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Abstract

The electroencephalogram (EEG) signals record electrical activities generated by the brain cells and are used as a state-of-
the-art diagnosis tool for various neural disorders. However, the unwanted artifacts often contaminate the recorded EEG signals
and disturb the interpretation of the neuronal activity. This paper aims to propose an efficient automatic method to eliminate the
ocular artifacts (OAs) from the multi-channel EEG signals with novel frequency-spatial filtering. The method combines dictionary-
based spatial filtering and frequency based signal decomposition method, namely empirical wavelet transform (EWT). The artifact
dictionary needed for spatial filtering is isolated from the raw data by (1) selecting the contaminated channels and (2) frequency-
domain filtering. More precisely, the δ-rhythms of identified highly contaminated channels are selected and placed into an artifact
dictionary. Afterward, the δ-rhythms of multi-channel EEG signals are spatially filtered using the built dictionary to seclude the
OAs within a limited number of components. Further, the artifact components are eliminated and clean δ-rhythms are recovered
using inverse spatial filtering technique. Finally, the clean δ-rhythms are combined with other EEG rhythms to reconstruct the OA-
free signals. The proposed method is applied to OA contaminated synthetic and real multi-channel EEG signals with a convincing
performance as compared to state of the art approaches. The proposed method removes the OAs without affecting the background
EEG information. The proposed method can ease sensor signal interpretation and further processing, e.g. for BCI applications.

Index Terms

Electroencephalogram (EEG), ocular artifacts, spatial filtering, frequency-domain filtering, empirical wavelet transform (EWT).

I. INTRODUCTION

ELECTROENCEPHALOGRAM (EEG) is a non-invasive tool for measuring different neural activities of the brain [1].
Generally, EEG signal recording is carried out by placing the electrodes (from around 20 up to 256) on the scalp

following the International 10-10 / 10-20 electrode positioning protocols [2]. EEG is extensively used in many research fields
such as psychology, neuroscience, psychophysiology, and cognitive science. Apart from these, EEG also finds application
in clinical research to identify and diagnose many brain pathology such as epilepsy [3], Alzheimers disease [4]. However,
unwanted signals or artifacts from non-neuronal sources intertwine with EEG recordings, hindering EEG interpretation and
may even result in misleading conclusions [5], [6]. The sources of artifacts can be either physiological (ocular, muscle, motion,
cardiac) or non-physiological (electrode displacement, cables, equipment, stimulation) [7]. The ocular artifacts (OA) in the
recorded EEG signal are attributed to the eye movements and blinks, which affect the electric field in the eyes and scalp
surrounding regions [8]. More precisely, the OA appear due to voltage variations resulting from cornea-retina dipoles and
eye-lid movements [9].

Regression algorithms underpin the simplest techniques for OA removal in the literature [10]. However these algorithms
require reference electrooculography (EOG) channels to detect the artifacts [11]. Adaptive filtering is another approach for
filtering the OA from EEG recordings. In this, the performance depends on selecting the reference signal used to estimate
the artifact signal [12]. Adaptive filtering is suited for online implementation with no prior calibration, but the requirement of
reference signal still exists [11]. The OA suppression based on blind source separation (BSS) estimates the sources of neural
information and OAs without prior information of the mixing matrix. Once the sources are estimated, the artifactual sources
can be removed [13]. Independent component analysis (ICA), a BSS technique, decomposes multichannel contaminated EEG
data from different sources into independent components (ICs)1. The assumption is that the signals from different sources
are independent and linearly mixed. OA-free sources are considered for the reconstruction of clean EEG data [13]. Different
methods are proposed in the literature in order to identify artifact sources after ICA. In [15], the authors computed modified
multiscale sample entropy (MMSE) and kurtosis for identifying ICA components with eye-blink artifacts that were further
processed using wavelet thresholding to obtain clean EEG signals. One of the most known methods was introduced in [16],
where authors proposed ICLabel classifier to categorise IC signals into brain, muscle, eye, heart, line noise, channel noise,
and others. A supervised classification approach (combined with wavelet denoising) was also proposed by [17] for identifying
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artifact sources. Still, even if automatic IC selection is indeed helpful in large scale studies and real-time applications such as
BCI, these methods need training data to determine the model parameters and the quality of this data has significant impact
on classifiers’ ability to predict labels accurately. Note also that PCA can also be used for data decomposition. In [18], a
comparative analysis is presented between ICA and principal component analysis (PCA) in removing EEG artifacts.

The assumption of orthogonality/independence is an important drawback for PCA/ICA methods, as it is not physiologically
justified for brain sources (although acceptable for artifact sources). In [19] authors proposed artifact subspace reconstruction
(ASR) for eliminating transient and large amplitude arifacts from multicannel EEG signals. Similar to PCA-based approaches,
ASR reconstructs channel data from the remaining components after excluding large-variance components. The primary
distinction is that ASR automatically identifies clean data segments and makes use of them as a benchmark to set thresholds
for rejecting components [20].

Wavelet transform (WT) is another approach for filtering the OAs from EEG signals [21]. Authors in [22] showed that
discrete wavelet transform (DWT) and stationary wavelet transform (SWT) applied to a single-channel EEG signal succeeds
in filtering the artifacts. However, wavelet-approach ceases if spectral properties of artifact overlap with the spectral properties
of EEG signals.

Various hybrid approaches have also been proposed in the literature for effective filtering of artifacts [17], [23]–[28]. Romo-
Vazquez et al. [17] introduced an optimized automatic pipeline for artifact and noise cancellation combining BSS (SOBI),
discriminant analysis (DA) and DWT based denoising. Akhtar et al. [23] proposed a multichannel OA removal technique
combining spatially constrained ICA (SCICA) and wavelet denoising (WD) method. Peng et al. [24] combined DWT with
adaptive noise cancellation (ANC) for OA removal. Their method overcomes the EOG reference signal’s requirement as DWT
is used to construct the OA reference signal. In [25], the authors proposed a single-channel OA filtering method by combining
ANC with singular spectrum analysis (SSA). The SSA decomposition is used to estimate the reference signal for ANC. The
performance of SSA-ANC is independent of the morphology of the OA, but it suffers from the problem of mode-mixing. In
comparison to ICA, ANC requires more computation time but provides better performance in the portable environment [24].
In [26], empirical mode decomposition (EMD) and canonical correlation analysis (CCA) are combined for suppressing OA
artifacts. Patel et al. [27] proposed an OA elimination technique in single-channel EEG by combining ensemble EMD (EEMD)
and PCA methods. Authors in [28] use variational mode decomposition (VMD) and excluded the requirement of reference
EOG signal to remove the OA from single-channel EEG. In [29], authors have employed local polynomial approximation based
total variation (LPATV) technique to filter the OA from a single-channel EEG signal. Recently deep learning (DL) approaces
have gained significant attention for EEG signal denoising. These models yield similar performance to those of conventional
methods. However, the creation of DL solutions for EEG denoising necessitates the use of well-organized, standardised datasets
with certain benchmarks. In [30] authors presented EEGdenoiseNet, a benchmark EEG dataset and quantified the performance
of DL models for removal of various EEG artifacts.

The literature reveals that most OA filtering methods remove the OAs in single-channel EEG signals and tend to affect
the background EEG signals while cleaning the artifacts. Delta band being the highly contaminated rhythm from OAs [25],
is severely affected in the filtering process, leading to loss of useful EEG information. This paper proposes a new hybrid
approach combining frequency and spatial filtering techniques to filter the OAs from multichannel EEG signals, preserving
the necessary EEG information. The method combines the subspace correlation approach (SCA) [31] with frequency domain
filtering techniques, namely, empirical wavelet transform (EWT) [32]. The proposed method does not use additional signals
as reference for the artifacts (e.g. EOG), but instead extracts a basis of the artifact space directly from the raw data. The
performances of the method are assessed in both synthetic and real multichannel EEG signals contaminated with OAs. Our
method’s performance is compared with the combination of ICA and EWT based frequency domain filtering and also with
the EWT-based monochannel method for OA removal. The proposed method eliminated the OAs from multichannel EEG
recordings with minimal loss of background signal information.

The rest of the paper has following sections: Section II describes the multichannel simulated and real EEG datasets used in
this work. Section III explains the methodology used for multichannel OA elimination; Section IV presents the experimental
results with a discussion on the effectiveness of the proposed filtering technique. Section V contains the conclusion.

II. SIMULATED AND REAL EEG DATASETS

A. Simulated EEG dataset

The semi-simulated dataset [33] contains the EEG recordings from 27 healthy subjects, which were contaminated manually
with OAs. This work randomly considers total 30 EEG signals of 30-second duration, recorded using 19 electrodes, following the
1020 International electrode system standard. For generating the OA contaminated signals, these clean signals were artificially
contaminated with the EOG signals from the same subjects following the model:

EEGs,econtaminated = EEGs,eclean +MeVEOG +NeHEOG. (1)

The VEOG stands for vertical-EOG, which is the difference between upper and lower EOG electrode signals. Similarly, HEOG
represents horizontal-EOG, which is the difference between left and right EOG electrode signals. Me and Ne are the VEOG
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Fig. 1. Plot of OA contaminated simulated multichannel EEG signal.
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Fig. 2. Plot of multichannel real EEG signal contaminated with OAs.

and HEOG contamination coefficients (scaling factors), respectively, where e represents the electrode number. The index s
represents the subject number. They are used for having different amplitudes for the artifacts on different channels. Each
EEG signal was sampled at 200 samples per second. Fig. 1 shows the first 13 channels of an OA contaminated sample EEG
recording.

B. Real EEG dataset

The EEG motor movement/imagery dataset [34] provided by Physionet [35] is considered for evaluation of the proposed
method. The 10-20 international electrode standard was followed for placing 64 electrodes on the scalp of 109 volunteers to
obtain over 1500 recordings. Each EEG recording containing 64 EEG channels is of one or two minutes duration and sampled
at 160 Hz. We have randomly selected 30 EEG recordings for evaluation of the proposed method. An example of a real OA
contaminated multichannel EEG signal is shown in Fig. 2. Based on bibliography [25], OAs lead to high energy of delta waves.
This is also confirmed by the analysis of our data (see Fig. 3 for brain topographies), which shows that high amplitude delta
rhythms are mainly present in the frontal areas, i.e. on the electrodes close to the eyes.

III. METHODS

The flow diagram of the proposed OA elimination method is presented in Fig. 4. It can be seen that EWT based frequency-
domain filtering decomposes the OA contaminated multi-channel EEG signal into rhythms (δ, θ, α, β, and γ) [36]. Even if OAs
mostly contaminate the δ rhythms of frontal electrodes (see Fig. 3), not all of them are necessarily corrupted, so we computed
energy ratios (ERs) for δ rhythms to identify the contaminated channels (see eq. 22). This yields an artifact dictionary which
comprises the δ rhythms of the contaminated channels with high ER values. In the next step, a common subspace of the built
dictionary and the δ-rhythms of the multichannel EEG signal is found by rotating their respective basis matrices one onto the
other using the SCA method. After rotation, the OAs and neural activities become spatially separated. The artifact containing
components isolated by SCA are eliminated using a diagonal gain matrix followed by inverse spatial filtering for recovering
the clean δ-rhythms of the multichannel EEG signal. Finally, the cleaned δ rhythms are combined with the remaining rhythms
for obtaining OA-free multichannel EEG signal. The following subsections describe the proposed methods in detail and present
the OA filtering pipeline employed in this work.
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Fig. 3. Plots of PSDs of all the real EEG channels and brain topographical maps.
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Fig. 4. Flow diagram of the proposed multivariate OA elimination method using frequency-spatial filtering.

A. Empirical Wavelet Transform

EWT [32] decomposes non-stationary signals into multiple subbands, belonging to different oscillatory levels. This is carried
out by creating an adaptive wavelet-based filter bank. The steps involved in EWT are summarised as follows: (i) Obtaining
the signal spectrum using Fast Fourier Transform (FFT) in the range 0 to π (ii) Applying boundary detection techniques to
segment the Fourier spectrum as per the spectral information content (iii) Using the concept of LittlewoodPaley and Meyer
wavelets [37], to define empirical wavelets as bandpass filters on each segment. The scaling function and the wavelet function
are mathematically expressed as,

φi(ω) =

 1 , |ω| ≤ ωi − τi
cos (zi) , ωi − τi ≤ |ω| ≤ ωi + τi
0 , otherwise

(2)

and

ψi(ω) =


1 , ωi + τi ≤ |ω| ≤ ωi+1 − τi+1

cos (zi+1) , ωi+1 − τi+1 ≤ |ω| ≤ ωi+1 + τi+1

sin (zi) , ωi − τi ≤ |ω| ≤ ωi + τi
0 , otherwise

(3)

where
zi =

π

2
ρ(ωi, τi) =

π

2
ρ(

1

2τi
(|ω| − ωi + τi)] (4)

such that
ρ(r) =

{
0 ,r ≤ 0
1 ,r ≥ 1

and ρ(r) + ρ(1− r) = 1 ∀r ∈ [0, 1] (5)

and 2τi is the width of transition phase centered around each boundary frequency, ωi. By proper selection of σ ( τi = σωi, 0 <
σ < 1) tight frame of empirical wavelets are obtained. It has been proved in [32] that σ following the condition in equation
(6) provides tight frame.

σ < min
i

(
ωi+1 − ωi
ωi+1 + ωi

)
(6)
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Therefore, equations (2) and (3) can be expressed in the form of equations (7) and (8), respectively.

φi(ω) =

 1 if |ω| ≤ (1− σ)ωi
cos (zi) if (1− σ)ωi ≤ |ω| ≤ (1 + σ)ωi
0 otherwise

(7)

and

ψi(ω) =


1 , (1 + σ)ωi ≤ |ω| ≤ (1− σ)ωi+1

cos (zi+1) , (1− σ)ωi+1 ≤ |ω| ≤ (1 + σ)ωi+1

sin (zi) , (1− σ)ωi ≤ |ω| ≤ (1 + σ)ωi
0 , otherwise

(8)

where zi now expressed as,

zi =
π

2
ρ(ωi, σ) =

[
π

2
ρ

(
1

2σωi
(|ω| − (1− σ)ωi)

)]
(9)

The inner product of the signal with the empirical wavelet function and scaling function provides the detail and approximation
coefficients, respectively.

B. Spatial Filtering

The multichannel OA contaminated EEG signals can be expressed as a linear mixture model (1). In this context, spatial
filtering techniques can be effectively applied to isolate the OAs into one or very few number of components/sources. Spatial
filtering techniques have been frequently used for various EEG artifact cancellation [38]. The underlying idea of spatial filtering
is to separate the raw signal space (the set of all signals that can be generated through all arbitrary full rank linear transforms
applied to the actual recordings) into various subspaces specific to different activities, in this work OAs (artifact space) and
neural activity (clean signal space). One can only take into account the basis of the subspace specific to brain activity when
reconstructing the clean EEG signal after separating the two subspaces (artifact and clean signal space) and thus their bases.
In our work, we complement EWT based monochannel filtering with different spatial filtering techniques, inspired either from
subspace based methods [31] or from BSS methods [39].

1) Subspace Correlation Approach (SCA): The SCA can be described by the following steps:
In the first step, a basis for the signal space has been found by whitening. The basis Z for the multichannel signal S (samples

by channels, N × C) can be obtained after eigen decomposition of scatter/covariance matrix TS.

TS = STS = WDWT (10)

Z = SWD− 1
2 (11)

where W and D are the eigenvector and eigenvalue matrices of the covariance matrix TS. The rotation of basis Z by right
multiplying a specified orthogonal matrix P will make the subspaces for artifacts and physiological activities as orthogonal
as possible. Therefore, the next step is to derive the desired orthogonal matrix P, optimized for our objective. Note that the
whitening step is common for the ICA based methods also (see below), the main difference being that in ICA the P matrix
is found by optimizing a different criterion, namely statistical independence.

In the second step, a second dataset A has been constructed with the filtered versions (δ-rhythms) of the one or few identified
contaminated EEG channels, which can be considered as artifact dictionary. The inclusion of more than one filtered channel
helps to bring the variability in the artifact characteristics. The basis Za of the dictionary space can be found using whitening:

Za = AWaD
− 1

2
a (12)

In the third step, a common subspace between the signal S and dictionary A have been derived by rotating the two bases
Za and Z onto each other, as proposed in [31]:

i) Performing the singular value decomposition (SVD) of the matrix C = ZTZa

C = PΣRT (13)

ii) Considering P and R as the desired rotation matrices for rotating the basis Z and Za respectively.

Y = ZP = SWD− 1
2 P (14)

Ya = ZaR = AWaD
− 1

2
a R (15)

The constructed spatial filters V and Va can be expressed as,

V = WD− 1
2 P (16)
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Fig. 5. Plot of EWT based fixed boundary filter bank for decomposing the EEG channels into rhythms.

Va = WaD
− 1

2
a R (17)

Finally, the rotated basis Y and Ya can be expressed as,

Y = SV (18)

Ya = AVa (19)

One can verify that signal space and dictionary space Y and Ya have become aligned:

YTYa = Σ (20)

The common subspace basis between the signal and dictionary can be identified by the singular values in Σ, which are close
to 1. The obtained components Y = SV after spatial filtering will be arranged starting with common basis vectors (i.e., OA
components) of S and A. In contrast, uncommon physiological basis vectors will be present at last. Afterward, the OA-free
multichannel signal S can be recomposed as follows:

S = SVGV−1 = YGV−1 (21)

where G = diag(0, . . . ,0, 1, . . .1) is the diagonal gain matrix for retaining the desired components only.
2) Blind source separation: BSS method demixes multidimensional signals into components/sources as independent as

possible from each other. There is no or very little prior knowledge about the mixing matrix. Therefore, the aim is to separate
a mixture into its source components without knowing the mixing process. BSS methods have been proven useful in removing
artifacts from EEG signals [13]. The famous BSS algorithms in the literature are either based on ICA [40] or on second-order
statistics (SOS) [41] or on the combination of both ICA and SOS [42]. The BSS methods can be employed for extracting the
OA sources without the knowledge of mixing coefficients if the hypothesis of independence of OA patterns and brain sources
is followed. Different ICA methods can be used for separating the artifact components. We propose here to use EFICA [42]
for two main reasons: (1) it is derived from the well known computationally efficient and performant FastICA and (2) it adapts
to the data (adaptive nonlinearity).

C. Proposed OA Filtering Pipeline

It should be noted that frequency-based filtering and spatial filtering can standalone filter the OAs and recover neural
information. However, the fact is that not all channels are contaminated with OAs, which drives us to combine spatial filtering
with frequency-based filtering to develop a procedure that requires eliminating only fewer components (only the contaminated
ones) and thus reducing the computational burden. This section describes the proposed framework for combining these two
techniques and presents a novel methodology for OA removal.

1) EWT based EEG rhythm separation: The OAs severely contaminate the δ-rhythms of EEG signals, requiring traditional
band-specific filtering for their removal. The EWT decomposes signals after determining adaptive boundary frequencies in
the signal spectrum. However, such decomposition does not guarantee the extraction of traditional bands (i.e., rhythms in the
case of EEG). Moreover, extraction of subbands adaptively may result in the presence of OAs in multiple narrowband low
frequency subband signals, necessitate extensive processing, and be ineffective. The frequency-domain filtering can decompose
EEG signals into rhythms (traditional bands), namely δ, θ, α, β, and γ specified by the frequency range of 04, 48, 813,
1330, 3060 Hz, respectively. The separation of EEG rhythms using EWT was proposed in [36], where prior boundary/edge
frequencies {ωi}i=1,2...,5 are set to 4 Hz, 8 Hz, 13 Hz, 30 Hz, 60 Hz, respectively for segmenting the Fourier spectrum in
the range [0, fs/2]. Fig. 5 depicts the EWT filterbank generated for decomposition of EEG signal into rhythms. One can see
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Fig. 6. The left column ((a) to (f)) from top to bottom shows EEG signal with OAs and its rhythms δ, θ, α, β, and γ obtained using an EWT-based filter
bank. The right column ((g) to (l)) shows their corresponding frequency spectrums.

that the filter bank generated by EWT has small transition bands with almost negligible stop-band and pass-band ripples. The
obtained EEG rhythms and their corresponding spectrums using EWT are shown in Fig. 6. In the subsequent step, the extracted
δ-rhythms are spatially filtered without altering the remaining bands.

Algorithm 1: Proposed EWT-SCA filtering approach.
Input: Multivariate EEG signal intermixed with ocular artifacts, y(n).
Output: Multivariate clean EEG signal, ỹ(n).
Step 1: Develop EWT based filterbank with EEG rhythm specific boundary frequencies using equations (7) and (8).
Step 2: Decompose every channel into rhythms δ, θ, α, β, and γ; create the first dataset S with the δ-rhythms of all the
channels.
Step 3: Identify contaminated EEG channels with high ERδi values using equation (22) and create the artifact dictionary
A with the δ-rhythms of the highest contaminated EEG channels from different spatial locations.
Step 4: Compute the bases Z and Za for the matrices S and A using equations (11) and (12), respectively.
Step 5: Find the desired rotation matrices P and R with SVD of the matrix C using equation (13).
Step 6: Construct the spatial filters V and Va, and rotate the matrices S and A using equations (18) and (19), respectively.
Step 7: Obtain the OA-free matrix S by suppressing the contaminated components using equation (21).
Step 8: Finally recover the clean multivariate EEG signal ỹ(n) by combining the matrix S representing clean δ-rhythms
with other EEG rhythms extracted in Step 2.

2) Multichannel OA suppression: As stated earlier, spatial filtering techniques complement the EWT based frequency-
domain filtering, extending OA suppression method for multichannel signals. We use SCA as a primary spatial filtering
technique, and also employ different flavours of BSS techniques for comparison purpose.

SCA based spatial filtering: In our research, SCA spatially separates the OAs from the neural activities (i.e., δ component
of OA contaminated multichannel EEG signal) using an artifact dictionary.

The OAs propagate through the brain and are projected linearly onto the different channels (have distinct spatial locations)
with different contamination coefficients. Further, some artifacts appeared differently on different channels because their
(dipolar) sources had different orientations (e.g. eye blinks and eye movements). Due to this various artifact patterns were
observed on different channels. Therefore, an artifact-rich dictionary was formed by including highly contaminated EEG
channels from different spatial locations of the scalp. For identifying the channels with high contamination, various approaches
were used (such as selecting channels with high energy, with high δ-rhythm energy, channels have a high correlation with
the δ-rhythm of highest energy channel, and channels with high ER values). The ER of δ-rhythm approach provided the best
results and is adapted here. The ER corresponding to δ-rhythm of each channel of the multichannel EEG signal (contaminated)
can be computed as,

ERδi =
Eδi

Eδi + Eθi + Eαi + Eβi + Eγi
(22)



8

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

C
11

C
12

C
13

C
14

C
15

C
16

C
17

C
18

C
19

Channel index

-5

0

5

10

S
N

R
 (

d
B

)

Without denoising (worst-case scenario)

Denoising with EWT-SCA method

Fig. 7. Plot of SNRs of individual channel before and after OA removal.

-200

0

200
Contaminated EEG

Clean EEG using EWT-SCA

-200

0

200 Artifact pattern using EWT-SCA

-50

0

50

Clean  rhythm using EWT-SCA

-200

0

200

A
m

p
lit

u
d

e

Contaminated EEG

Clean EEG using EWT

-200

0

200 Artifact pattern using EWT

-50

0

50

Clean  rhythm using EWT

300 600 900 1200

-200

0

200
Contaminated EEG

Clean EEG using EWT-EFICA

300 600 900 1200

Samples

-200

0

200 Artifact pattern using EWT-EFICA

300 600 900 1200

-50

0

50

Clean  rhythm using EWT-EFICA

(a) (b) (c)

(d)

(g) (h)

(e) (f)

(i)

Fig. 8. Plots of the OA contaminated EEG signals overlapped with clean EEG signals (left column: (a), (d), and (g)), artifact patterns (middle column: (b),
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where, Eδi , Eθi , Eαi , Eβi , Eγi are the energies of δ, θ, α, β and γ rhythms, respectively for the ith channel of the contaminated
multichannel EEG signal. The proposed method uses the raw EEG data to automatically determine the value of k (number
of selected dictionary channels). The value of k is determined based on the set threshold of ERδ . For a raw EEG data y(n),
the channels with ERδ values greater than µyδ + Th ∗ σyδ will be included in the dictionary. The parameters µyδ and σyδ
denote the mean and standard deviation (STD) of the ERδ values across all channels of the raw EEG signal y. The variable
Th denotes the threshold value. The δ-rhythms of the k selected channels form the dictionary of artifacts.

ICA based spatial filtering: ICA estimates the sources of neural information in multichannel EEG signals. Following a
similar approach, the idea is to apply ICA on the delta rhythm and detect the artifact sources followed by their elimination.
The primary challenge in ICA based decomposition is identifying artifact components/sources that are carried out following
the high energy criteria (i.e., OA sources assumed to have higher energy than neural sources).

It should be noted that ICA performs spatial filtering without any dictionary or second dataset, unlike SCA. However,
contrary to ICA, SCA components are naturally ordered from OA sources at the top followed by the neural sources; hence
no effort is required to detect the artifact components. After the spatial filtering, the artifact components are discarded, and
clean δ-rhythms are recomposed, further combined with other EEG rhythms to recover the clean multichannel EEG signals.
The step-by-step procedure of EWT-SCA method for ocular artifact removal is represented using Algorithm 1.

D. Performance Measures

The proposed frequency-spatial filtering method’s effectiveness in removing the OAs from the multichannel EEG signal is
validated using the following three different performance measures:



9

Fig. 9. Plots of the histograms of the ERδ values for raw (left) and OA-removed (right) multichannel real EEG signals.
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Fig. 10. Plots of the PSDs of OA contaminated and clean EEG signals considering highly (AF7) and slightly (T10) contaminated channels.

1) Percentage change in ER: The Percentage channge in ER (PCER) measures the reduction of artifact in the δ rhythm
after applying the proposed method, which is mathematically expressed as,

∆ERδi = (ERδi − ERδi)× 100% (23)

where ERδi is the ER corresponding to δ-rhythm of ith contaminated channel as described in (22).
Similarly, ERδi denotes the ER corresponding to δ- rhythm of the cleaned ith EEG channel, expressed as

ERδi =
Eδi

Eδi + Eθi + Eαi + Eβi + Eγi
(24)

where, Eδi , Eθi , Eαi , Eβi , Eγi are the energies of δ, θ, α, β and γ rhythms, respectively for the ith channel of the cleaned
multichannel EEG signal.

2) Average mean absolute error (MAE) in power spectral density (PSD) values: To measure the proficiency of the proposed
method in preserving the neural content while removing OAs, MAE in PSD values are computed. In the PSD of ith channel,
the MAE corresponding to rhythm r ∈ {θ, α, β, γ} can be computed as [25],

MAEriPSD =

∑K2

k=K1
| PSDri(k)− PSDri(k) |

K2 −K1
(25)

where K1 and K2 denote frequency bins of the PSD of tainted, (PSDri(k)) and cleaned (PSDri(k)) rhythms of the ith

channel EEG record.
Finally, the average MAE (AMEA) in PSD values can be computed

AverageMAErPSD =
1

M

M∑
i=1

MAEriPSD (26)

where M denotes the total number of EEG channels.
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3) Signal to noise ratio (SNR): To evaluate the effectiveness of the signal reconstruction, SNR values are computed before
and after the OA artifacts are removed. However, since the clean EEG signals are also available, the SNR computation is only
done for simulated EEG recordings. The SNR for subject s and electrode e at the input (i/p) and output (o/p) of the proposed
method are defined as,

SNRs,ei/p = 10log10

(
rms(EEGs,eclean)

rms(MeVEOG +NeHEOG)

)
(27)

SNRs,eo/p = 10log10

(
rms(EEGs,ereconstructed)

rms(EEGs,eclean − EEGs,ereconstructed)

)
(28)

The mixing coefficients Me and Ne are defined in eqn (1). The average SNR (ASNR) for a given session is then determined
using the average of the channel-wise SNR readings.

IV. EXPERIMENTAL RESULTS

This section presents the performance of the proposed combinations of frequency and spatial filtering techniques (namely
EWT-SCA, FIR-SCA, EWT-EFICA, FIR-EFICA). However, only the outcomes of the best-performing methods, such as EWT-
SCA, EWT-EFICA, and monochannel EWT, are exhibited and discussed next. The performance of the EWT-SCA method on
OA contaminated simulated multichannel EEG signals is presented in Table I. The method’s performance is exhibited in terms
of the maximum obtained PCER of δ rhythm, AMAE in PSD for remaining rhythms, and ASNR measures. It can be seen
in Table I that the proposed method has achieved high values of maximum PCER for δ rhythms for almost all the simulated
sessions. These obtained values substantiate that EWT-SCA removes the OAs from δ-rhythms of multichannel EEG signals.
On the other hand, the low values of AMAE in PSD in other rhythms indicate that the method works well in preserving neural
information. After the OAs from multichannel EEG signals were removed, the proposed method provided better ASNR values.
Fig. 7 shows the improvement in channel-wise SNR for a considered EEG record.

Table II presents the performance of the EWT-SCA method in removing OAs from real multichannel EEG signals. The
obtained maximum PCER for δ-rhythms and AMAE in PSD values reveal the effectiveness of OA removal in real EEG signals.

The performance of the EWT-EFICA method in removing OAs from real multichannel EEG signals is exhibited in Table III.
We have evaluated EWT-EFICA method on all the considered real EEG sessions. However, the best five results are presented
in the table. The global mean and STD values considering all the real EEG sessions are 55.082 ± 6.6457, 10.7879 ± 6.5029,
1.61E-14 ± 6.59E-15, 1.09E-14 ± 5.30E-15, 6.83E-15 ± 5.47E-15 corresponding to maximum ∆ERδ , AMAEθ, AMAEα,
AMAEβ , and AMAEγ , respectively. It can be observed in the table that the obtained maximum PCER values for δ rhythms
are significantly lower than the corresponding values obtained using the EWT-SCA method. Thus, the maximum PCER values
indicate the presence of OAs even after applying the EWT-EFICA method. After using EWT-EFICA, OAs spread across a
substantial number of independent components (ICs), making it challenging to distinguish between clean signal space and
artifact space. Also, the high AMAE in PSD values for θ-rhythms clearly states the undesired alteration of neural information
after artifact removal. Table IV depicts the obtained results when EWT is standalone applied (cutoff frequency 2 Hz) channel
by channel on real OA contaminated EEG records. The global mean and STD values of the monochannel EWT considering
all the real EEG sessions are 49.07 ± 7.236, 1.31E-14 ± 8.99E-15, 7.55E-15 ± 5.044E-15, 4.84E-15 ± 5.67E-15, 2.91E-15
± 4.99E-15 for maximum ∆ERδ , AMAEθ, AMAEα, AMAEβ , and AMAEγ , respectively. It can be noticed that though neural
information is preserved in θ, α, β, and γ rhythms, the obtained maximum PCER values of δ rhythms are significantly lower
compared to EWT-SCA and EWT-EFICA methods. The lower PCERs can be attributed to the set cutoff frequency (2 Hz)
of monochannel EWT. The PCER may be increased by raising the cutoff frequency, but at the expense of losing delta band
information.

Fig. 8 presents a real OA contaminated EEG signal, its clean versions, OA-free δ-rhythms, and the extracted artifact patterns
obtained using EWT-SCA, monochannel EWT, and EWT-EFICA methods. It can be observed that the EWT-EFICA method
fails to remove the low-frequency baseline component of the signal.

The starting hypothesis is that channels with high ER of δ-rhythm represent OA contaminated signals. These channels are
selected as explained previously (see eq. (22) and following paragraph). In our experiments, the value of the threshold Th
has been empirically set as 1.8. However, a 10% change in the threshold value has no appreciable impact on the method’s
performance. It is noteworthy that in the absence of eye artifacts k will be automatically set to zero and the process won’t be
continued. The histogram plots in Fig. 9 show that for the cleaned multichannel EEG signal ỹ(n), none of the channels have an
ERδ value greater than the µỹδ+Th∗σỹδ , so k is set to zero. The experiments have also shown that EWT-SCA-based processing
of clean/lightly OA-affected EEG recordings results in a minimal alteration in the signals’ delta bands as demonstrated in Fig.
10.

The figure presents PSD plots for OA contaminated and clean EEG signals considering both highly and slightly affected
channels for a real EEG record. It is clear that for each of the scenarios under consideration, EWT-SCA performs better than
EWT-EFICA and monochannel EWT approaches. But except for the frequency band below 4 Hz, which is affected by OAs,
the PSDs of clean signals from all methods are very close to those of contaminated signals.
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TABLE I
THE OBTAINED MAXIMUM PCER OF δ RHYTHMS, AMAE IN PSD, AND ASNR MEASURES FOR SIMULATED EEG RECORDS USING EWT-SCA.

EEG Maximum AMAE in PSD of EEG rhythms ASNR ASNR
records ∆ ERδ Theta Alpha Beta Gamma i/p o/p
sim1 81.08 0.11 1.8E-14 4.2E-15 6.2E-16 4.43 8.28
sim2 71.77 0.21 1.8E-14 4.7E-15 7.3E-16 5.83 7.98
sim6 94.50 0.02 3.6E-15 1.0E-15 3.0E-16 3.01 4.82
sim7 88.88 0.09 8.5E-15 8.8E-16 1.3E-16 3.17 5.80
sim9 95.84 0.029 1.5E-15 7.1E-16 2.1E-16 0.94 4.12

sim11 94.17 0.03 3.0E-15 8.2E-16 2.4E-16 2.39 3.72
sim12 94.27 0.05 2.2E-15 5.6E-16 1.7E-16 2.51 5.88
sim14 95.00 0.01 1.5E-15 6.8E-16 1.4E-16 1.61 4.36
sim16 88.02 0.30 1.2E-14 1.4E-15 1.7E-16 3.80 5.77
sim18 90.60 0.07 5.5E-15 1.1E-15 2.5E-16 2.82 5.74
sim20 84.39 0.19 5.3E-15 1.5E-15 2.4E-16 4.22 6.25
sim22 87.95 0.07 4.5E-15 1.2E-15 4.0E-16 4.19 5.09
sim25 93.20 0.05 3.5E-15 6.4E-16 1.5E-16 2.75 3.39
sim26 94.94 0.05 1.4E-15 3.9E-16 1.2E-16 1.85 5.33
sim28 82.95 0.11 1.3E-14 1.2E-15 2.3E-16 5.26 5.75
sim30 95.76 0.04 2.7E-15 1.1E-15 2.4E-16 2.05 3.32
sim31 90.18 0.16 1.6E-14 1.3E-15 1.8E-16 3.57 5.81
sim32 91.24 0.22 3.4E-15 1.3E-15 3.1E-16 4.11 5.53
sim34 93.82 0.13 2.5E-15 8.0E-16 2.5E-16 2.54 4.57
sim36 93.31 0.04 2.1E-15 6.1E-16 1.4E-16 2.60 4.84
sim37 93.73 0.02 3.3E-15 7.8E-16 2.1E-16 2.34 5.49
sim40 91.18 0.08 9.6E-15 1.5E-15 3.9E-16 2.68 5.87
sim43 86.90 0.05 3.8E-15 1.3E-15 3.3E-16 2.17 4.99
sim45 93.10 0.04 7.1E-15 6.2E-16 9.1E-17 1.45 3.61
sim46 94.55 0.13 5.7E-15 7.3E-16 1.5E-16 2.01 7.89
sim48 93.29 0.07 2.6E-15 8.7E-16 1.8E-16 0.54 4.97
sim50 95.71 0.04 2.6E-15 9.0E-16 2.8E-16 0.16 4.01
sim51 94.86 0.08 3.7E-15 7.7E-16 1.4E-16 0.42 4.30
sim53 92.35 0.05 5.1E-15 1.2E-15 2.2E-16 1.71 4.87
sim54 94.46 0.08 4.1E-15 1.3E-15 4.0E-16 2.07 4.91
Mean 91.07 0.09 5.9E-15 1.2E-15 2.5E-16 2.64 5.24
STD 5.25 0.07 4.8E-15 9.2E-16 1.4E-16 1.34 1.22

One can notice in Fig. 11 that the dictionary (corresponding to real EEG signal of Fig. 2) contains three different artifact
patterns which are automatically included based on the criterion of high ER of the δ rhythms (see eqn (22)) belonging to
different spatial locations.

Further, detecting the artifact components/sources after spatial filtering is an important step in the proposed methods. Fig.
12 presents the 14 components obtained after rotating the basis of δ-rhythms onto the dictionary using SCA. It can be seen
that SCA components representing the common subspace of the two databases appear at the top, followed by the components
which represent the subspace for uncontaminated δ-rhythms. Hence, the uncontaminated δ-rhythms can be recomposed after
eliminating the first three common subspace basis vectors (artifact components, correspond to unitary singular values (eq. 20))
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TABLE II
THE OBTAINED MAXIMUM PCER OF δ RHYTHMS AND AMAE IN PSD FOR OTHER RHYTHMS FOR REAL EEG RECORDS USING EWT-SCA.

EEG Maximum AMAE in PSD of EEG rhythms
records ∆ ERδ Theta Alpha Beta Gamma

S001R01 94.457 1.009 2.50E-14 1.20E-14 5.07E-15
S001R04 89.442 0.903 2.12E-14 1.19E-14 5.51E-15
S001R06 94.405 0.918 2.46E-14 1.15E-14 4.51E-15
S001R08 90.973 1.060 2.39E-14 1.27E-14 5.42E-15
S001R11 95.377 1.023 3.55E-14 1.91E-14 8.87E-15
S001R13 93.733 1.211 3.91E-14 2.07E-14 9.03E-15
S002R03 86.078 0.268 1.11E-14 5.76E-15 3.70E-15
S002R05 91.925 0.497 1.52E-14 7.10E-15 3.76E-15
S002R07 91.304 0.620 1.01E-14 4.95E-15 3.32E-15
S002R10 87.546 0.160 8.93E-15 3.43E-15 2.08E-15
S002R11 85.057 0.323 1.17E-14 5.08E-15 3.77E-15
S002R12 88.553 0.167 1.01E-14 3.77E-15 2.30E-15
S006R05 91.678 0.754 3.72E-15 3.73E-15 2.50E-15
S006R09 91.831 0.553 4.32E-15 6.26E-15 4.45E-15
S008R04 92.149 0.480 1.05E-14 4.80E-15 3.09E-15
S008R13 90.881 1.502 2.31E-14 7.48E-15 4.28E-15
S009R10 96.23 0.952 3.47E-14 3.20E-14 3.57E-14
S009R12 95.307 0.974 3.61E-14 3.47E-14 3.40E-14
S015R04 82.465 1.462 4.46E-14 2.47E-14 8.86E-15
S015R10 86.075 1.057 4.79E-14 2.11E-14 5.02E-15
S019R05 90.625 1.206 1.74E-14 1.38E-14 7.88E-15
S019R06 90.722 1.474 1.75E-14 1.82E-14 1.14E-14
S019R07 92.131 1.698 2.08E-14 1.80E-14 1.10E-14
S019R08 86.661 0.818 1.98E-14 2.17E-14 1.44E-14
S035R03 84.656 0.367 7.68E-15 2.83E-15 8.80E-14
S035R05 88.724 0.541 9.04E-15 3.38E-15 8.16E-14
S035R07 90.453 0.319 9.39E-15 3.42E-15 5.84E-14
S036R07 93.668 2.084 6.62E-14 3.22E-14 1.82E-14
S036R12 93.826 2.076 6.29E-14 2.81E-14 1.31E-14
S108R07 94.901 1.823 3.03E-14 2.12E-14 1.56E-14
Mean ± 90.73 ± 0.943 ± 2.34E-14 ± 1.39E-14 ± 1.58E-14

STD 3.575 0.546 1.64E-14 9.85E-15 2.23E-14



13

TABLE III
THE OBTAINED MAXIMUM PCER OF δ RHYTHMS AND AMAE IN PSD FOR OTHER RHYTHMS FOR REAL EEG RECORDS USING EWT-EFICA.

EEG
Records

Maximum
∆ ERδ

AMAE in PSD
θ-rhythm α-rhythm β-rhythm γ rhythm

S001R01 62.7484 17.5627 1.93E-14 1.06E-14 4.40E-15
S001R06 60.0487 14.5785 1.50E-14 7.31E-15 3.68E-15
S108R07 53.5186 8.7598 1.89E-14 1.48E-14 1.07E-14
S109R05 63.1863 25.4753 2.24E-14 1.41E-14 7.32E-15
S100R09 63.7358 12.8501 1.66E-14 9.86E-15 4.60E-15

TABLE IV
THE OBTAINED MAXIMUM PCER OF δ RHYTHMS AND MAE IN PSD FOR OTHER RHYTHMS FOR REAL EEG RECORDS USING MONOCHANNEL EWT.

EEG
Records ∆ ERδ

MAE values in PSD
θ-rhythm α-rhythm β-rhythm γ-rhythm

S001R01 50.2009 2.13E-14 1.23E-14 5.32E-15 2.30E-15
S001R06 52.7896 1.23E-14 9.62E-15 4.35E-15 1.64E-15
S108R07 46.4577 3.05E-14 1.66E-14 2.01E-14 1.69E-14
S109R05 56.7107 1.96E-14 7.93E-15 2.82E-15 7.72E-16
S100R09 33.1268 3.32E-16 1.04E-16 5.00E-17 2.88E-17

using a diagonal gain matrix. Finally, the recovered δ-rhythms are combined with other EEG rhythms to reconstruct the OA-free
multivariate signal. Fig. 13 shows the clean real multivariate EEG signal obtained using EWT-SCA method. For facilitating the
interpretation and visual inspection, the eliminated artifacts (difference of raw EEG and processed EEG), on the same channels
as in Fig. 13, are shown in Fig. 14.

Fig. 15 shows the scalograms [45] of a real OA-contaminated EEG channel before and after applying the EWT-SCA method.
It can be noticed that eye artifacts with high energy concentration are absent in the TF image after filtering process.

Fig. 16 plots the variation of performance parameters, namely, MAE (for θ and α rhythms) and PCER for δ rhythm with
dictionary cutoff frequencies. It can be observed that though PCER increases slightly, the MAE values increase significantly
above 4 Hz dictionary cutoff frequency. Therefore, the dictionary cutoff frequency is fixed at 4 Hz for all the OA contaminated
multichannel EEG records.

Fig. 17 exhibits the graphical variation of the performance parameters with respect to the number of eliminated artifact
components for both simulated and real EEG signals. The subplots also present the performance of the method when a FIR
filter bank replaces EWT. The trends of the subplots reveal that after eliminating a few components, the performance parameters
converge. Hence, preserving the basic EEG information can be carried out by eliminating a minimal number of components.

A. Comparison with existing methods

We have compared our hybrid filtering methods with existing state-of-the-art OA removal methods in Table V. For effective
extraction of OAs from the intrinsic mode functions obtained using EEMD, the authors in [44] replaced linear PCA with
kernel PCA (kPCA), which outperformed the EEMD-PCA [27] and the wavelet-based (symlet (sym3) as a basis function) [43]
methods in terms of MAE values in PSD for α rhythm.

Likewise, Maddirala et al. [25] proposed SSA and ANC combination for removal of OAs and compared the method’s
performance with DWT-ANC method proposed by Peng et al. [24]. The performance of SSA-ANC does not depend on the
morphology of the EOG signal, and with an MAE value of 0.1671, it surpassed the DWT-ANC method. The DWT-ICA [23]
and the rhythm-based algorithm [29] for removal of OA from EEG had MAE in PSD for α rhythm less than 0.1671, which
suggests that these methods work better in preserving the non-contaminated EEG information. Comparison of the MAE values
of the existing methods with the proposed approach substantiates that EWT-SCA excels overall. We have also compared the
hybrid approaches with a monochannel EWT-based method and found that EWT-SCA has the least MAE values in PSD for
α rhythm.
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TABLE V
COMPARISON WITH THE EXISTING METHODS IN TERMS OF MAE VALUES.

Methods Input α rhythm MAE
in PSD ( σ)

Wavelet Sym3 [43] Single channel 0.539 0.326
DWT-ANC [24] Single channel 0.416 0.251
EEMD-PCA [27] Single channel 0.669 0.504
EEMD-KPCA (Polynomial kernel
of 3rd order) [44] Single channel 0.583 0.413

SSA-ANC [25] Single channel 0.167 0.053
DWT-ICA [23] Multichannel 0.031 0.011
FBSEEWT-LPATV [29] Single channel 0.029 0.020
EWT Single channel 9.30E-15 6.08E-15
EWT-EFICA Multichannel 1.61E-14 6.59E-15
EWT-SCA Multichannel 2.34E-14 1.64E-14

TABLE VI
COMPARISON WITH THE CONVENTIONAL EEG EYE-BLINK ARTIFACT REMOVAL METHODS IN TERMS OF CCI MEASURE.

Electrode EWT- Wavelet ASR [20] ICLabel [16] EEGden-
name SCA ICA [15] oiseNet [30]
AF3 0.73 0.56 0.85 0.54 0.60
F7 0.84 0.63 0.69 0.65 0.67
F3 0.86 0.76 0.81 0.52 0.73

FC5 0.63 0.80 0.85 0.67 0.79
T7 0.76 0.75 0.92 0.89 0.82
P7 0.78 0.97 0.94 0.90 0.91
O1 0.85 0.91 0.84 0.96 0.92
O2 0.87 0.92 0.99 0.95 0.82
P8 0.86 0.88 0.94 0.86 0.84
T8 0.88 0.85 0.85 0.68 0.93

FC6 0.67 0.75 0.77 0.65 0.89
F4 0.94 0.78 0.80 0.52 0.80
F8 0.83 0.64 0.88 0.69 0.86

AF4 0.84 0.61 0.83 0.59 0.71

The resemblance of the reconstructed EEG channel with the raw EEG channel is further evaluated in terms of the correlation
coefficient index (CCI) measure; the channel by channel results have been compared with four existing state-of-the-art methods
[15], [16], [20], [30], enumerated in Table VI. The Higher the CCI is, the better the method is at preserving the EEG information.
The wavelet-ICA method [15] achieved average CCI of 0.77 for real 14-channel EEG signals. Likewise, the multichannel EEG
eye-blink artifact suppression method, namely, the ASR method [20], achieves average CCI value of 0.85 when studied in the
real EEG signals considered in this work. The state-of-the-art ICLabel method [16] removed the EOG artifacts from real EEG
data, resulting in an average CCI value of 0.72. The deep learning (DL) based long short-term memory (LSTM) model [30]
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Fig. 11. Plot of the EEG artifact dictionary used for cleaning the real multichannel OA contaminated EEG signals.
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Fig. 12. Plot of the SCA components of real EEG signals contaminated with OAs.

was also tested on real EEG signals, with an average CCI value of 0.81. The DL model was trained using both clean and
EOG-contaminated EEG signals available in EEGdenoiseNet [30]. Studying the real EEG signals, the average CCI value for
the proposed EWT-SCA method is evaluated as 0.81, which is comparable with the existing state-of-the-art methods. Other
cutting-edge EEG artifact rejection techniques exist, such as Autoreject [46], however they are not very effective for removing
eye blink artifacts [46].

B. Analysis of execution time

The MATLAB platform was used to run the computer simulations on a system with an Intel(R) Core(TM) i7-8750H CPU
running at 2.20 GHz and 16 GB of RAM. The proposed method takes 960 milliseconds for processing 64-channel EEG of
duration 125 s. As can be seen in Fig. 18, the proposed method executes much faster than the traditional ASR method [20]
for several real-world EEG sessions. On the other hand, the wavelet ICA method [15] has a mean execution time of 0.060 s
for processing 12 channel EEG signal of 105 s duration.

C. Discussion

The proposed methodology uses the capabilities of EWT-based frequency filtering and spatial filtering techniques and presents
a new enhanced hybrid approach. Building an artifact-rich dictionary is a crucial step in SCA based approach.

In a nutshell, we seek to eliminate or reduce the eye artifacts on surface EEG signals using a dictionary based approach that
can be seen as a non-linear spatial filter in three steps: (1) we extract the dictionary from the raw data by EWT and channel
selection; (2) we transform the raw data by spatial filtering (i.e. by rotating its basis onto the artifact space basis), the result
being to identify artifact basis signals; (3) the signals constituting the artifact basis are zeroed before the final reconstruction
step, which yields clean EEG signals. Our method, in contrast to existing ones, derives the artifact basis dictionary from the
raw data itself rather than using reference signals like EOG. It is more flexible than fixed reference signals since it serves as the
basis of the artifact space (it allows reconstructing different versions of the artifacts). One can argue that this technique is also
used by BSS/ICA based methods. Still, a key difference with these approaches is the use of the (physiologically meaningful)
dictionary to optimize the rotation of the signal space basis (while in ICA, the rotation maximises the independence, with no
particular concern about the physiological plausibility of the extracted basis of independent “sources”).
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Fig. 13. Plot of the OA-free real multichannel EEG signals obtained using EWT-SCA.
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Fig. 14. Plot of the channel-wise eliminated OAs using EWT-SCA method.

As mentioned above, BSS methods decompose the data and could be in principle used to construct an artifact dictionary
[16], [17], but identifying the artifact sources is challenging and more subjective as they appear randomly after the demixing
process and, moreover, they could be mixed among them or even with brain sources.

The proposed method is fast and reliable and has been proven successful in removing artifacts from multichannel EEG
signals recorded for brain-computer interface (BCI) applications, showing performances similar or better than state of the art
algorithms [16], [20], [30]. Other applications can be explored, such as the removal of cardiac artifacts from multichannel EEG
signals with the help of a dictionary constructed with multi-lead ECG signal recordings that are generally used for cardiac
screening [47].

One should mention nevertheless that the method assumes that high amplitude δ waves are mostly eye artifacts (which is
a common assumption in in the awake state and thus in BCI applications). If this condition is not fulfilled the design of the
dictionary should be revisited. More generally, the method is sensitive to the choice of the artifact dictionary/basis, which
should be chosen carefully (see analysis of the cutoff frequency, figure 16).

Evaluating the BCI performance after applying the proposed method would be an important issue, but this is beyond the
scope of the work reported here and will be left for further research. One can indeed note that ERPs used in BCI (such
as P300 for example) are also low frequency events [48], so one might wonder if they would be affected by the denoising
procedure. Although not evaluated, as stated above, we conjecture that they will not be cancelled, because they will not belong
to the dictionary used for spatial filtering, as they will not belong to channels with high ER in the δ band (P300 ERPs are
low amplitude events that become visible only after averaging over several occurrences.) More generally, comparisions of
BCI performances (ERP detection and/or classification, but also the effect on frequency based methods for steady-state BCI
approaches) is an important task which deserves a complete study in our opinion. Besides the preprocessing, the results will
certainly depend on the task, as well as on the BCI specific algorithms.

It is noteworthy that the cancellation of eye artifacts proposed here, as any preprocessing methods, influences all further signal
processing steps and the outcome of further analysis. Besides BCI, another important example is the estimation of functional
connectivity, useful for clinical diagnostics (see e.g. [49]). We believe that the method we propose here, while eliminating
spurious connectivity measures due to eye artifacts, will not distort the estimation of important physiological connectivity
measures, as it only affects limited frequency bands.

Finally, we can also note that, while the proposed method is designed for ocular artifact cancelling only, it can be used to
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Fig. 15. Plots of scalograms of a OA contaminated (real) EEG channel before (left) and after (right) applying EWT-SCA.
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Fig. 16. Plots of the variation of performance parameters with dictionary cutoff frequencies.

complement other artifact cancellation techniques (similar to other methods, see [20]). The MATLAB code of the proposed
EWT-SCA based OA removal method is available at the following link: https://github.com/abhijit12345678910/EOG-artifact-
removal-from-multichannel-EEG-signals.

V. CONCLUSION

We have proposed various combinations of frequency and spatial filtering techniques to remove ocular artifacts (OAs)
from multichannel EEG signals in the awake state. The empirical wavelet transform (EWT), which is the initial step in the
proposed method, is used to decompose EEG signals into rhythms. As OAs mostly contaminate the low-frequency range
of the EEG signals, the δ-rhythms have been further considered for spatial filtering. The spatial filtering technique, namely
subspace correlation approach (SCA) armed with an artifact-rich dictionary (containing filtered artifact patterns from different
spatial locations), has been optimally utilized to separate the OAs and neural information in the δ-rhythms. Finally, the artifact
components have been eliminated before inverse spatial filtering and cleaned δ-rhythms are combined with other frequency
bands of the EEG signals. While the SCA spatial filtering embeds a priori knowledge on the nature of the artifacts, blind
methods can also be used. We have in particular tested a blind source separation method, EFICA, for separating the artifact and
neural sources. EWT-SCA performed the best in removing the OAs and preserving the EEG information out of all the proposed
hybrid methods. Furthermore, the complete filtering procedure has been automated without any supplementary reference signals
and can be employed in real-time to clean a large EEG dataset contaminated with OAs.

To conclude, we might note that, even if the performances of our method were clearly demonstrated on the publicly available
dataset [35], further research is needed to validate it on other datasets, as for example clinical signals recorded in the context of
different pathologies (epilepsy, Alzheimer, etc). As mentioned previously in the Discussion, another future research direction is
the study of the influence of our method on the performances of further processing tasks such as BCI or connectivity analysis.
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