·), ψ⟩ = −i
∫ +∞

0

e−λ sinh(πε)Icδ,ε(ψ)(τ, ξ, λ)dλ+ Isδ,ε(ψ)(τ, ξ),

for ψ ∈ C∞
0 (R3) and lemma 6.4 (i) shows that this is extended to ϕ ∈ S(R3).

For every δ ∈ (0, 1), lemma 6.4 (iii) and (v) allows us to define the functional

(72)
〈
r̃δ,0(τ, ξ, ·), ϕ

〉
= −i

∫ +∞

0

Icδ,0(ϕ)(τ, ξ, λ)dλ+ Isδ,0(ϕ)(τ, ξ),

over S(R3) for every (τ, ξ), τ ̸= 0.
In view of lemma 6.4 (ii), as ε → 0+, we have Icδ,ε(ϕ)(τ, ξ) → Icδ,0(ϕ)(τ, ξ) and

Isδ,ε(ϕ)(τ, ξ) → Isδ,0(ϕ)(τ, ξ) for all ϕ ∈ S(R3). By the dominated convergence

theorem and lemma 6.4 (iii) we deduce∫ +∞

0

e−λ sinh(πε)Icδ,ε(ϕ)(τ, ξ, λ)dλ→
∫ +∞

0

Icδ,0(ϕ)(τ, ξ, λ)dλ,

for all ϕ ∈ S(R3), hence r̃ε(τ, ξ, ·) → r̃δ,0(τ, ξ, ·) in S ′(R3). By uniqueness of the
limit, we have that r̃δ,0(τ, ξ, ·) is the same tempered distribution for all δ ∈ (0, 1)
which we denote by r̃0(τ, ξ, ·). This proves (i).

As for the regularity of ⟨r̃0(τ, ξ, ·), ϕ⟩ with respect to (τ, ξ), lemma 6.4 (i) show
in particular that Isδ,0(ϕ) ∈ C∞, hence it is enough to address

⟨r̃cδ,0(τ, ξ, ·), ϕ⟩ := ⟨r̃δ,0(τ, ξ, ·), ϕ⟩ − Isδ,0(ϕ)(τ, ξ) = −i
∫ +∞

0

Icδ,0(ϕ)(τ, ξ, λ)dλ.

In lemma 6.4 (i) we have established that Icδ,0(ϕ) is C∞, and the inequality in item

(iii) of the same lemma 6.4 gives a function B̃ε0,δ ∈ L1(R+) such that

|Icδ,0(ϕ)(τ, ξ, λ)| ≤ B̃ε0,δ(λ),

uniformly in (τ, ξ) ∈ K whereK is any compact where |τ | > 0. Then the dominated
convergence theorem can be applied to show that ⟨r̃cδ,0(τ, ξ, ·), ϕ⟩ is continuous at

any point (τ, ξ), where |τ | > 0.
Concerning the derivatives of Icδ,0(ϕ) with respect to (τ, ξ), let as fix a point

(τ̄ , ξ̄) such that |τ̄ | ̸= 0 and τ̄2 ̸= ξ̄23 + n2 for all n ∈ N0. For a sufficiently small
radius ρ > 0 the closed ball K = {(τ, ξ) : (τ − τ̄)2 + (ξ − ξ̄)2 ≤ ρ2} satisfies the
assumptions of lemma 6.4 item (iv). Therefore, there is a value of δ depending only

on K and an upper bound |∂ατ,ξIcδ,ε(ϕ)(τ, ξ, λ)| ≤ B(α)
ε0,δ

(λ, τ∗) with B(α)
ε0,δ

(·, τ∗) ∈ L1,
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where τ∗ = min |τ | in K. Hence, ⟨r̃cδ,0(τ, ξ, ·), ϕ⟩ is of class C∞ near any point where

|τ | > 0 and τ2 ̸= ξ23 + n2, as claimed in (ii).
Again lemma 6.4, items (iii) and (v), imply

|⟨r̃ε(τ, ξ, ·), ϕ⟩| ≤ ∥Bε0,δ(·, τ0)∥L1(R+)(1 + τ2 + ξ2)m4+
5
2 ∥ϕ∥2m̃4+10

+Ks
0(1 + τ2 + ξ2)ℓ0,0∥ϕ∥2ℓ̃0,0+4,

uniformly in (τ, ξ) where |τ | ≥ τ0 > 0, where mj , m̃j , ℓ0,0and ℓ̃0,0 have been defined
in lemma 6.3 and 6.4, respectively. This estimate is uniform in ε ∈ [0, ε0]. Since
m4 ≥ ℓ0,0, we obtain claim (iii) with constant K0 depending in particular on τ0, ε0
and δ and with M = m4 + 5/2. □

Remark 11. The estimate in proposition 5.2 item (iii) could be replaced by∣∣〈r̃ε(τ, ξ, ·), ϕ〉∣∣ ≤ K0(τ)(1 + τ2 + ξ2)M , τ ̸= 0,

but K0(τ) is not bounded near τ = 0. Hence our argument does not allow any
conclusion for τ = 0 and we have excluded all frequencies in |τ | < τ0 with τ0
arbitrarily small and fixed.

5.3. Solution of the linear Vlasov equation for the magnetized case. We
address equation (15) for a given species s, and thus drop the subscript s for sim-
plicity. Particularly, we shall denote by Qj the differential operator Qs,j defined in
equation (58), which depends on the equilibrium distribution function and the sign
of the electric charge of the consider particle species.

We shall first address the existence of solutions of the linear Vlasov equation (18)
for the time-derivative of the distribution function including a damping term and
address its dissipation-less limit. The result will then be used to compute the
time-derivative of the induced current (19).

Theorem 5.5. Let ε > 0 and let ν be any function satisfying conditions (17).
Then equation (18) has a solution gε ∈ S(R7) which is unique as an element of
S ′(R7) and:

(i) The Fourier transform of the unique tempered solution gε is

ĝε(ω, k, u) =
qn0

(mc)4

3∑
j=1

Êj(ω, k)Qj(τ, ξ, u, ∂ξ)r
±
ε (τ, ξ, u),

where the sign + (resp. −) is chosen for q > 0 (resp. q < 0).
(ii) For (u1, u2) ̸= (0, 0),

ĝε(ω, k, u) = i
qn0

(mc)4

3∑
j=1

Êj(ω, k)
∑
n∈Z

Qj(τ, ξ, u, ∂ξ)A
±
n (b)

aε − n
e+inϕ,

where ϕ is defined in (54) and b = (b1, b2) in (56).

Remark 12. The expression of the solution in item (i) in terms of the integral
r±ε defined in (63) was first proposed by Qin et al. [49], cf. also the subsequent
discussion in the literature [40, 50].

Remark 13. The solution ĝε given in item (ii) is in agreement with the standard
expression obtained in the physics literature [9, 14, 54]. For ε → 0+ it exposes a
countable number of poles for a0 ∈ Z where sin(πa0) = 0. These poles correspond
to cyclotron resonances briefly discussed in section 5.2.
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Proof of theorem 5.5. We look for tempered solutions of equation (18) and thus we
can equivalently consider the Fourier transform ĝε of the distribution function gε.
If we define

(73) ĥε = e±i(ξ2u1−ξ1u2)ĝε,

where τ = ω/ωc,s, ξ = ck/ωc,s, and with sign + (resp. −) for q > 0 (resp. q < 0),
the Fourier transform of equation (18) is equivalent to equation (53) with source

ŝ± =
|q|n0
(mc)4

e±i(ξ2u1−ξ1u2)
3∑
j=1

ÊjQj(τ, ξ, u, ∂ξ)e
±i(ξ2u1−ξ1u2),

and with the sign chosen according to the electric charge q. (As in the proof of

proposition 5.1, in the case q < 0 we can multiply by −1 the equation for ĥε in order
recast it into the form of (53); hence a = −aε.) Under the hypotheses, s± belongs

to S(R7). Proposition 4.6 gives a solution ĥε ∈ S(R7), and thus ĝε ∈ S(R7). This
is the unique solution in C∞, as proven in proposition 4.6, as well as in S ′(R7), as
proven in proposition 4.8.

(i) Substitution of the claimed expression ĝε into (73) gives

ĥε(ω, k, u) =
qn0

(mc)4

3∑
j=1

Êj(ω, k)e
±i(ξ2u1−ξ1u2)Qj(τ, ξ, u, ∂ξ)r

±
ε (τ, ξ, u),

where τ = ω/ωc,s, ξ = ck/ωc,s, and we observe that the operator e±i(ξ2u1−ξ1u2)Qj
commutes with u2∂u1

− u1∂u2
. Then upon using lemma 5.1, we have that ĥε

solves (53) and thus ĝε is the solution of equation (15).
(ii) Upon using coordinates (54), for either choice of the sign of the particle

charge the equation for ĥε reduces to (42) with ã = aε and with source

V (ϕ) =
qn0

(mc)4
e±i(ξ2u1−ξ1u2)

3∑
j=1

ÊjQje
±i(ξ2u1−ξ1u2).

We evaluate the Fourier coefficients of the source, that is,

V̂n =
qn0

(mc)4
1

2π

∫ 2π

0

e−inϕe±i(ξ2u1−ξ1u2)
3∑
j=1

ÊjQje
±i(ξ2u1−ξ1u2)dϕ

=
qn0

(mc)4
e±i(ξ2u1−ξ1u2)

3∑
j=1

ÊjQj
1

2π

∫ 2π

0

e−inϕe±i(ξ2u1−ξ1u2)dϕ,

and, in the second identity, we have used the fact that the coefficients of the operator
e±i(ξ2u1−ξ1u2)Qj are independent of ϕ, i.e., the exponential factor is canceled by the
corresponding factor in the definition of the coefficients in equations (59). It is now
sufficient to compute the Fourier coefficients of

e±i(ξ2u1−ξ1u2) = e±i(b2 cosϕ±b1 sinϕ),

and those are equal to A±
n (b) as we have shown in equation (62). Then

V̂n =
qn0

(mc)4
e±i(ξ2u1−ξ1u2)

3∑
j=1

ÊjQjA
±
n .

The Fourier expansion in lemma 4.4 then yields the claimed identity. □
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We shall now show that the solution gε for ε→ 0+ approaches the causal solution
of (15) as computed by integration along the characteristics curves. This result in
addition clarifies the relation between the analytical expressions for the solution in
Fourier and physical spaces. In the position-momentum variables, the characteristic
curve t′ 7→

(
X(t′; t, x, p), P (t′; t, x, p)

)
with terminal condition (x, p) at t′ = t is [9]

(74)



X1(t
′; t, x, p) = x1 −

p1
mγΩ

sin
(
Ω · (t− t′)

)
− p2
mγΩ

[
cos

(
Ω · (t− t′)

)
− 1

]
,

X2(t
′; t, x, p) = x2 +

p1
mγΩ

[
cos

(
Ω · (t− t′)

)
− 1

]
− p2
mγΩ

sin
(
Ω · (t− t′)

)
,

X3(t
′; t, x, p) = x3 − v3(t− t′),

P1(t
′; t, x, p) = p1 cos

(
Ω · (t− t′)

)
− p2 sin

(
Ω · (t− t′)

)
,

P2(t
′; t, x, p) = p1 sin

(
Ω · (t− t′)

)
+ p2 cos

(
Ω · (t− t′)

)
,

P3(t
′; t, x, p) = p3,

where γ and thus Ω are constants of motion. Under assumption (17) ν is con-
stant along the characteristics as well. The characteristic flow has the semi-group
property: for every t1, t2, t3 with t1 ≤ t2 ≤ t3 and (x, p),

(75)
X(t1; t2, X(t2; t3, x, p), P (t2; t3, x, p)) = X(t1; t3, x, p),

P (t1; t2, X(t2; t3, x, p), P (t2; t3, x, p)) = P (t1; t3, x, p),

which can be verified directly from (74). For E and F0 at least in C1, let s =
−q(∂tE − v × ∇ × E) · ∇pF0 for brevity, and F0 = n0G as in (14). We shall
always imply the relation u = p/(mc) between normalized and physical momentum
variables.

Proposition 5.6. For every ε > 0, E ∈ [S(R4)]3, F0 = n0G ∈ S(R3), and
g0,ε ∈ S(R6), the Cauchy problem for equation (15) with initial condition g0,ε at
time t = t0 has a unique classical solution gε ∈ C∞(R7) and it holds that:

(i) There is a unique Cauchy datum for which the solution gε ∈ S ′ and that is
given by

g∗,ε(x, u) :=

∫ t0

−∞
e−εν(t0−t

′)s
(
t′, X(t′; t0, x, p), P (t

′; t0, x, p)
)
dt′,

which belongs to S(R6).
(ii) For g0,ε = g∗,ε the solution is

gε(t, x, u) =

∫ t

−∞
e−εν(t−t

′)s
(
t′, X(t′; t, x, p), P (t′; t, x, p)

)
dt′,

and ĝε is the same function defined in theorem 5.5 (i).
(iii) For ε→ 0+, the function gε has a pointwise limit

g(t, x, u) =

∫ t

−∞
s
(
t′, X(t′; t, x, p), P (t′; t, x, p)

)
dt′,

for every (t, x, u) ∈ R7. The limit g belongs to C∞
b (R7), it is a classical

solution of equation (15), and it is independent of the choice of ν.

Remark 14. The first part of this statement is essentially Wollman’s result on the
linear Vlasov equation [57, theorem 3.1], but for the case of a uniform plasma
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equilibrium and with somewhat relaxed hypotheses on the support of the initial
datum.

Proof. By hypothesis the damping function ν is constant along the characteristics.
The application of the standard method of characteristics [34] gives the unique
classical solution of the Cauchy problem,

gε(t, x, u) = g0,ε
(
X(t0; t, x, p), P (t0; t, x, p)

)
e−εν(t−t0)

+

∫ t

t0

e−εν(t−t
′)s

(
t′, X(t′; t, x, p), P (t′; t, x, p)

)
dt′,

where X and P are given in equation (74), and gε ∈ C∞ follows by Leibniz rule for
differentiation of integrals. This completes the first part of the proposition.

Since e−εν(t−t
′) is integrable for t′ ∈ (−∞, t], the integral

Hε(t, x, p) =

∫ t

−∞
e−εν(t−t

′)s
(
t′, X(t′; t, x, p), P (t′; t, x, p)

)
dt′

is finite. If the electric field is given in Fourier transform, using

E(t, x) =
1

(2π)4

∫
R4

e−iωt+ik·xÊ(ω, k)dωdk,

and applying Fubini’s theorem, we get

Hε(t, x, p) =
1

(2π)4

∫
R4

e−iωt+ik·xH̃ν(t, ω, k, p)dωdk,

with, using F0 = n0G,

H̃ε(t, ω, k, p) =
qn0

(mc)4

3∑
j=1

Êj(ω, k)Qj(τ, ξ, u, ∂ξ)R
±
ε (t, ω, k, p),

where Qj are the operators defined in (58) for the considered particle species, and

R±
ε (t, ω, k, p) =

ωc
γ

∫ t

−∞
e−εν(t−t

′)+iω(t−t′)−ik∥v∥(t−t′)

e±i(ξ2u1−ξ1u2) cos(
ωc
γ (t−t′))−i(ξ1u1+ξ2u2) sin(

ωc
γ (t−t′))dt′,

with sign chosen according to the particle charge q. The change of variable λ =
ωc

γ (t − t′) shows that R±
ε is actually independent of time t and R±

ε (t, ω, k, p) =

r±ε (τ, ξ, u) where r
±
ε has been defined in (63). Then, H̃ε is also independent of time

and H̃ε(t, ω, k, p) = ĝε(ω, k, p) with ĝε the unique tempered solution established in
theorem 5.5 (i). We have ĝε ∈ S and thus Hε is the inverse Fourier transform of
a Schwartz function, so that Hε ∈ S(R7). By definition g∗,ε(x, p) = Hε(t0, x, p) =
gε(t0, x, p), hence g∗,ε ∈ S and it is the Cauchy datum of the unique tempered
solution gε = Hε. This proves (i) and item (ii) follows from the expression for Hε.

As for the pointwise limit of the solution, item (iii), we observe that the char-
acteristic flow and the source term s satisfy the hypothesis of proposition C.2; in
particular, the flow is of the form (88), while s is defined as the sum of the products
of a function in S(R4) in frequency and wave-vector and a function in S(R3) in
momentum, hence s ∈ S(R7). The function g is then the causal solution of (16) in
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the sense of appendix C and proposition C.2 gives g ∈ C∞
b (R7). For every m ∈ N0

one has the estimate

(1 + s2)m
∣∣s(s,X(s; t, x, p), P (s; t, x, p)

)∣∣
≤ (1 + s2 +X(s; t, x, p)2 + P (s; t, x, p)2)m

∣∣s(s,X(s; t, x, p), P (s; t, x, p)
)∣∣,

which gives ∣∣s(s,X(s; t, x, p), P (s; t, x, p)
)∣∣ ≤ ∥s∥2m

(1 + s2)m
,

where ∥ ·∥m are the semi-norms defined in appendix A. Therefore, for every (t, x, p)
and for m large enough, dominated convergence allows us to pass to the limit
ε→ 0+ in the integrand. □

5.4. Current density and conductivity operator. First we show that the func-
tions r±ε in lemma 5.1 have a limit in S ′. For simplicity let

(76) ζ±(ξ1, ξ2, u1, u2, λ) = (ξ1u1 + ξ2u2) sinλ∓ (ξ2u1 − ξ1u2) cosλ,

and we recall the definition of a0 in equation (56) and normalized Fourier vari-
ables (55).

Proposition 5.7. For every integer m ≥ 2,

(i) the linear map

ψ 7→
∫ ∫ 1

0

eia0(τ,ξ,u)λ−iζ
±(ξ1,ξ2,u1,u2,λ)dλψ(τ, ξ, u)dτdξdu

+ im
∫ ∫ +∞

1

λ−meia0(τ,ξ,u)λ−iζ
±(ξ1,ξ2,u1,u2,λ)dλ

∂mτ ψ(τ, ξ, u)

γ(u)m
dτdξdu,

is continuous on S(R7) and thus defines a tempered distribution r±,m0 ;

(ii) for ε → 0+, r±ε has a limit r±0 in S ′, and r±0 = r±,m0 for all m ≥ 2. The
limit is independent of the choice of the function νs.

Proof. The two terms defining the linear map on ψ are bounded by the norms ∥ψ∥8
and ∥ψ∥m+8, respectively, and this shows continuity in the topology of S(R7). Then

the map is a tempered distribution which is denoted by r±,m0 . Since

(−i)m

γmλm
∂mτ e

iaελ−iζ± = eiaελ−iζ
±
,

after integration by parts in τ ,

⟨r±ε , ψ⟩ =
∫ ∫ 1

0

eiaελ−iζ
±
dλψdτdξdu

+ im
∫ [ ∫ +∞

1

eiaελ−iζ
±

λm
dλ

]∂mτ ψ
γm

dτdξdu,

and if m ≥ 2 the integrand is uniformly bounded by an integrable function. We
can then pass to the limit in the integral and obtain

⟨r±ε , ψ⟩
ε→0+−−−−→ ⟨r±,m0 , ψ⟩,

for every ψ ∈ S(R7) and every m ≥ 2. Uniqueness of the limit implies that all

distributions r±,m0 for m ≥ 2 are equal to the limit r±0 = limε→0+ r
±
ε . □
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This result is already sufficient to compute the limit of the time derivative of the
induced current density as a tempered distribution under fairly general assumptions.
In the following we define, for any s labeling a particle species,

rs,ε(τ, ξ, u) := r±ε (τ, ξ, ν), rs := r±0 ,

with sign + (resp. −) for qs > 0 (resp. qs < 0), with r±ε defined in equation (63),
and with r±0 being the distributional limit in lemma 5.7.

By definition, cf. equation (19), the current density associated to {gs,ε} is

∂tjε = K({gs,ε}).

We recall that ωp,s =
√
4πq2s ns,0/ms is the plasma frequency of the s-th species.

We also need the operator Qs,j defined in equation (58). Relations (55) are also
implied.

Proposition 5.8. The function ∂tjε belongs to [S(R4)]3 and

(77a) ∂̂tjε(ω, k) = ς̂ε(ω, k)Ê(ω, k),

where the tensor ς̂ε is given component-wise by

(77b) ς̂ε,ij(ω, k) =
∑
s

ω2
p,s

4π

∫
R3

1

γ(u)
uiQs,j(τ, ξ, u, ∂ξ)rs,ε(τ, ξ, u)du.

Proof. In theorem 5.5 we have shown that gs,ε ∈ S(R7), hence for every l,m, n ∈ N0

and α ∈ N4
0,

(1 + t2 + x2)m(1 + u2)n
∣∣∂lt∂αx gs,ε(t, x, u)∣∣ ≤ ∥gs,ε∥|α|+l+2m+2n.

Since for n > 3/2, (1 + u2)−n is integrable, from equation (19) we deduce that
∂tjε = K({gs,ε}) is C∞ and the same inequality implies that all derivatives are
rapidly decaying at infinity, that is, ∂tjε ∈ [S(R4)]3.

Then the Fourier transform of ∂tjε exists in the classical sense and, by Fubini’s
theorem, we have

∂̂tjε(ω, k) =
∑
s

qs(msc)
3

∫
vs(u)ĝs,ε(ω, k, u)du.

Upon using the expression for ĝs,ε in theorem 5.5 (i), we arrive at equation (77). □

Remark 15. Convergence of the integral in (77b) is ensured by the rapid decay in
u at infinity of the coefficients (57) in the operators Qs,j .

We recall that Qs,j are first-order partial differential operators and we can define
the formal adjoint Q′

s,j by∫
R7

χ1(τ, ξ, u)Qs,jχ2(τ, ξ, u)dτdξdu =

∫
R7

χ2(τ, ξ, u)Q
′
s,jχ1(τ, ξ, u)dτdξdu,

for every χ1, χ2 ∈ S(R7). The adjoint Q′
s,j is again a first-order partial differential

operator and it is continuous from S → S. Therefore we can define the distribution
∂tj ∈ [S ′(R4)]3 by

⟨∂̂tj, φ̂⟩ :=
3∑
j=1

∑
s

ω4
c,sω

2
p,s

4πc3
⟨rs, Q′

s,j

( φ̂ · u
γ

Êj
)
⟩,

for every vector test-function φ̂ ∈ [S(R4)]3.
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Proposition 5.9. As ε → 0+, ∂tjε → ∂tj in [S ′(R4)]3 and the limit satisfies
∂tj = K({gs}) ∈ [C∞

b (R4)]3.

Proof. Step 1: ∂tjε → ∂tj. For ε > 0, one has

⟨∂̂tjε, φ̂⟩ =
∑
s

ω4
c,sω

2
p,s

4πc3

3∑
j=1

⟨rs,ε, Q′
s,j

( φ̂ · u
γ

Êj
)
⟩,

where the factor ω4
c,sc

−3 comes for the chance of variable dωdk = (ω4
c,s/c

3)dτdξ.
The result then follows from the convergence of rs,ε in S ′ proven in proposition 5.7.

Step 2: gs belongs to the domain of the operator K. Wee observe that the flow
(74) is polynomially bounded and thus satisfies the hypothesis of lemma C.3. Then,
since |v(u)| = c|u|/γ(u) ≤ c, for every n, l ∈ N0 and α ∈ Nd0,

(78) (1 + u2)n|v(u)∂lt∂αx gs(t, x, u)| ≤ c(1 + u2)n|∂lt∂αx gs(t, x, u)| ≤ C,

and upon choosing n > 3/2 we deduce that u 7→ v(u)∂lt∂
α
x gs(t, x, u) is bounded by

an L1-function. For l = 0 and α = 0, this shows that gs has finite first velocity
moment. Iterated application of the dominated convergence theorem also shows
that K({gs}) ∈ C∞

b (R4).

Step 3: ∂tj = K({gs}). Let ∂̃tj = K({gs}). For every φ ∈ [S(R4)]3,

⟨∂tj − ∂̃tj, φ⟩ = −⟨∂tjε − ∂tj, φ⟩+ ⟨K({gs,ε − gs}), φ⟩.
The first terms on the right-hand side converges to zero for ε → 0+. The second
term is estimated by

⟨K({gs,ε − gs}), φ⟩ =
∑
s

qs(msc)
3

∫
R4

∫
R3

(gs,ε − gs)(t, x, u)φ(t, x) · v(u)dudtdx.

We know that gs,ε ∈ S and upon using estimate (78) with l = 0 and α = 0, we can
bound the integrand by an L1-function independent on ε so thus pass to the limit
in the integrand. At last from proposition 5.6, we have gs,ε − gs → 0. □

Proposition 5.9 is sufficient to prove the continuity of ς : [S(R4)]3 → [S ′(R4)]3,
cf. equation (20). However, we wish to understand under which conditions ς reduces
to a Fourier multiplier and, when this is the case, we wish to address the regularity
of its symbol.

Since the limit ∂tj is independent of the choice of the damping function, we
choose νs such that κs = 1; one can check that this satisfies condition (17).

We start from equation (77) which can be rewritten as

(79) ς̂ε,ij(ω, k) =
∑
s

ω2
p,s

4π

[ ∫
R3

ui
γ
Φjrs,ε(τ, ξ, u)Fs(u)du

+

∫
R3

ui
γ
Ψjrs,ε(τ, ξ, u)Gs(u)du

]
.

Since aε depends on ξ through ξ3 only, we have

(80) Φjrs,ε =
ie−iπaεΦjP

±
ε

2 sin(πaε)
, Ψjrs,ε =

ie−iπaεΨjP
±
ε

2 sin(πaε)
,

with sign + (resp., −) for qs > 0 (resp., qs < 0).
We shall now apply proposition 5.2, which holds for generic functions of the

form (66) with P̃ε subject to condition (67), to the case of interest, which is given
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in equations (79) and (80). We choose a normalization time-scale common to all
particle species, that is, ω̂ := maxs ωc,s.

Proposition 5.10. Under the same hypotheses as in theorem 5.5, for ω ̸= 0, the
tensor ς̂ε(ω, k) defined in (77), has a pointwise limit ς̂0(ω, k), which can be computed,
cf. equation (81), and such that:

(i) The limit ς̂0 is continuous on (R \ {0})×R3 and it is C∞ where ω ̸= 0 and
ω2 ̸= (ck3)

2 + n2ω2
c,s for all n ∈ Z and species index s.

(ii) For any ω0 > 0, there is a constant K(ω0) for which

|ς̂0(ω, k)| ≤ K(1 + (ωω̂ )
2 + ( ckω̂ )2)M ,

uniformly for (ω, k) ∈ R4, |ω| ≥ ω0, with exponent M independent of ω0.

(iii) For all E ∈ [S(R4)]3 such that ω ̸= 0 in supp Ê we have ∂tj = F−1
(
ς̂0Ê

)
.

Proof. We start from equation (79) which reads

ς̂ε,ij(ω, k) =
∑
s

ω2
p,s

4π

[〈
Φjrs,ε(τ, ξ, ·),

1

γ
uiFs

〉
+
〈
Ψjrs,ε(τ, ξ, ·),

1

γ
uiGs

〉]
,

where τ = ω/ωc,s and ξ = ck/ωc,s, cf. equation (55).
As observed in equations (80), both Φjrs,ε and Ψjrs,ε are special cases of (66)

corresponding to P̃ε = (i/2)e−iπaεΦjP
±
ε and P̃ε = (i/2)e−iπaεΨjP

±
ε , respectively.

Lemma 6.5 shows that in both cases P̃ε satisfies condition (67). Proposition 5.2
gives, for any (τ, ξ) with τ ̸= 0, distributions rΦs,j(τ, ξ, ·), rΨs,j(τ, ξ, ·) ∈ S ′(R3) such
that

Φjrs,ε(τ, ξ, ·) → rΦs,j(τ, ξ, ·), Ψjrs,ε(τ, ξ, ·) → rΨs,j(τ, ξ, ·),
in the topology of S ′(R3). In this case, let

(81) ς̂0,ij(ω, k) =
∑
s

ω2
p,s

4π

[〈
rΦs,j(τ, ξ, ·),

1

γ
uiFs

〉
+
〈
rΨs,j(τ, ξ, ·),

1

γ
uiGs

〉]
,

and we have ς̂ε,ij(ω, k) → ς̂0,ij(ω, k) pointwise in Fourier space where ω ̸= 0.
(i) Proposition 5.2 implies that ς̂0,ij is continuous in (R \ {0}) × R3 and C∞

where τ ̸= 0 and τ2 ̸= ξ23 + n2 for all integers n, and for all particle species.
(ii) We observe that for any s, ω̂/ωc,s ≥ 1, hence,

1 + τ2 + ξ2 ≤ ω̂2

ω2
c,s

(
1 + (

ω

ω̂
)2 + (

ck

ω̂
)2
)
.

Then proposition 5.2 item (iii) implies that there are constants K,M > 0 indepen-
dent of ε such that ∣∣ς̂ε(ω, k)∣∣ ≤ K

(
1 + (ωω̂ )

2 + ( ckω̂ )2
)M

,

uniformly in ε ∈ [0, ε0].
(iii) We use the estimate proven in (ii), which implies∣∣ς̂ε(ω, k)− ς̂0(ω, k)

∣∣ ≤ 2K
(
1 + (ωω̂ )

2 + ( ckω̂ )2
)M

,

uniformly in ε ∈ [0, ε0] and for |ω| ≥ ω0. Since by hypothesis ω ̸= 0 and thus τ ̸= 0

in supp Ê, we can choose ω0 small enough that, for any φ̂ ∈ [S(R4)]3,∣∣[(ς̂ε(ω, τ)− ς̂0(ω, k))Ê(ω, k)
]
· φ̂(ω, k)

∣∣ ≤ 2K
(
1+(ωω̂ )

2+( ckω̂ )2
)M ∣∣Ê(ω, k)

∣∣∣∣φ̂(ω, k)∣∣
uniformly in ε ∈ [0, ε0] and (ω, k) ∈ R4, |ω| ≥ ω0 . Since E,φ ∈ [S(R4)]3, the
right-hand side of the above inequality belongs to L1(R4) and we have already
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established that ς̂ε(ω, τ)− ς̂0(ω, k) → 0 pointwise. Therefore the hypothesis of the
dominated convergence theorem are satisfied and we can conclude∫

R4

[(
ς̂ε(ω, τ)− ς̂0(ω, k)

)
Ê(ω, k)

]
· φ(ω, k)dωdk → 0,

for all φ̂ ∈ [S(R4)]3 which means that ς̂εÊ → ς̂0Ê in S ′(R4). At last proposition 5.9

establishes that the S ′-limit of ς̂εÊ is exactly ∂̂tj. □

5.5. Proof of the results on the relativistic, three-dimensional case with
uniform magnetic field (section 1.4). We can now collect the partial results
obtained in this section and give a proof of the main theorems stated in section 1.4.

Proof of theorem 1.3. (i) For each s and ε, existence of a solution gs,ε ∈ S(R7) of
the Vlasov equation with damping and its uniqueness is established in theorem 5.5.

We have shown that ∂̂tjε ∈ [S(R4)]3 in proposition 5.9.
(ii) Proposition 5.6 proves that gs,ε converges pointwise to gs ∈ C∞

b and the limit
is independent of the damping function ν. Explicit expressions for gs,ε and gs are
given. Using the inequality, cf. the proof of proposition 5.6,

(1 + s2)m
∣∣s(s,X(s; t, x, p), P (s; t, x, p)

)∣∣ ≤ ∥s∥2m,

yields the bound ∣∣gs,ε(t, x, u)∣∣ ≤ C,

uniformly in ε and thus for any φ ∈ S(R7),∣∣(gs,ε(t, x, u)− gs(t, x, u)
)
φ(t, x, u)

∣∣ ≤ 2C
∣∣φ(t, x, u)∣∣,

and |φ| is in L1. Hence the dominated convergence theorem yields

⟨gs,ε − gs, φ⟩ =
∫ (

gs,ε(t, x, u)− gs(t, x, u)
)
φ(t, x, u)dtdxdu→ 0,

for all φ ∈ S(R7). This is equivalent to gs,ε → gs in S ′. Existence of the S ′-limit
of ∂tjε is proven in proposition 5.9, in which we also show that the limit ∂tj is
determined by gs only, hence it is independent of ν.

(iii) The fact that the limit gs is a classical solution of the linearized Vlasov
equation in C∞

b is proven in proposition 5.6. At last, the identity ∂tj = K({gs}) is
shown in proposition 5.9. □

Proof of theorem 1.4. After Fourier transform, the action of ς(E) on a test function
is given in proposition 5.9. Since rs is a tempered distribution and Q′

s,j is continuous
from S → S, we have ∣∣⟨∂̂tj, φ̂⟩∣∣ ≤ C∥u · φ̂Ê/γ∥ℓ,

and Leibniz rule for the derivative yields∣∣⟨∂̂tj, φ̂⟩∣∣ ≤ C̃∥φ̂∥ℓ∥Ê∥ℓ.

If Ê ∈ [S(R4)]3, then (1−χ(ω))Ê(ω, k) satisfies the hypothesis of proposition 5.10

which gives ς(E) = F−1
(
(1− χ)ς̂0Ê

)
. □



TEMPERED-IN-TIME RESPONSE OF A PLASMA 45

6. Stationary and non-stationary phase results for some integrals

This section is devoted to the proof of four lemmas, in which we study the phase
ϑε = tan(πa0) cosh(πε) with the aim of evaluating integrals in u via stationary

phase results. It replaces the study of 1
sinπaϵ

by the study of − i
cosπa0

∫ +∞
0

eiλθϵdλ
and exchanging integration in λ and u in integrals defining the current, cf. equa-
tions (70) and (71) in section 5. In addition, in this section, as the distribution

1
sinπaϵ

acts on the functions P̃ε, we give results on the functions P̃ε relevant to our

applications (lemma 6.5 on functions satisfying (67) below). In this section, we let
κs = 1, cf. comments before proposition 5.2.

We note basic facts about the stationary phase points, that are the same as the
critical points of a0, since tan(πa0) behaves as π(a0−n). Because of the symmetries
of the function a0, it is sufficient to consider the case τ > 0 and ξ3 ≥ 0.

Lemma 6.1. For ε > 0, let ϑε be defined in equation (71a) and let τ > 0, ξ ∈ R3

with ξ3 ≥ 0.

(i) For τ2 − ξ23 ≤ 0, ϑε(τ, ξ, ·) has no critical points and

|∇uϑε(τ, ξ, u)| > (πτ/2)(1 + u2)−1, for all u ∈ R3.

(ii) For τ2 − ξ23 > 0, ϑε(τ, ξ, ·) has an isolated non-degenerate critical point at

u = uc(τ, ξ) =
(
0, 0, ξ3/(τ

2 − ξ23)
1/2

)
,

and at the critical point u = uc one has∣∣ detϑ′′ε (τ, ξ, uc)∣∣ ≥ (πτ)3(1 + u2c)
−5/2,

|⟨ϑ′′ε (τ, ξ, uc)−1∇u,∇u⟩Υ| ≤ 3

πτ
(1 + u2c)

3/2 max
|β|=2

|∂βuΥ|,

for all Υ(τ, ξ, u) of class C2, where ϑ′′ε denotes the Hessian matrix of ϑε
with respect to u, and ⟨·, ·⟩ is the Euclidean product in R3.

Proof. A direct computation gives

∇uϑε = π(1 + tan2(πa0)
)
cosh(πε)∇ua0,

and thus ∇uϑε = 0 if and only if ∇ua0 = 0. On the other hand the critical points
of a0 for a given (τ, ξ) are solution to

u1 = u2 = 0,
τu3√
1 + u23

= ξ3.

For τ ̸= 0, this equation is satisfied only if ξ23/τ
2 ≤ 1. In that case the solution is

given by uc as claimed. The Hessian matrix

ϑ′′ε = 2π2 tan(πa0)
(
1 + tan2(πa0)

)
cosh(πε)∇a0 ⊗∇a0

+ π(1 + tan2(πa0)
)
cosh(πε)a′′0 ,

at the critical point reduces to

ϑ′′ε (τ, ξ, uc) = π
(
1 + tan2

(
πa0(τ, ξ, uc)

))
cosh(πε)a′′0(τ, ξ, uc),

with

a′′0(τ, ξ, uc) = a0(τ, ξ, uc)

1 0 0
0 1 0
0 0 1− ξ23/τ

2


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being the Hessian matrix of a0(τ, ξ, ·) evaluated at u = uc and we have accounted
for the identity a0(τ, ξ, uc) = (τ2 − ξ23)

1/2.
Proof of the inequality in (i). We write

|∇ua0(τ, ξ, u)|2 =
τ2

1 + u2

[
u21 + u22 +

(
u3 −

ξ3
τ

√
1 + u2

)2]
,

and observe that for τ > 0, ξ3 ≥ 0, τ2 − ξ23 ≤ 0 and all u ∈ R3,∣∣∣u3 − ξ3
τ

√
1 + u2

∣∣∣ ≥ √
1 + u23 − |u3|,

therefore (1 + u2)|∇ua0(τ, ξ, u)|2 ≥ τ2ψ(u3), with ψ(u3) =
(√

1 + u23 − |u3|
)2
. The

function u3 7→ (1 + u23)ψ(u3) is even and for u3 ≥ 0, it decreases monotonically
starting from the value ψ(0) = 1, and approaching 1/4 as u3 → +∞. Hence
(1 + u23)ψ(u3) > 1/4 for all u3 ∈ R. This yields the claimed inequality.

Estimates in (ii). We compute

det a′′0(τ, ξ, uc) = (τ2 − ξ23)
5/2/τ2,

and, for every function Υ ∈ C2,

∣∣⟨(ϑ′′ε (τ, ξ, uc))−1∇u,∇u⟩Υ
∣∣ = |∂2u1

Υ+ ∂2u2
Υ+ τ2

τ2−ξ23
∂2u3

Υ|
π(1 + tan2(πa0)) cosh(πε))(τ2 − ξ23)

1/2

≤ 3τ2

π(τ2 − ξ23)
3/2

max
|α|=2

|∂αuΥ|,

since τ2/(τ2−ξ23) ≥ 1. At last it is enough noting that
√
τ2 − ξ23 = τ/

√
1 + u2c . □

Remark 16 (Non-relativistic limits). In the non-relativistic and weakly relativistic
limits, one has

a0(τ, ξ, u) ≈ anr,0(τ, ξ, u) := τ − ξ3u3,

and

a0(τ, ξ, u) ≈ awr,0(τ, ξ, u) := τ(1 + u2/2)− ξ3u3,

respectively. In the first case (the non-relativistic limit), there is no stationary
phase point if ξ3 ̸= 0, but the phase reduces to a constant (in u) when ξ3 = 0;
particularly, when ξ3 = 0, all values of u ∈ R3 are either in resonance if τ ∈ Z or
not in resonance if τ ̸∈ Z, that is, the set R(τ, ξ)|ξ3=0 is not a closed surface. On the
other hand, in the weakly non-relativistic limit there is a non-degenerate stationary
phase point uc = (0, 0, ξ3/τ) for τ ̸= 0. Then, uc ∈ suppχδ(τ, ξ, ·), where χδ is the
cut-off function introduced in equation (68) of section 5, only if there is an integer
n such that τ − ξ23/(2τ) ∈ [n − δ/3, n + δ/3]. The Hessian matrix of the phase at
the critical point in the weakly non-relativistic case amounts to

ϑ′′wr,ε(τ, ξ, uc) = πτ
(
1 + tan2(πawr,0)

)
cosh(πε)I

where I is the identity matrix. In a sense, the relativistic Lorentz factor removes
the degeneracy of the case ξ3 = 0. The stationary phase argument developed here
applies to both the relativistic and weakly relativistic cases.
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Lemma 6.2. For any α ∈ N4
0, α ̸= 0, and any integer n ≥ 0, there are polynomials

πα, πα,j, j = 1, . . . , |α|, and π(n)
α of one real variable such that

∂ατ,ξϑε = πα
(
tan(πa0)

)
cosh(πε)(∇τ,ξa0)

α,(82)

e−iλϑε∂ατ,ξe
iλϑε =

|α|∑
j=1

(
iλ cosh(πε)

)j
πα,j

(
tan(πa0)

)
(∇τ,ξa0)

α, λ ∈ R,(83)

∣∣∂ατ,ξ[ϑnε eiλϑε
]∣∣ ≤ π(n)

α (λ)(1 + u2)
|α|
2 , u ∈ suppχδ(τ, ξ, ·), λ ≥ 0,(84)

where χδ is the cut-off function defined in equation (68).

Proof. The key observation is that a0 is a linear function of (τ, ξ), hence ∂βτ,ξa0 = 0

for |β| ≥ 2. Identities (82) and (83) are true for |α| = 1 and can be extended to all
α with |α| ≥ 1 by induction. As for inequality (84), Leibniz formula applied to the
function Gn(λ, z) = zneiλz with λ ∈ R and z ∈ C, gives for any positive integer ℓ,

∂ℓzGn(λ, z) = eiλz
ℓ∑

m=0

(
ℓ

m

)
(iλ)ℓ−m∂mz (zn).

Because of lemma 5.4, for u ∈ suppχδ(τ, ξ, ·) and ε ≤ ε0,

|ϑε| ≤ | tan(πa0) cosh(πε)|+ | sinh(πε)| ≤ cosh(πε0)/ cos(πδ/3) + sinh(πε0),

therefore, for λ ≥ 0,

|∂ℓzGn(λ, ϑε)| ≤ π̃
(n)
ℓ (λ),

where π̃
(n)
ℓ (λ) is a polynomial of degree ℓ in λ and with positive real coefficients.

Since
∣∣∇τ,ξa0(τ, ξ, u)

∣∣ ≤ (1 + u2)1/2, lemma 5.4 and identity (82) imply

|∂ατ,ξϑε(τ, ξ, u)| ≤ cα(1 + u2)|α|/2, for ε ∈ [0, ε0], |α| ≥ 1 and u ∈ suppχδ(τ, ξ, ·).

The Faà di Bruno’s formula for ∂ατ,ξ[ϑ
n
ε e
iλϑε ] = ∂ατ,ξ[Gn(λ, ϑε)] amounts to the sum

of terms of the form

∂ℓzGn(λ, ϑε)∂
α1

τ,ξϑε · · · ∂
αℓ

τ,ξϑε,

where the multi-indices α1, . . . , αℓ in the ℓ factors are such that ∂ατ,ξ = ∂α1

τ,ξ · · · ∂
αℓ

τ,ξ,

and in articular, |α1|+ · · ·+ |αℓ| = |α|. It follows that∣∣∂ατ,ξ[ϑnε eiλϑε ]
∣∣ ≤ π(n)

α (λ)(1 + u2)|α|/2,

where π
(n)
α is a polynomials of degree |α| in λ, with positive real coefficients. □

Next, we establish estimates for the integrands in equations (71). (Let us recall
that ∥ϕ∥j denotes the Schwartz semi-norms of ϕ ∈ S as defined in appendix A.)

Lemma 6.3. Let ε0 > 0 and δ ∈ (0, 1) be fixed and let aε and χδ be defined in

equation (56) and (68). For every ϕ ∈ S(R3), P̃ε satisfying condition (67), α ∈ N4
0,

ρ ∈ N3
0, and integer m ≥ 0, there are constants Ccα,ρ and Csα,ρ, dependent on ε0,and

δ but independent of m, such that

(1 + u2)m
∣∣∣∂ατ,ξ∂ρu[ χδP̃εϕ

cos(πa0)

]∣∣∣ ≤ Ccα,ρ(1 + τ2 + ξ2)ℓα,ρ+
|ρ|
2 ∥ϕ∥2(m+ℓ̃α,ρ)+|α|+|ρ|

(1 + u2)m
∣∣∣∂ατ,ξ∂ρu[ (1− χδ)P̃εϕ

sin(πaε)

]∣∣∣ ≤ Csα,ρ(1 + τ2 + ξ2)ℓα,ρ+
|ρ|
2 ∥ϕ∥2(m+ℓ̃α,ρ)+|α|+|ρ|,
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uniformly in (τ, ξ, u) and ε ∈ [0, ε0], with ℓα,ρ = min{ℓ ∈ N0 : ℓ ≥ m̂µ, ∀µ : |µ| ≤
|α|+ |ρ|} and ℓ̃α,ρ = min{ℓ ∈ N0 : ℓ ≥ n̂µ, ∀µ : |µ| ≤ |α|+ |ρ|}.

Proof. For α = 0 and ρ = 0, both inequalities follows immediately from (67) and
lemma 5.4. For the first inequality with |α|+ |ρ| ≥ 1, the Leibniz rule yields∣∣∣∂ατ,ξ∂ρu[ P̃εϕ

cos(πa0)
χδ

]∣∣∣ ≤ Ĉα,ρmax
β,ρ′

∣∣∣∂βτ,ξ∂ρ′u (
χδ

cos(πa0)
)
∣∣∣max
β,ρ′

∣∣∂βτ,ξ∂ρ′u P̃ ε∣∣max
ρ′

∣∣∂ρ′u ϕ∣∣,
where the max are on multi-indices β ∈ N4

0 and ρ′ ∈ N3
0 such that βi ≤ αi for all

i = 0, 1, 2, 3 and ρ′i ≤ ρi for all i = 1, 2, 3, and with constant depending only of α, ρ.

The function a0 is linear in (τ, ξ), hence ∂βτ,ξa0 = 0 for all multi-indices β with

|β| ≥ 2, while |∂τ,ξa0| ≤ (1 + u2)1/2, and

|∂ρua0| ≤ (1 + τ2 + ξ2)1/2, |∂τ,ξ∂ρua0| ≤ c̃ρ, for all ρ ∈ N3
0 : |ρ| ≥ 1,

where c̃ρ = max{1, supu |∂ρu
√
1 + u2|}.

Because of lemma 5.3, near any point (τ, ξ, u) ∈ suppχδ, there is a unique
integer n such that χδ = χ

(
(a0 − n)/δ

)
. One can estimate the derivatives of

χ
(
(a0 − n)/δ

)
/ cos(πa0) by means of a multivariate version of the standard Faà di

Bruno’s formula [28]. However, we observe that each factor ∂βτ,ξ∂
ρ′

u a0 grows at most

like either (1 + τ2 + ξ2)1/2 or (1 + u2)1/2 regardless of the order of the derivative.
Therefore it is sufficient to estimate the term in the Faà di Bruno’s formula with
the highest number of factors, that is,

∂βτ,ξ∂
ρ′

u

[ χδ
cos(πa0)

]
= (∇τ,ξ,ua0)

µ d
N

dzN

[χ((z − n)/δ
)

cos(πz)

]
z=a0

+ · · ·

where µ = (β, ρ′) ∈ N7
0, and N = |µ| = |β| + |ρ′|. All the derivative with respect

to z are bounded because of the support of χ and its derivatives as in lemma 5.4.
Hence, for all β ≤ α and ρ′ ≤ ρ,∣∣∣∂βτ,ξ∂ρ′u [ χδ

cos(πa0)

]∣∣∣ ≤ cα,ρ(δ)(1 + u2)|α|/2(1 + τ2 + ξ2)|ρ|/2.

Assumption (67) then gives∣∣∣∂ατ,ξ∂ρu[ P̃εϕ

cos(πa0)
χδ

]∣∣∣ ≤ Ccα,ρ(1 + τ2 + ξ2)ℓα,ρ+
|ρ|
2 (1 + u2)ℓ̃α,ρ+

|α|
2 max

|ρ′|≤|ρ|

∣∣∂ρ′u ϕ∣∣,
where ℓα,ρ and ℓ̃α,ρ are smallest integers larger than all the exponents m̂µ and n̂µ
for |µ| ≤ |α| + ρ|, respectively. Upon multiplying by (1 + u2)m, one obtains the
claimed inequality. The second inequality follows analogously. □

The functions defined in (71) have the following properties.

Lemma 6.4. Let ε0 > 0 be fixed, aε and χδ be defined in equation (56) and (68),

ℓα,ρ and ℓ̃α,ρ be the integers given in lemma 6.3, and mj = min{ℓ ∈ N0 : ℓ ≥
ℓ0,ρ, |ρ| ≤ j}, m̃j = min{ℓ ∈ N0 : ℓ ≥ ℓ̃0,ρ, |ρ| ≤ j}. If P̃ε, ε ∈ [0, ε0], satisfies
condition (67),

(i) for any δ ∈ (0, 1), Icδ,ε(ψ), Isδ,ε(ψ), Icδ,0(ψ), and Isδ,0(ψ) defined in (71) for

ψ ∈ C∞
0 are defined and of class C∞ for any ψ ∈ S(R3);

(ii) for any δ ∈ (0, 1) and ϕ ∈ S(R3), Icδ,ε(ϕ) → Icδ,0(ϕ) and Isδ,ε(ϕ) → Isδ,0(ϕ),
pointwise as ε→ 0+;
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(iii) for any δ ∈ (0, 1), there exists a function Bε0,δ : R+× (R \ {0}) → R+ such
that Bε0,δ(·, τ) ∈ L1(R+), Bε0,δ(λ, τ1) ≤ Bε0,δ(λ, τ2) for |τ1| ≥ |τ2|, and

|Icδ,ε(ϕ)(τ, ξ, λ)| ≤ Bε0,δ(λ, τ)(1 + τ2 + ξ2)m4+
5
2 ∥ϕ∥2m̃4+10,

for all ϕ ∈ S(R3), (τ, ξ, λ) ∈ (R \ {0})×R3 ×R+, and ε ∈ [0, ε0];
(iv) for α ∈ N4

0, |α| ≥ 1, ϕ ∈ S(R3), and for any connected, compact set K ⊂
R4 with non-empty interior, such that τ ̸= 0 and |τ2−ξ23−n2| ≥ δK > 0 for
all n ∈ N0, (τ, ξ) ∈ K, there are δ ∈ (0, 1) depending on K and functions

B(α)
ε0,δ

: R+× (R \ {0}) → R+, such that B(α)
ε0,δ

(·, τ) ∈ L1(R+), B(α)
ε0,δ

(λ, τ1) ≤
B(α)
ε0,δ

(λ, τ2) for |τ1| ≥ |τ2|, and |∂ατ,ξIcδ,ε(ϕ)(τ, ξ, λ)| ≤ B(α)
ε0,δ

(λ, τ);

(v) for any multi-index α ∈ N4
0, there is Ks

α > 0 dependent on ε0 and δ such
that

|∂ατ,ξIsδ,ε(ϕ)(τ, ξ)| ≤ Ks
α(1 + τ2 + ξ2)ℓα,0∥ϕ∥2ℓ̃α,0+|α|+4,

uniformly for ε ∈ [0, ε0], for all ϕ ∈ S(R3).

Proof. (i) We shall show that, for any ϕ ∈ S(R3), the integrands in equations (71b)-
(71e) and their derivatives with respect to (τ, ξ, λ) are uniformly bounded by an
integrable function of u ∈ R3 for (τ, ξ) and λ in a bounded set and for ε ∈ [0, ε0].
Then it follows that all integrals in equations (71) are finite also when ψ ∈ C∞

0 (R3)
is replaced by ϕ ∈ S(R3), and the dominated convergence theorem allows us to
differentiate in the integral.

For the case of Isδ,ε and Isδ,0, the needed uniform upper bound follows directly

from the second inequality of lemma 6.3 with m > 3/2 and ρ = 0.
As for Icδ,ε, if ϕ ∈ S(R3),

∂ατ,ξ∂
n
λ

[
eiλϑε

χδP̃εϕ

cos(πa0)

]
= ∂ατ,ξ

[(
iϑε

)n
eiλϑε

χδP̃εϕ

cos(πa0)

]
= in

∑
β≤α

(
α

β

)
∂α−βτ,ξ

[
ϑnε e

iλϑε
]
∂βτ,ξ

[ χδP̃εϕ

cos(πa0)

]
.

For any R > 0, inequality (84) in lemma 6.2 gives∣∣∂α−βτ,ξ

[
ϑnε e

iλϑε
]∣∣ ≤MR,α,n(1 + u2)

|α−β|
2 ,

for u ∈ suppχδ
(
(τ, ξ, ·)

)
and |λ| ≤ R. Then the first inequality proven in lemma 6.3

with ρ = 0 gives

(85)
∣∣∣∂ατ,ξ∂nλ[eiλϑε

χδP̃εϕ

cos(πa0)

]∣∣∣ ≤ M̃R,α,n

(1 + u2)m
∥ϕ∥2(m+ℓ̃α)+|α|

uniformly for ε ∈ [0, ε0], (τ, ξ, λ) in the ball τ2 + ξ2 + λ2 ≤ R2 for all R, and with

ℓ̃α = maxβ≤α ℓ̃β,0. For m > 3/2 the right-hand side is integrable over R3.
(ii) The integrands in equations (71b)- (71c) are continuous for ε → 0+ and

the inequalities proven in lemma 6.3 with m > 3/2, α = 0, and ρ = 0 imply
upper bounds by L1 functions uniformly in ε ∈ [0, ε0]. Then, the hypothesis of the
dominated convergence theorem are satisfied and one can pass to the limit in the
integral.
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(iii) Let us first address the case Icδ,ε(ψ) for ψ ∈ C∞
0 (R3). Since Icδ,ε(ψ)(τ, ξ, ·)

is continuous, it is measurable and integrable on compact intervals. We write∫ +∞

0

Icδ,ε(ψ)(τ, ξ, λ)dλ =

∫ 1

0

Icδ,ε(ψ)(τ, ξ, λ)dλ+

∫ +∞

1

Icδ,ε(ψ)(τ, ξ, λ)dλ.

The first integral on the right-hand side is bounded by∫
R3

∣∣∣ P̃εψ

cos(πa0)
χδ

∣∣∣du ≤ Cc0,0(1 + τ2 + ξ2)ℓ0,0∥ψ∥2(m+ℓ̃0,0)

∫
R3

du

(1 + u2)m
,

in view of the first inequality of lemma 6.3 with α = 0, ρ = 0, and m > 3/2.
For the second integral, we estimate the decay in λ of Icδ,ε(ψ)(τ, ξ, ·) by means

of the stationary phase formula.
For τ ̸= 0 and τ2 − ξ23 ≤ 0, lemma 6.1 shows that there are no stationary phase

points, and we have a lower bound for the gradient of the phase. The standard
stationary phase lemma [29, Theorem 7.7.1] gives∣∣∣ ∫

R3

eiλϑε
χδP̃εψ

cos(πa0)
du

∣∣∣ ≤ csp,ℓ
λℓ

∑
|ρ|≤ℓ

sup
( 1

|∇uϑε|2ℓ−|ρ|

∣∣∣∂ρu[ χδP̃εψ

cos(πa0)

]∣∣∣),
for any integer ℓ ≥ 0. The right-hand side is integrable in λ ∈ [1,+∞) if ℓ ≥ 2. We
choose ℓ = 2 and lemma 6.1 (i) gives, for |ρ| ≤ ℓ = 2,

1

|∇uϑε|2ℓ−|ρ| ≤
(1 + u2)4−|ρ|

(πτ/2)4−|ρ| ≤ 16

π2τ4−|ρ| (1 + u2)4,

and lemma 6.3 with m = 4 and α = 0 implies that, for |ρ| ≤ ℓ = 2,

1

|∇uϑε|2ℓ−|ρ|

∣∣∣∂ρu[ χδP̃εψ

cos(πa0)

]∣∣∣ ≤ 16Cc0,ρ
π2τ4−|ρ| (1 + τ2 + ξ2)ℓ0,ρ+|ρ|/2∥ψ∥2ℓ̃0,ρ+|ρ|+8,

which in turns yields∣∣∣ ∫
R3

eiλϑε
χδP̃εψ

cos(πa0)
du

∣∣∣ ≤ B′
ε0,δ(λ, τ)(1 + τ2 + ξ2)m2+1∥ψ∥2m̃2+10.

where

B′
ε0,δ(λ, τ) =

16csp,2
π2λ2

∑
|ρ|≤2

Cc0,ρ
τ4−|ρ| , λ ≥ 1.

Since by definition m2 ≤ m4 this proves the claim for τ2 − ξ23 ≤ 0.
For τ2 − ξ23 > 0, there is an isolated non-degenerate stationary phase point

u = uc(τ, ξ) as shown in lemma 6.1. In this case, the stationary phase lemma [29,
Theorem 7.7.5] gives

∣∣∣ ∫
R3

eiλϑε
χδP̃εψ

cos(πa0)
du

∣∣∣ ≤ ∣∣det(λϑ′′ε/2π)∣∣− 1
2

ℓ−1∑
j=0

λ−j |Lj,τ,ξ(ψ)|

+
c′sp,ℓ
λℓ

∑
|ρ|≤2ℓ

sup
∣∣∣∂ρu[ χδP̃εψ

cos(πa0)

]∣∣∣,
where the Hessian matrix ϑ′′ε and Lj,τ,ξ(ψ) are differential operators acting on ψ
and evaluated at the stationary phase point u = uc(τ, ξ). We seek an upper bound
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in L1, hence it is sufficient to choose ℓ = 2, and we have

L0,τ,ξ(ψ) =
χδP̃εψ

cos(πa0)
,

L1,τ,ξ(ψ) = − i

2
⟨(ϑ′′ε )−1∇u,∇u⟩

[ χδP̃εψ

cos(πa0)

]
,

evaluated at (τ, ξ, u) = (τ, ξ, uc). Using the results of lemma 6.1 (ii) together with
the first inequality of lemma 6.3 yields

|L0,τ,ξ(ψ)|
|det(ϑ′′ε )|1/2

≤ 1

(πτ)3/2
(1 + u2c)

5/4
∣∣∣ χδP̃εψ
cos(πa0)

∣∣∣
≤ 1

(πτ)3/2
C0(1 + τ2 + ξ2)m0∥ψ∥2m̃0+4,

|L1,τ,ξ(ψ)|
|det(ϑ′′ε )|1/2

≤ 3/2

(πτ)5/2
max
|β|=2

∣∣∣(1 + u2c)
11/4∂βu

[ χδP̃εψ

cos(πa0)

]∣∣∣
≤ 3/2

(πτ)5/2
C2(1 + τ2 + ξ2)m2+1∥ψ∥2m̃2+8,

and ∣∣∣∂ρu[ χδP̃εψ

cos(πa0)

]∣∣∣ ≤ C4(1 + τ2 + ξ2)m4+2∥ψ∥2m̃4+4,

where Cj = max|ρ|≤j C
c
0,ρ, j ∈ N0. Therefore,∣∣∣ ∫

R3

eiλϑε
χδP̃

εψ

cos(πa0)
du

∣∣∣ ≤ B′′
ε0,δ(λ, τ)(1 + τ2 + ξ2)m4+

5
2 ∥ψ∥2m̃4+8,

with

B′′
ε0,δ(λ, τ) =

(2π
λ

)3/2[ C0

(πτ)3/2
+

3

2

C2

(πτ)5/2
1

λ

]
+
C ′

4

λ2
, λ ≥ 1,

with the constant C ′
4 depending on δ and ε0. At last we can combine the estimates

obtained in the three cases by defining Bε0,δ = B′
ε0,δ

+B′′
ε0,δ

for λ ≥ 1 and extending

it to a constant for λ ∈ [0, 1]. This gives the claimed estimate for ψ ∈ C∞
0 (R3).

Then we observe that for any (τ, ξ, λ) with τ ̸= 0, the map ψ 7→ Icδ,ε(ψ)(τ, ξ, λ)
defines a linear functional on C∞

0 (R3), bounded by a Schwartz semi-norm. Since
C∞

0 (R3) is dense in S(R3) the inequality remains true for ψ ∈ S(R3): given a
sequence ψi ∈ C∞

0 , i ∈ N, converging to ϕ ∈ S(R3) in the topology of S, inequal-
ity (85) with α = 0 and n = 0 shows that |Icδ,ε(ψi)| → |Icδ,ε(ϕ)|, while by definition

of convergence we have ∥ψi∥j → ∥ϕ∥j ; then we can pass to the limit i → +∞ on
both sides of the inequality.

(iv) First, let ψ ∈ C∞
0 (R3). From (i), we have that

∂ατ,ξIcδ,ε(ψ)(τ, ξ, λ) = in
∑
β≤α

(
α

β

)∫
R3

∂α−βτ,ξ

[
eiλϑε

]
∂βτ,ξ

[ χδP̃εψ

cos(πa0)

]
du.

We exploit the second identity in lemma 6.2 for the factor ∂α−βτ,ξ eiλϑε with the result
that

∂ατ,ξIcδ,ε(ψ)(τ, ξ, λ) =
|α|∑
j=0

λj cosh(πε)j
∫
R3

eiλϑεψδ,ε,j(τ, ξ, u)du,
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where ψδ,ε,j are combinations of polynomials in tan(πa0) and (τ, ξ)-derivatives of

the function χδP̃εψ/ cos(πa0). The assumption states that (τ, ξ) varies in a con-
nected, compact set K with non-empty interior, therefore the continuous function
(τ, ξ) 7→ τ2 − ξ23 maps K into a closed interval [c1, c2] ⊂ R. The assumption with
n = 0 also implies that |τ2 − ξ23 | ≥ δK , hence zero is not in the interval, that is,
either c1 < c2 < 0, or 0 < c1 < c2. In the first case, τ2 − ξ33 < 0 and lemma 6.1
established that the phase ϑε has no critical points. In the second case, let n0 ∈ N0

be the unique non-negative integer for which

n20 + δK ≤ τ2 − ξ23 ≤ (n0 + 1)2 − δK , (τ, ξ) ∈ K.

We have shown in the proof of lemma 6.1 that a0(τ, ξ, uc) =
√
τ2 − ξ23 is the value

of a0 at the stationary phase point uc(τ, ξ). If nc ∈ {n0, n0+1} is the closest integer
to a0(τ, ξ, uc), we find

∣∣a0(τ, ξ, uc)− nc
∣∣ ≥ c(δK), and for any n ∈ Z,∣∣a0(τ, ξ, uc)− n

∣∣ ≥ ∣∣a0(τ, ξ, uc)− nc
∣∣ ≥ c(δK).

We can now choose δ sufficiently small that δ/3 < c(δK), which depends only on
the set K, and we obtain χδ(τ, ξ, uc) = 0: there are no critical points of the phase in
the support of χδ for (τ, ξ) ∈ K. We can then apply the same argument as in (iii) in
order to show that each of the integrals on the right-hand side decreases like 1/λℓ for
all positive integers ℓ and since (τ, ξ) varies in a compact setK we obtain the claimed

inequality with functions B(α)
ε0,δ

depending on sup{(1 + τ2 + ξ2) : (τ, ξ) ∈ K} and

the Schwartz semi-norms of ψ. Then the inequality can be extended to ϕ ∈ S(R3)
by choosing a sequence ψn ∈ C∞

0 (R3) converging to ϕ in S(R3).
(v). The derivatives of Isδ,ε(ϕ) for ϕ ∈ S(R3) are estimated by the second

inequality in lemma 6.3 with ρ = 0, and m = 2. □

We conclude this section with the proof that the functions defined in equa-
tion (80) are of the form (66). The function in the following lemma are defined in
section 5.1.

Lemma 6.5. The functions e−iπaεΦjP
±
ε and e−iπaεΨjP

±
ε satisfy condition (67).

Proof. The considered functions are all defined as integrals in λ over a compact
interval and with smooth integrands, hence they are of class C∞. As for the
polynomial-growth estimate, the derivatives of any

Fε ∈ {e−iπaεΦjP±
ε : j = 1, 2, 3} ∪ {e−iπaεΨjP±

ε : j = 1, 2, 3}

are given by

∂µFε(τ, ξ, u) =

∫ 2π

0

Πµ(τ, ξ, u, λ)e
i(λ−π)aε−iζ̃dλ,

where ζ̃(τ, ξ, u, λ) = (ξ1u1+ ξ2u2) sinλ∓ (ξ2u1− ξ1u2)(cosλ− 1) and Πµ is a linear
combination of monomials of the form

γmτ ℓ0ξαuβλℓ1(cosλ)ℓ2(sinλ)ℓ3 ,

for m ∈ Z, α, β ∈ N3
0, ℓj ∈ N0. This can be checked directly for µ = 0 and |µ| = 1,

then extended to all µ ∈ N7
0 by induction. We also have that Πµ is independent of

ε. For λ ∈ [0, 2π] we readily have

|γmτ ℓ0ξαuβλℓ1(cosλ)ℓ2(sinλ)ℓ3 | ≤ (2π)ℓ1(1 + τ2 + ξ2)(ℓ0+|α|)/2(1 + u2)(m+|β|)/2,
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and (since we have chosen κ = 1)

|ei(λ−π)aε−iζ̃ | ≤ eπε, for λ ∈ [0, 2π],

hence

|∂µFε(τ, ξ, u)| ≤ CF,µe
πε(1 + τ2 + ξ2)m̂F,µ(1 + u2)n̂F,µ ,

with constant CF,µ and exponents m̂F,µ, n̂F,µ depending on the specific function F .
This is the claimed inequality if ε ∈ [0, ε0]. By means of the same identity one can
also check continuity of all derivatives for ε→ 0, since∣∣∂µFε(τ, ξ, u)− ∂µF0(τ, ξ, u)

∣∣ ≤ ∫ 2π

0

∣∣Πµ(τ, ξ, u, λ)∣∣ · ∣∣e−(λ−π)ε − 1
∣∣dλ

≤ C̃F,µ(τ, ξ, u)|eπε − 1|,

and thus, as ε→ 0+, ∂µFε(τ, ξ, u) → ∂µF0(τ, ξ, u) pointwise. □

Remark 17. This induction argument has the advantage of avoiding lengthy calcu-
lations, but does not allows us to compute the exponents m̂F,µ and n̂F,µ explicitly.

Appendix A. Notation and basic definitions

Positive integers are denoted by N = {1, 2, . . .} and natural numbers by N0 =
N ∪ {0} including zero. Integers including zero, reals and complex numbers are
denoted by Z, R, and C, respectively. Strictly positive real numbers are denoted
byR+ = {x ∈ R : x > 0}. We use the standard multi-index notation, a multi-index
of dimension n ∈ N being an element α = (α1, . . . , αn) ∈ Nn0 . The length of a multi-
index is |α| =

∑
i αi, and for x = (x1, . . . , xn) ∈ Rn, we write xα = xα1

1 · · ·xαn
n and

∂αx = ∂α1
x1

· · · ∂αn
xn

.

As usual Ck(Rn) denotes the space of k-times continuously differentiable func-
tions of n variables, C∞(Rn) =

⋂
k C

k(Rn).

Definition 1. We denote by C∞
b (Rn) the space of functions u ∈ C∞(Rn) that

are bounded with all derivatives bounded, that is, for every α ∈ Nn0 there are real
constants Cα > 0 such that |∂αx u(x)| ≤ Cα uniformly.

We work with tempered distributions on Rn. As usually we denote by S(Rn)
the Schwartz space of rapidly decreasing functions on Rn. Those are functions
φ ∈ C∞(Rn) for which

sup
x∈Rn

∣∣xα∂βxφ(x)∣∣ <∞.

Semi-norms in S are defined by

∥φ∥j = max
|α|+|β|≤j

sup
x∈Rn

∣∣xα∂βxφ(x)∣∣, j ∈ N0.

(With the condition |α| + |β| ≤ j, instead of equality, these are actually norms.)
The countable set of semi-norms gives the Schwartz space the topology of a Fréchet
space and its topological dual S ′(Rn) is the space of tempered distributions, namely,
the space of continuous linear functionals u : S(Rn) → C; the action of u ∈ S ′ on a
test-function φ ∈ S is equivalently denoted by ⟨u, φ⟩ = u(φ). In this case continuity
of a linear functional u means that there exists an integer j ≥ 0 and a constant
Cj > 0 such that |⟨u, φ⟩| = |u(φ)| ≤ Cj∥φ∥j .
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We also note that for any φ ∈ S, for every m ∈ R, and β ∈ Nd0, there is a
constant Cm,β > 0 such that

(86) (1 + x2)m
∣∣∂βxφ(x)∣∣ ≤ Cm,β ,

uniformly in x. For m ≤ 0, this inequality follows from (1 + x2)m ≤ 1, while for
m > 0, one can observe that (1 + x2)m ≤ (1 + x2)l for any integer l ≥ m, and use
the multi-nomial formula.

The Fourier transform of a function φ ∈ S(Rn) is defined by

φ̂(ξ) =

∫
Rn

φ(x)e−iξ·xdx.

The Fourier transform F : φ 7→ φ̂ is continuous from S into itself and extends to
S ′ by duality. Specifically, this means

û(φ) = u(φ̂).

That û is a continuous linear functional follows from the continuity of u and of the
Fourier transform φ → φ̂. For a function φ(t, x) in S(R1+d) of physical time and
space (d = 3), we write

φ̂(ω, k) =

∫
R1+d

φ(t, x)eiωt−ik·xdtdx,

where, ω ∈ R is the angular frequency and k ∈ Rd is the wave vector.

Definition 2 (Fourier multipliers). Let a ∈ C(Rn) and m,C0 ∈ R, be such that
|a(ξ)| ≤ C0(1+ |ξ|)m. The Fourier multiplier with symbol a is the continuous linear
operator on S(Rn) defined by

Aφ(x) = F−1
(
aF(φ)

)
(x) =

1

(2π)n

∫
Rn

eix·ξa(ξ)φ̂(ξ)dξ,

where the inverse Fourier transform is an absolutely convergent integral, and the
integrand has partial derivatives in x of order k bounded by the L1-function ξ 7→
|ξ|k|a(ξ)||φ̂(ξ)|; hence, A : S(Rn) → C∞

b (Rn) ⊂ S ′(Rn).

If in addition, a ∈ C∞(Rn) with all derivatives bounded by

|∂αξ a(ξ)| ≤ Cα(1 + |ξ|)mα ,

for all ξ ∈ Rn and α ∈ Nn0 , with constants Cα,mα ∈ R depending only on α,
then for any φ ∈ S(Rn), aφ̂ ∈ S(Rn) and the inverse Fourier transform gives
F−1(aφ̂) ∈ S(Rn). Such operations are continuous on S. Hence, the corresponding
Fourier multiplier defined by a is a continuous linear operator form S(Rn) → S(Rn).

Fourier multipliers are relevant to the case of a uniform plasma equilibrium.
Specifically, the high-frequency component of the current density induced in a uni-
form plasma by an electromagnetic disturbance is related to the electric field of the
disturbance by a Fourier multiplier.

Appendix B. Proofs for the case study of section 2

Proof of proposition 2.1. With an initial condition u0 in C∞
b , the solution of this

problem is

u(t, x) = u0(x) +

∫ t

0

v(s, x)ds,
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and we have u ∈ C∞(R1+d). In addition, u ∈ C∞
b (R1+d), thanks to v ∈ S.

This follows upon considering the derivatives ∂ℓt∂
α
x u(t, x). For ℓ > 1 one has

∂ℓt∂
α
x u(t, x) = ∂ℓ−1

t ∂αx v(t, x) with v ∈ S(R1+d), while for ℓ = 0 and for every
m > 1/2 we have

|∂αx u(t, x)| ≤ |∂αx u0(x)|+ sup
s∈R

∣∣(1 + s2)m∂αx v(s, x)
∣∣ ∫ +∞

−∞

ds

(1 + s2)m
,

with ∂αx u0 bounded by hypothesis.
The initial condition

u0(x) =

∫ 0

−∞
v(s, x)ds,

belongs to S(Rd) and thus to C∞
b (Rd). The corresponding unique solution in

C∞
b (R1+d) is

u(t, x) = (

∫ 0

−∞
+

∫ t

0

)v(s, x)ds =

∫ t

−∞
v(s, x)ds.

For every integers ℓ ≥ 0 and t ∈ R, ∂ℓtu(t, ·) ∈ S(Rd) and u satisfies the condition
limt→−∞ u(t, x) = 0. As for the uniqueness, if u∗ ∈ C∞

b (Rd) is another initial
condition such that the limit for t → −∞ of the corresponding solution vanishes,
then

0 = u∗(x) +

∫ −∞

0

v(s, x)ds = u∗(x)− u0(x),

which shows that u∗ = u0. Since, in particular, u ∈ L∞(R1+d), it defines a tem-
pered distribution by integration,

⟨u, φ⟩ =
∫
R1+d

u(t, x)φ(t, x)dtdx, ∀φ ∈ S(R1+d).

The continuity of the map φ 7→ ⟨u, φ⟩ follows for m > (1 + d)/2 from

|⟨u, φ⟩| ≤ ∥u∥L∞(R1+d) sup
y∈R1+d

∣∣(1 + y2)mφ(y)
∣∣ ∫
R1+d

dy

(1 + y2)m
,

and, if m > 1/2 is an integer,

sup
y∈R1+d

∣∣(1 + y2)mφ(y)
∣∣ ≤ Cm∥φ∥2m,

On the other hand,

|u(t, x)| ≤ sup
t∈R

∣∣(1 + t2)µv(t, x)
∣∣ ∫ +∞

−∞

ds

(1 + s2)µ
, µ > 1/2,

and thus

∥u∥L∞(R1+d) ≤ (

∫ +∞

−∞

ds

(1 + s2)µ
) sup
(t,x)∈R1+d

∣∣(1 + t2)µv(t, x)
∣∣.

Since, if we choose µ > 1/2 in N,

sup
(t,x)∈R1+d

∣∣(1 + t2)µv(t, x)
∣∣ ≤ sup

(t,x)∈R1+d

∣∣(1 + t2 + x2)µv(t, x)
∣∣ ≤ Cµ∥v∥2µ,

we have

∥u∥L∞(R1+d) ≤ C̃µ∥v∥2µ, and |⟨u, φ⟩| ≤ Km,µ∥v∥2µ∥φ∥2m,
for m > (1 + d)/2 and µ > 1/2, both integers. □
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Proof of proposition 2.2. If u is a solution in S ′ of the damped equation, its Fourier
transform satisfies

−i(ω + iν)ûν = v̂.

For ν > 0, this has one and only one solution

ûν(ω, k) = i
v̂(ω, k)

ω + iν
,

and we have ûν ∈ S(R1+d) since (ω + iν)−n is smooth and polynomially bounded
for ω ∈ R and for all integers n > 0. Hence, its inverse Fourier transform belongs
to S(R1+d). We recall that

uν(−t,−x) = (2π)−(1+d) ˆ̂uν(t, x),

so that, if φ̌(t, x) = φ(−t,−x),

⟨uν , φ⟩ = ⟨(2π)−(1+d) ˆ̂uν , φ̌⟩ = ⟨ûν , (2π)−(1+d) ˆ̌φ⟩.

Let us introduce, for any φ ∈ S(R1+d), the function ψ̂ ∈ S(R) given by

ψ̂(ω) = (2π)−(1+d)

∫
Rd

v̂(ω, k)φ̂(−ω,−k)dk.

We deduce

⟨uν , φ⟩ =
∫
R

iψ̂(ω)

ω + iν
dω.

However, the sequence {uν}ν∈R+
is not bounded in S. In order to take the limit,

we use the identity
i

ω + iν
=

∫ +∞

0

ei(ω+iν)tdt,

and note that the function (t, ω) 7→ ei(ω+iν)tψ̂(ω) belongs to L1(R+ ×R) so that,
by Fubini’s theorem,

⟨uν , φ⟩ =
∫ +∞

0

e−νt(

∫ +∞

−∞
eiωtψ̂(ω)dω)dt

= 2π

∫ +∞

0

e−νtψ(−t)dt.

Also the Fourier inversion theorem gives

ψ(t) =
1

2π

∫ +∞

−∞
e−iωtψ̂(ω)dω

=
1

2π

∫ +∞

−∞
e−iωt

∫
Rd

v̂(ω, k)(2π)−(1+d)φ̂(−ω,−k)dkdω

=
1

(2π)d+2

∫ +∞

−∞
e−iωt

∫
Rd

∫
R1+d

e−i(k·x1−ωt1)v(t1, x1)dt1dx1

×
∫
R1+d

e+i(k·x2−ωt2)φ(t2, x2)dt2dx2dkdω

=
1

(2π)2

∫ +∞

−∞
e−iωt

∫
R1+d

e+iωt1v(t1, x1)dt1

∫
R

e−iωt2φ(t2, x1)dt2dx1dω

=
1

2π

∫
R1+d

v(t′, x1)φ(t
′ − t, x1)dt

′dx1,
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and this yields

⟨uν , φ⟩ =
∫ +∞

0

∫
R1+d

e−νt
′′
v(t′, x)φ(t′ + t′′, x)dt′dxdt′′.

By the change of variables t′′ = t− s, t′ = s, one has

⟨uν , φ⟩ =
∫
R1+d

∫ t

−∞
e−ν(t−s)v(s, x)φ(t, x)dsdtdx,

which shows that the distribution uν is regular and equal to the C∞ function

uν(t, x) =

∫ t

−∞
e−ν(t−s)v(s, x)ds,

as claimed. In addition, e−ν(t−s) ≤ 1 for s ∈ (−∞, t], and with u defined in
proposition 2.1,

lim
ν→0+

⟨uν , φ⟩ =
∫
R1+d

∫ t

−∞
v(s, x)φ(t, x)dsdtdx =

∫
u(t, x)φ(t, x)dtdx,

for every φ ∈ S(R1+d), that is,

uν → u, in S ′(R1+d),

and the limit is the causal solution of proposition 2.1. □

Appendix C. Causal solutions of linear kinetic equations

Let Ω be a domain in Rd and φ ∈ C∞(R × Ω). We denote φt = φ(t, ·) and
assume that

(i) φt : Ω → Ω for every t ∈ R,
(ii) φ0 = Id is the identity map on Ω,
(iii) φt+s = φt ◦ φs for every t, s ∈ R.
(iv) For any multi-index α ∈ Nd there are constants C,m ∈ R such that∣∣∂αxφt(x)∣∣ ≤ C

(
1 + t2 + |φt(x)|2

)m
.

Remark 18. In condition (iv) the case α = 0 is excluded because, for α = 0,

|φt(x)| ≤
(
1+ t2+ |φt(x)|2

)1/2
for any map φ, and the inequality in (iv) is trivially

verified.

As a consequence of properties (i)-(iii), {φt : t ∈ R} is a one-parameter Abelian
group of diffeomorphisms of Ω. Particularly, φ−1

t = φ−t. We can associate to φt
the autonomous vector field X ∈ C∞(Ω,Rd) defined by

(87) X(x) =
dφt(x)

dt

∣∣∣∣
t=0

,

and, with x = φt(x0) for every x0 ∈ Ω, we have

X
(
φt(x0)

)
=
dφs
ds

(
φt(x0)

)∣∣∣∣
s=0

=
d

ds
φt+s(x0)

∣∣∣∣
s=0

=
dφt(x0)

dt
,

which shows that the orbit x(t) = φt(x0) of the group solves the Cauchy problem

dx

dt
= X(x), x(0) = x0,
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globally in time and for every initial point x0 ∈ Ω. While conditions (i)-(iii) are
standard properties of flows of autonomous vector fields, condition (iv) is specific
to the application considered here. An example of flow satisfying condition (iv) is

(88) φt(x) = A(t)x,

where A(t) is a d× d matrix satisfying suitable conditions.

Proposition C.1. If the matrix-valued function A ∈ C∞(R,Rd×d) is such that,
A(0) = I, A(t+ s) = A(t)A(s) and, in the norm induced by the standard Euclidean
norm in Rd,

∥A(t)∥ ≤ C(1 + t2)m,

for given constants C,m > 0, then the map (88) satisfies conditions (i)-(iv) above
with Ω = Rd.

Proof. Condition (i) is true because of definition (88), while (ii) and (iii) follow
directly from the assumptions. As for condition (iv), since the flow is linear in x
the spatial derivative vanish for |α| ≥ 2. For |α| = 1, condition (iv) is implied by
the polynomial growth of A. □

Remark 19. Both the characteristics flow of the kinetic equation considered in
section 3 and 5 are of this form.

In this section we consider the linear advection equation

(89) ∂tf +X · ∇f = g, in R× Ω,

with given source g ∈ S(R1+d). By construction the orbits of the group are the
characteristics curves of (89) and exist globally in time.

We define the function

(90) f(t, x) :=

∫ t

−∞
g
(
s, φ−1

t−s(x)
)
ds, (t, x) ∈ R× Ω,

for which we prove the following.

Proposition C.2. Let φ be a map satisfying properties (i)-(iv) above. Then, for
any g ∈ S(R1+d) the function f defined in (90) belongs to C∞

b (R × Ω) and is a
classical solution of the linear advection equation (89).

Proof. First we observe that, for every t ∈ R the function s 7→ (1+s2)/(1+(t−s)2)
is in C∞(R), strictly positive, tends to 1 for s→ ±∞, and for t ̸= 0 has two critical
points at s = s± = (t ± (t2 + 4)1/2)/2 that correspond to a local minimum and a
local maximum depending of the sign of t. The local maximum, in particular, is
also the global maximum and thus

(1 + s2) ≤ Ct(1 + (t− s)2),

uniformly in s. The constant Ct is the value of the function at the maximum
which is Ct =

[
4 + t2 + |t|(4 + t2)1/2

]
/
[
4 + t2 − |t|(4 + t2)1/2

]
. The trivial case

t = 0 is included with Ct = 1. The substitutions s → s/a and t → t/a yield
(a2 + s2) ≤ Ct/a(a

2 + (t − s)2), for all a ̸= 0. Explicitly, Ct/a = (ξ + |t|)/(ξ − |t|)
where ξ =

√
4a2 + t2; this is a monotonically decreasing function of ξ in the interval

[
√
4 + t2,+∞) corresponding to a ≥ 1, and the maximum is exactly Ct. Therefore,

for every a ≥ 1,

(91) (a2 + s2) ≤ Ct(a
2 + (t− s)2),
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uniformly in s ∈ R and the constant is independent of a.
We now apply this inequality to the function (90). After the change of variable

s′ = t− s, we have

f(t, x) =

∫ +∞

0

g
(
t− s′, φ−1

s′ (x)
)
ds′.

We shall show that all derivatives ∂nt ∂
α
x

[
g
(
t − s′, φ−1

s′ (x)
)]

are uniformly bounded

by L1-functions of s. If this is the case, repeated use of the dominated convergence
theorem gives f ∈ C∞(R× Ω) with all derivative bounded as claimed.

In the case α = 0, for any real k ≥ 0 and for any integer n ≥ 0, we have∣∣∂nt g(t− s, φ−1
s (x)

)∣∣ = (1 + (t− s)2 + |φ−1
s (x)|2)k

∣∣∂nt g(t− s, φ−1
s (x)

)∣∣
(1 + (t− s)2 + |φ−1

s (x)|2)k

≤
(1 + (t− s)2 + |φ−1

s (x)|2)k
∣∣∂nt g(t− s, φ−1

s (x)
)∣∣

(1 + (t− s)2)k

and since g ∈ S inequality (86) gives∣∣∂nt g(t− s, φ−1
s (x)

)∣∣ ≤ C

(1 + (t− s)2)k
,

with constant C independent on s and s 7→ (1 + (t − s)2)−k is in L1 for k > 1/2.
With n = 0, this also shows that f(t, x) is bounded.

Including spatial derivative requires condition (iv). In the case |α| = 1,

∂nt ∂
α
x

[
g
(
t− s, φ−1

s (x)
)]

= ∂αxφ
−1
s (x) · (∂nt ∇g)

(
t− s, φ−1

s (x)
)

≤ d · |∂αxφ−s(x)| ·max
j

∣∣(∂nt ∂xj
g)
(
t− s, φ−1

s (x)
)∣∣.

Hypothesis (iv) and the estimate (91) give, for every k > 0,

|∂αxφ−s(x)| ≤ C(1 + s2 + |φ−1
s (x)|2)m

≤ C̃t(1 + (t− s)2 + |φ−1
s (x)|2)m

≤ C̃t
(1 + (t− s)2 + |φ−1

s (x)|2)m+k

(1 + (t− s)2)k
.

Proceeding as before, we choose k > 1/2 and obtain that the first-order derivatives
are uniformly bounded by an L1-function.

The case of general α is complicated by the form of the chain rule. However, the
same argument can be applied to the explicit formula for the multi-variate chain
rule (Faà di Bruno formula) which is linear in the derivatives of g and polynomial
in the derivatives of φ.

The fact that f is a classical solution of (89) can be checked by substitution. □

If the flow is polynomially bounded, we can deduce that f , viewed as a distribu-
tion on Ω, has finite moments at all orders. This is a consequence of the following
result.

Lemma C.3. Let φ satisfy assumptions (i)-(iv) and g ∈ S(R1+d). In addition
let us assume the there are n ∈ N0 and C > 0 such that |φt(x)| ≤ C(1 + x2)n,
uniformly in R× Ω. Then, p · ∂lt∂αx f(t, ·) ∈ L∞(Ω) for every polynomial p = p(x),
l ∈ N0 and α ∈ Nd0.
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Proof. It is enough to show that |x|k∂lt∂αx f(t, x) is in L∞(Ω). Since x = φs
(
φ−1
s (x)

)
,

|x|k ≤ Ck(1 + |φ−1
s (x)|2)kn ≤ Ck(1 + (t− s)2 + |φ−1

s (x)|2)kn,

and

|x|k|f(t, x)| ≤ Ck
∫ +∞

0

(1 + (t− s)2 + |φ−1
s (x)|2)kn∂lt∂αx

[
g
(
t− s, φ−1

s (x)
)]
ds

≤ Ck,l,m,α

∫ +∞

0

ds

(1 + (t− s)2)m
,

where the derivatives of g are estimates as in proposition C.2. □

The function (90) is referred to as the causal solution of equation (89).

Appendix D. The Hilbert transform and its action on symbols

The Hilbert transform is defined by

H(ϕ)(x) =
1

π
p.v.

∫
ϕ(y)

x− y
dy =

1

π
(p.v.

1

x
) ∗ ϕ(x),

for a function ϕ ∈ C∞
0 . It has the following properties, which we state without

proof.

Proposition D.1. The Hilbert transform H defined above is extended to functions
in S(R) through the equality

H(ϕ)(x) =
1

π

∫
R

1

2u

[
ϕ(x− u)− ϕ(x+ u)

]
du.

Moreover, it extends to an isometry of Sobolev spaces Hk(R) through the equality

Ĥ(u) = −i sgn(ξ)û, ∀u ∈ Hk(R),

for every non-negative integer k. Particularly if u ∈ S(R), then H(u) ∈ H∞(R).

With ν > 0, G ∈ S(R), and ϕ ∈ S(R2) let us consider the integrals

Aν(ω, k) :=

∫
R

G(v)

ω − kv + iν
dv, Bν(v, k) :=

∫
R

ϕ(ω, k)

ω − kv + iν
dω,

that involve the same denominator as in (28).

Lemma D.2. Let G ∈ S(R), ϕ ∈ S(R2), and ν > 0.

(i) There are constants CA,j, j = 0, 1, depending on G, such that for k ̸= 0,∣∣Aν(ω, k)∣∣ ≤ CA,0 + CA,1/|k|,

Aν(ω, k)
ν→0+−−−−→ 1

k

[
πH(G)(ω/k)− iπG(ω/k)

]
.

(ii) For any integer m ≥ 0 there exists a constant CB, depending on ϕ and m,
such that∣∣Bν(v, k)∣∣ ≤ CB(1 + k2)−m,

Bν(v, k)
ν→0+−−−−→ −πH

(
ϕ(·, k)

)
(kv)− iπϕ(kv, k).
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Proof. Let G ∈ S(R) and ϕ ∈ S(R2). For k ̸= 0, define the two functions G0 and
G1 by

G0

(
ω
k , u

)
:= 1

2

[
G
(
ω
k − u

)
+G

(
ω
k + u

)]
,

uG1

(
ω
k , u

)
:= 1

2

[
G
(
ω
k − u

)
−G

(
ω
k + u

)]
.

Similarly, for all (ω, k, v) ∈ R3 we define

ϕ0(kv,ϖ, k) :=
1

2
(ϕ(kv +ϖ, k) + ϕ(kv −ϖ, k)),

ϖϕ1(kv,ϖ, k) :=
1

2

[
ϕ(kv +ϖ, k)− ϕ(kv −ϖ, k)

]
.

We observe that,

(92)
∣∣G0(

ω
k , u)

∣∣ ≤ ∥G∥0, (1 + k2)m
∣∣ϕ0(kv,ϖ, k)∣∣ ≤ ∥ϕ∥2m.

The first inequality follows directly from the definition of G0, and we have

(1 + k2)m
∣∣ϕ0(kv,ϖ, k)∣∣ ≤ 1

2

[
(1 + (kv +ϖ)2 + k2)m

∣∣ϕ(kv +ϖ, k)
∣∣

+ (1 + (kv −ϖ)2 + k2)m
∣∣ϕ(kv −ϖ, k)

∣∣] ≤ ∥ϕ∥2m.

Moreover, ∣∣G1(
ω
k , u)

∣∣ ≤ ∥G∥1, (1 + k2)m
∣∣ϕ1(kv,ϖ, k)∣∣ ≤ ∥ϕ∥1+2m,

and this can be proven by Taylor’s formula and∣∣G1(
ω
k , u)

∣∣ ≤ 1

2

∫ +1

−1

∣∣G′(ωk + λu)
∣∣dλ ≤ sup |G′(v)|,

(1 + k2)m
∣∣ϕ1(kv,ϖ, k)∣∣ ≤ 1

2

∫ +1

−1

(1 + k2)m
∣∣∂ωϕ(kv + λϖ, k)

∣∣dλ
≤ sup

[
(1 + (kv + λϖ)2 + k2)m

∣∣∂ωϕ(kv + λϖ, k)
∣∣].

When |u| > 1 we also have, for any M ∈ N0,∣∣G1(
ω
k , u)

∣∣ ≤ 1

2

[∣∣G(ωk − u)
∣∣+ ∣∣G(ωk + u)

∣∣]
≤ 1

2

[
1

(1+(
ω
k−u)2)M

+ 1

(1+(
ω
k+u)2)M

]
sup

[
(1 + v2)M |G(v)|

]
,

and, analogously, when |ϖ| > 1,

(1 + k2)m
∣∣ϕ1(kv,ϖ, k)∣∣ ≤ 1

2

[
1

(1+(kv+ϖ)2)M
+ 1

(1+(kv−ϖ)2)M

]
× sup

[
(1 + ω2 + k2)M+m

∣∣ϕ(ω, k)∣∣].
Therefore,

(93)
∣∣G1(

ω
k , u)

∣∣ ≤ G∗
1(
ω
k , u), (1 + k2)m

∣∣ϕ1(kv,ϖ, k)∣∣ ≤ ϕ∗1(kv,ϖ),

where

G∗
1(
ω
k , u) :=

{
∥G∥1, |u| ≤ 1,
1
2

[
1

(1+(
ω
k−u)2)M

+ 1

(1+(
ω
k+u)2)M

]
∥G∥2M , |u| > 1.
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and

ϕ∗1(kv,ϖ) :=

{
∥ϕ∥1+2m, |ϖ| ≤ 1,
1
2

[
1

(1+(kv−ϖ)2)M
+ 1

(1+(kv+ϖ)2)M

]
∥ϕ∥2(M+m), |ϖ| > 1.

For M ≥ 1, one has G∗
1(
ω
k , ·), ϕ

∗
1(kv, ·) ∈ L1(R) with

(94)

∥G∗
1(
ω
k , ·)∥L1 ≤ 2∥G∥1 + ∥G∥2M

∫
R

dt

(1 + t2)M
=: CM,G,

∥ϕ∗1(kv, ·)∥L1 ≤ 2∥ϕ∥1+2m + ∥ϕ∥2(M+m)

∫
R

dt

(1 + t2)M
=: CM,m,ϕ,

where CM,G is a constant depending only on the Schwartz semi-norms of G and
the integer M and CM,m,ϕ depends only on M , m, and the Schwartz semi-norms
of ϕ.

Then, one has the identities

Aν(ω, k) =

∫
R

G0(
ω
k , u) + uG1(

ω
k , u)

ku+ iν
du,

Bν(v, k) =

∫
R

ϕ0(kv,ϖ, k) +ϖϕ1(kv,ϖ, k)

ϖ + iν
dϖ.

As G0, G1 are even functions in u, and ϕ0, ϕ1 are even functions in ϖ, one deduces

kAν(ω, k) =

∫
R

k2u2G1(
ω
k , u)− ikνG0(

ω
k , u)

k2u2 + ν2
du

=

∫
R

k2u2G1(
ω
k , u)

k2u2 + ν2
du− ik

∫
R

G0(
ω
k , νt)

k2t2 + 1
dt,

Bν(v, k) =

∫
R

ϖ2ϕ1(kv,ϖ, k)− iνϕ0(kv,ϖ, k)

ϖ2 + ν2
dϖ

=

∫
R

ϖ2ϕ1(kv,ϖ, k)

ϖ2 + ν2
dϖ − i

∫
R

ϕ0(kv, νt, k)

t2 + 1
dt.

We observe that k2u2

k2u2+ν2 and ϖ2

ϖ2+ν2 are uniformly bounded by 1. Moreover, t 7→
1

t2+1 is in L1(R), and, for k ̸= 0, t 7→ 1
k2t2+1 belongs to L1(R), with the values∫

R
dt
t2+1 = π and

∫
R

dt
k2t2+1 = π

k .

Then estimates (92), (93), and (94) give∣∣kAν(ω, k)∣∣ ≤ ∥G∗
1(
ω
k , ·)∥L1 + π|k|∥G∥0 ≤ CM,G + π|k|∥G∥0,

(1 + k2)m
∣∣Bν(v, k)∣∣ ≤ ∥ϕ∗1(kv, ·)∥L1 + π∥ϕ∥2m ≤ CM,m,ϕ + π∥ϕ∥2m.

As for the limits of Aν and Bν as ν → 0+, estimate (92) and (93) with M ≥ 1
imply that the integrands are bounded by an L1 function uniformly in ν. Then the
dominated convergence theorem allows us to conclude that, as ν → 0+,

kAν(ω, k) →
∫
R

G1(
ω

k
, u)du− iπG0(

ω

k
, 0),

Bν(v, k) →
∫
R

ϕ1(kv,ϖ, k)dϖ − iπϕ0(kv, 0, k).
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Upon accounting for the definitions of G0, G1 and ϕ0, ϕ1 that reads

kAν(ω, k) → πH
(
G)(ω/k)− iπG0(ω/k, 0),

Bν(v, k) → −πH
(
ϕ(·, k)

)
(kv)− iπϕ(kv, k),

as claimed. □

Appendix E. A useful linear algebra result

In this appendix we establish a linear algebra result which constitutes a key step
in the proof of the results in section 4.

Lemma E.1. For any integer ℓ ≥ 0, the matrices

Aℓ =


0 i 0 0 . . .

−iℓ 0 2i 0 . . .
0 −i(ℓ− 1) 0 3i . . .
0 0 −i(ℓ− 2) 0 . . .
...

...
...

...
. . .

 ∈ C(ℓ+1)×(ℓ+1)

are diagonalizable with integer eigenvalues {(2s−ℓ) : s = 0, 1, . . . , ℓ}. For z ∈ C\Z,
Aℓ − z is invertible and

|(Aℓ − z)−1|1 ≤ (ℓ+ 1)22ℓ/δz,

where the norm | · |1 is induced by the L1-norm on Cℓ+1 and δz = min{|z −m| :
m ∈ Z}.

Proof. The map i1 : Cℓ+1 → C∞(T), T = R/(2πN), defined by

x 7→ U(ϕ) =

ℓ∑
r=0

xr
(
cosϕ

)ℓ−r(
sinϕ)r,

is an linear embedding of Cℓ+1 and becomes an isomorphism when restricted to its
range. Injectivity in particular holds since, if x ∈ Cℓ+1 is such that U = i1(x) = 0,
then for any R ≥ 0

RℓU(ϕ) =

ℓ∑
r=0

xru
ℓ−r
1 ur2 = 0,

uniformly for (u1, u2) = (R cosϕ,R sinϕ) ∈ R2. Since monomials uℓ−r1 ur2 are lin-
early independent, we deduce x = 0 and thus i1 is injective.

A second embedding is i2 : Cℓ+1 → C∞(T) with

v 7→ V (ϕ) =

ℓ∑
s=0

vse
i(ℓ−2s)ϕ,

which is injective since the exponential are linearly independent.
We claim that i1, i2 have the same range i.e., Vℓ := i1(C

ℓ+1) = i2(C
ℓ+1). In

fact, i1(C
ℓ+1) is spanned by functions fr(ϕ) =

(
cosϕ

)ℓ−r(
sinϕ)r while i2(C

ℓ+1) is
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spanned by gs(ϕ) = ei(ℓ−2s)ϕ. On the one hand, the binomial formula gives

fr(ϕ) =
(−i)r

2ℓ
(
eiϕ + e−iϕ

)ℓ−r(
eiϕ − e−iϕ

)r
=

(−i)r

2ℓ

ℓ−r∑
m=0

r∑
n=0

(−1)n
(
ℓ− r

m

)(
r

n

)
ei(ℓ−2(m+n))ϕ,

and thus

fr(ϕ) =

ℓ∑
s=0

Tsrgs(ϕ), Tsr =
(−i)r

2ℓ

∑
(m,n)∈Σ(r,s)

(−1)n
(
ℓ− r

m

)(
r

n

)
,

where the last sum is over the set of indices

Σ(r, s) = {(m,n) : m = 0, . . . , ℓ− r, n = 0, . . . , r, m+ n = s}.
On the other hand,

gs(ϕ) = ei(ℓ−2s)ϕ =
(
cosϕ+ i sinϕ

)ℓ−s(
cosϕ− i sinϕ

)s
=

ℓ−s∑
m=0

s∑
n=0

im−n
(
ℓ− s

m

)(
s

n

)(
cosϕ)ℓ−(m+n)

(
sinϕ

)m+n
,

or

gs(ϕ) =

ℓ∑
r=0

Srsfr(ϕ), Srs =
∑

(m,n)∈Σ(s,r)

im−n
(
ℓ− r

m

)(
r

n

)
.

In summary, we have obtained that

fr =

ℓ∑
s=0

Tsrgs, gs =

ℓ∑
r=0

Srsfr,

hence for any ℓ, {fr}ℓr=0 and {gs}ℓs=0 span the same linear space Vℓ. The matrices
(Tsr) and (Ssr) correspond to the linear operators

T = i−1
2 ◦ i1 : Cℓ+1 → Cℓ+1, S = i−1

1 ◦ i2 : Cℓ+1 → Cℓ+1.

At last, let us introduce the differential operator

B = i
d

dϕ
: C∞(T) → C∞(T),

for which a direct calculation shows that

B ◦ i1(x) =
ℓ∑

r=0

(Aℓx)rfr(ϕ).

This means that B can be restricted to operators from Vℓ → Vℓ and

(95) Aℓ = i−1
1 ◦B ◦ i1.

On the other hand

(96) B ◦ i2(v) =
ℓ∑
s=0

(2s− ℓ)vsgs(ϕ),

that is, the operator i−1
2 ◦B ◦ i2 is diagonal with eigenvalues (2s− ℓ).

For equation (95) it follows that

Aℓ = i−1
1 ◦B ◦ i1 = S ◦ (i−1

2 ◦B ◦ i2) ◦ T,
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which shows that Aℓ is diagonalizable with eigenvalues a = (2s− ℓ) for s = 0, . . . ℓ.
Therefore if z ∈ C \Z, then Aℓ − z is invertible and

(Aℓ − z)−1 = S ◦ (i−1
2 ◦ (B − z)−1 ◦ i2) ◦ T,

hence

(97) |(Aℓ − z)−1|1 ≤ |S|1 · |i−1
2 ◦ (B − z)−1 ◦ i2|1 · |T |1.

We claim that

(98) |i−1
2 ◦ (B − z)−1 ◦ i2|1 ≤ δ−1

z , |T |1 ≤ (ℓ+ 1), |S|1 ≤ (ℓ+ 1)2ℓ.

If this is true, then inequality (97) becomes |(Aℓ − z)−1|1 ≤ 2ℓ(ℓ+ 1)2/δz, which is
the claimed estimate. Therefore, in order to complete the proof it is sufficient to
show that (98) holds.

From (96), one deduces the expression for the inverse,

(B − z)−1 ◦ i2(v) =
ℓ∑
s=0

vs
2s− ℓ− z

ei(ℓ−2s)ϕ,

and thus, in the L1-norm,

|i−1
2 ◦ (B − z)−1 ◦ i2(v)|1 =

ℓ∑
s=0

|vs|
|2s− ℓ− z|

.

The definition of δz implies

|2s− ℓ− z| ≥ δz = min
m∈Z

|z −m|,

so that

(99) |i−1
2 ◦ (B − z)−1 ◦ i2(v)|1 ≤ 1

δz

ℓ∑
s=0

|vs| =
|v|1
δz

,

or |i−1
2 ◦ (B − z)−1 ◦ i2|1 ≤ δ−1

a . As for the linear operator T ,

|Tsr| ≤
1

2ℓ

ℓ−r∑
m=0

r∑
n=0

(
ℓ− r

m

)(
r

n

)
,

and for the last sum we can use the identity,

(a+ b)ℓ = (a+ b)ℓ−r(a+ b)r =

ℓ−r∑
m=0

r∑
n=0

(
ℓ− r

m

)(
r

n

)
aℓ−m−nbm+n,

which for a = b = 1 and together with the previous inequality implies |Tsr| ≤ 1;
then

|Tx|1 =

ℓ∑
s=0

∣∣∣ ℓ∑
r=0

Tsrxs

∣∣∣ ≤ ℓ∑
s=0

ℓ∑
r=0

|Tsr||xs| ≤ (ℓ+ 1)|x|1,

or |T |1 ≤ (ℓ+ 1). Analogously for S,

|Srs| ≤
ℓ−s∑
m=0

s∑
n=0

(
ℓ− s

m

)(
s

n

)
= 2ℓ,

and |S|1 ≤ (ℓ+ 1)2ℓ. □
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15. F. Cacciafesta, P. D’Ancona, and Lucá R., A limiting absorption principle for the Helmholtz

equation with variable coefficients, J. Spectr. Theory 8 (2018), no. 4, 1349–1392.

16. C. Cercignani, The Boltzmann equation and its applications, Springer, 1975.
17. C. Cheverry and A. Fontaine, Dispersion relation in hot magnetized plasmas, Journal of

Mathematical Analysis and Applications 466 (2017), no. 2, 1238–1280.

18. , Dispersion relations in cold magnetized plasmas, Kinetic & Related Models 10 (2017),

373.

19. P. Degond and H. Neunzert, Local existence of solutions of the Vlasov-Maxwell equations and
convergence to the Vlasov-Poisson equations for infinite light velocity, Mathematical Methods

in the Applied Sciences 8 (1986), no. 1, 533–558.

20. B. Després, Scattering structure and landau damping for linearized vlasov equations with
inhomogeneous boltzmannian states, Annales Henri Poincaré 20 (2019), no. 8, 2767–2818.
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