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Abstract 9 

This study investigates the prediction of the removal efficiency of emerging organic 10 

contaminants (EOCs) (pharmaceuticals-PhCs, personal care products-PCPs, and steroidal 11 

hormones-SHs) in constructed wetlands based on their physicochemical properties (e.g., 12 

molecular weight-MW, octanol-water partition coefficient-Log Kow, soil organic carbon 13 

sorption coefficient-Log Koc, octanol-water distribution coefficient-Log Dow, and 14 

dissociation constant-pKa). The predictive models are formed based on statistical analysis 15 

underpinned by principle component, correlation, and regression analyses of a global data set 16 

compiled from peer-reviewed publications. The results show that the physicochemical 17 

properties of EOCs emerged as good predictors of their removal efficiency. Log Koc, Log 18 

Dow, and Log Kow are the most significant predictors, and combination with MW and/or 19 

pKa often improved the reliability of the predictions. The best performing model for PhCs 20 

was composed of MW, Log Dow, and Log Koc (coefficient of determination-R2: 0.601; 21 

probability value-p < 0.05; root mean square error-RMSE: training set: 11%; test set: 27%). 22 

Log Kow and Log Koc for PCPs (R2: 0.644; p < 0.1; RMSE: training set: 14%; test set: 14%), 23 

and a combination of MW, Log Kow, and pKa for SHs (R2: 0.941; p < 0.1; RMSE: training 24 

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0301479721009786
Manuscript_fd891c94b252e379a7208bdbb983eae0

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0301479721009786
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0301479721009786


2 

 

set: 3%; test set: 15%) formed the plausible models for predicting the removal efficiency. 25 

Similarly, reasonably good combined models could be formed in the case of PhCs and SHs or 26 

PCPs and SHs, although their individual models were comparatively better. A novel decision 27 

support tool, named as REOCW-PCP, was developed to readily estimate the removal 28 

efficiency of EOCs, and facilitate the decision-making process. 29 

Key words: Constructed wetlands; Personal care products; Pharmaceuticals; Physicochemical 30 

properties; Predictive models; Steroidal hormones.   31 

1. Introduction 32 

Pharmaceuticals (PhCs), personal care products (PCPs), and steroidal hormones (SHs) are 33 

among the emerging organic contaminants (EOCs) that are discharged to water resources and 34 

environment through various sources such as domestic wastewater, industrial wastewater, 35 

landfill leachate, runoff from concentrated animal feeding operations and aquaculture, and 36 

effluent discharge from wastewater treatment plants (e.g., Luo et al., 2014; Barbosa et al., 37 

2016; Yi et al., 2017; Yin et al., 2019). Although EOCs are often present in relatively small 38 

concentrations (i.e., ng L-1 to µg L-1) in water resources, their occurrence as individual 39 

compounds, transformation products, and multitude of compounds can still cause negative 40 

impacts on human health as well as aquatic and terrestrial life (e.g., Vymazal et al., 2015; 41 

Vystavna et al., 2017; Tran et al., 2018). It is well established that the higher concentration of 42 

EOCs compared with their potential no effect concentration could pose severe risk to human 43 

health, since many of these EOCs are considered as prospective endocrine disruptors 44 

(Caliman and Gavrilescu, 2009; Töre et al., 2012; Gogoi et al., 2018). 45 

Constructed wetlands (CWs) are environmentally friendly, cost-effective, and nature-based 46 

treatment technologies that have been extensively investigated and practically used for the 47 

removal of EOCs from the wastewater (e.g., Zhang et al., 2014; Verlicchi et al., 2015; Gorito 48 
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et al., 2017; Vo et al., 2018). To date, a large number of individual case studies have been 49 

published in peer-reviewed journals related to the removal of EOCs by CWs. A review study 50 

by Ilyas et al. (2020) indicated that investigation of the impact of physicochemical properties 51 

on the removal efficiency has been an important research topic among other thematic areas 52 

such as evaluation of the performance of different types of CWs, role of design and 53 

operational factors on the treatment process, and environmental risk assessment. There is an 54 

increasing evidence that physicochemical properties of EOCs (molecular weight-MW, water 55 

solubility-WS, octanol-water partition coefficient-Log Kow, soil organic carbon sorption 56 

coefficient-Log Koc, octanol-water distribution coefficient-Log Dow, Henry's law constant-57 

HC, dissociation constant-pKa, and charge at pH 7) play a very important role during the 58 

treatment process (Supplementary materials 1: Tables S1), and considerably influencing the 59 

possible removal mechanisms such as biodegradation, adsorption/sorption, and plant uptake 60 

(e.g., Zhang et al., 2012a, 2012b, 2018; Verlicchi et al., 2013; Vystavna et al., 2017; Ilyas et 61 

al., 2020; Ilyas and van Hullebusch, 2019, 2020a, 2020b, 2020c, 2020d). 62 

Few experimental studies have indicated an inverse relationship between Log Dow and the 63 

removal efficiency of PhCs (e.g., Lee et al., 2011; Zhang et al., 2012b, 2018). However, the 64 

resulting correlations were not very strong (e.g., coefficient of determination-R2: ~ 0.3) by the 65 

study of Zhang et al. (2012b) on horizontal subsurface flow constructed wetland (HFCW); but 66 

the relationship was statistically significant (e.g., probability value-p < 0.1). Zhang et al. 67 

(2018) reported a strong inverse relationship between the removal efficiency and Log Dow 68 

(R2: 0.82-0.86; p < 0.05) in two FWSCWs. These studies indicated some potential of using 69 

Log Dow as a predictor of the removal efficiency of PhCs, and highlighted the important role 70 

of hydrophobicity in the removal mechanisms of PhCs in CWs. However, the results should 71 

be interpreted with caution because these are based on only few individual studies involving a 72 

limited number of PhCs (e.g., < 10). Moreover, the proposed regression models are only 73 
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based on the training data sets. A validation step on an independent test set was not carried 74 

out, which limits the reliability and wider application of the proposed models. 75 

On the other hand, some studies suggested a non-significant correlation between Log Kow 76 

and the removal efficiency of PhCs (Park et al., 2009; Lee et al., 2011; Breitholtz et al., 2012; 77 

Zhang et al., 2012a, 2012b). For example, Breitholtz et al. (2012) reported a non-significant 78 

correlation (p > 0.35) between the removal efficiency of PhCs and Log Kow in FWSCW. 79 

Verlicchi et al. (2013) stated the similar results for the relationship between the removal 80 

efficiency of PhCs and Log Kow in HFCW. These studies indicated a non-substantial role of 81 

hydrophobicity in the removal processes of PhCs in CWs. However, it was not fully clear 82 

from the available studies why Log Kow does not yield a significant correlation with the 83 

removal efficiencies like Log Dow, despite the fact that both are closely related and Log Dow 84 

could be estimated using Log Kow (e.g., Carballa et al., 2008). Although Zhang et al. (2012b) 85 

suggested that the removal efficiency of the selected PhCs can be predicted adequately in 86 

HFCW based on their Log Dow, Verlicchi et al. (2013) suggested that Log Kow alone is not a 87 

useful predictor for the behavior of PhCs in HFCW. These results indicate the potential role 88 

of multiple physicochemical properties in their removal processes. However, the previous 89 

research did not investigate the possibility of predicting the removal efficiency by combining 90 

two or more physicochemical properties, i.e., multiple linear regression analysis to develop 91 

predictive models for the removal efficiency with two or more physicochemical properties 92 

was not conducted by the above-mentioned studies. 93 

While most of the studies attempted to predict the removal efficiency of PhCs based on only 94 

one physicochemical property (Log Kow and/or Log Dow), a study by Matamoros et al. 95 

(2017) performed a correlation analysis between the removal efficiency of 16 EOCs including 96 

PhCs, PCPs, and industrial chemicals and their corresponding values of Log Kow, HC, WS, 97 

and MW. This study revealed a significant positive correlation of the removal efficiency with 98 
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Log Kow and MW. Nevertheless, the authors suggested a cautious interpretation of these 99 

results, and stated that differences in their findings compared to earlier studies could be due to 100 

the variability in the studied EOCs, weather conditions, sample size, and CW systems. 101 

Vystavna et al. (2017) conducted a principle component analysis (PCA) to investigate the role 102 

of physicochemical properties (WS, MW, and Log Kow) in the removal efficiency of 12 103 

EOCs including PhCs, PCPs, and SHs in a hybrid constructed wetland (HCW). The results of 104 

PCA suggested a non-significant relationship between the physicochemical properties of the 105 

studied EOCs and their removal efficiency. The authors recommended a further analysis for 106 

the confirmation of their findings.  107 

The CW models can provide a very useful information for scientific understanding of the 108 

processes and aiding in the design of the CWs (Meyer et al., 2015). However, existing models 109 

of CWs, both process-based or black-box types, only focus on the removal of conventional 110 

parameters such as nutrients, biochemical oxygen demand, and chemical oxygen demand 111 

(e.g., Kumar and Zhao, 2011; Meyer et al., 2015; Yuan et al., 2020). In general, there is a 112 

need to include EOCs in the further development of CW models (Yuan et al., 2020). 113 

Furthermore, there is a need to carry out a comprehensive statistical analysis to develop 114 

predictive models for the removal efficiency of EOCs (PhCs, PCPs, and SHs) based on their 115 

physicochemical properties. Further research is required on investigating the combined impact 116 

of several physicochemical properties (MW, WS, Log Kow, Log Koc, Log Dow, HC, and 117 

pKa) to predict the removal prospects of EOCs in CWs, while giving attention to the 118 

prediction of PCPs and SHs along with PhCs. The progress on predictive models will also 119 

advance scientific understanding and contribute to improve the decision-making process. For 120 

example, engineers and policy makers could readily use these models to obtain a first-hand 121 

information on the expected removal efficiency of a certain PhC, PCP or SH in CWs. Such 122 

information can be very valuable in data limited situations when no or a very limited 123 
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information on the removal efficiency of certain EOCs is available based on the field 124 

research, which could be quite costly. Moreover, the new models can help in the further 125 

development of modelling and decision support tools (DSTs) on EOCs.  126 

Therefore, the main objective of this study is to comprehensively analyze the possibility of 127 

developing reliable predictive models for the removal efficiency of EOCs in CWs based on 128 

their physicochemical properties. The specific objectives are: (1) to explore the possibility of 129 

developing statistical models for the prediction of removal efficiencies of individual group of 130 

EOCs (PhCs, PCPs, and SHs) in CWs based on their physicochemical properties; (2) to 131 

explore the possibility of formulating a generic predictive model by combining the removal 132 

efficiencies of PhCs, PCPs, and SHs in CWs based on their physicochemical properties; (3) to 133 

examine the impact of physicochemical properties of EOCs on their removal mechanisms in 134 

CWs; (4) to study the inherent uncertainties involved in the development of the above-135 

mentioned predictive models; and (5) to explore the possibilities of application of the 136 

plausible predictive models.  137 

2. Methodology 138 

2.1. Data 139 

The flowchart of the research methodology is presented in Figure 1 and discussed below. 140 

Predictive models were formulated using data of widely studied EOCs (PhCs: 33; PCPs: 15; 141 

and SHs: 11) in CWs. The data was compiled from the peer-reviewed published sources in 142 

our previous work (Ilyas et al., 2020; Ilyas and van Hullebusch, 2020c, 2020d), and formed 143 

the basis of this modelling study. The removal efficiency is used as a dependent variable to be 144 

predicted. The independent variables were physicochemical properties: HC, WS, MW, Log 145 

Kow, Log Dow, Log Koc, and pKa. The data of these variables was collected from various 146 

sources: quantitative structure activity relationship-QSAR Toolbox (version 4.3.1), journal 147 
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papers, reports, and websites. Despite some differences in the data values, these sources were 148 

considered very useful and reliable. For example, the QSAR Toolbox contains data from 149 

several reliable sources, and was very helpful in collecting the data of most of the variables. 150 

However, data of Log Dow was not available for all the EOCs, and the missing values were 151 

filled by developing regression equations of Log Dow with Log Koc (for PhCs) and Log Kow 152 

(for PCPs). In the case of SHs, Log Kow values were used in place of Log Dow because the 153 

studied compounds were neutral (e.g., Carballa et al., 2008), and regression analysis was not 154 

possible due to a very limited number of data points for Log Dow. The final data sets used in 155 

this study are given in Supplementary materials 2: Tables S2-S4.  156 

2.2. Statistical methods 157 

First, PCA was performed in R software (version 3.6.2). The PCA was mainly aimed at 158 

understanding the role of different physicochemical properties in the removal processes. 159 

Moreover, the PCA helped to understand the key variables explaining most of the variance in 160 

the data set, and thus could be used in the model building process (Supplementary materials 3 161 

and 4: Figures S1-S5 and Tables S5-S12). Second, a correlation of the removal efficiency of 162 

EOCs and their physicochemical properties was estimated to select the most promising 163 

variables to be used in the predictive models. Microsoft Excel software (Analysis ToolPak) 164 

was used to estimate the Pearson product moment correlation (Supplementary materials 5: 165 

Tables S13-S20). 166 
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 167 

Figure 1. Flowchart of the research methodology. 168 

Note: Emerging organic contaminants (EOCs); Pharmaceuticals (PhCs); Personal care products (PCPs); 169 

Steroidal hormones (SHs); Henry's Law Constant (HC); Water solubility (WS); Molecular weight (MW); 170 

Octanol-water partition coefficient (Log Kow); Soil organic carbon sorption coefficient (Log Koc); Octanol-171 

water distribution coefficient (Log Dow); Dissociation constant (pKa). 172 
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Then, multiple linear regression analysis was carried out using Microsoft Excel software 173 

(Analysis ToolPak) (Supplementary materials 6: Tables S21-S27). The available EOCs’ data 174 

sets were divided into the training and test sets using a purposive sampling approach based on 175 

the number of data points in the case of removal efficiency of EOCs (Tables S2-S4). For 176 

example, the data of PhCs with > 15 data points were used as one set in the model 177 

formulation processes. Other sets included PhCs with > 20 and ≥ 25 data points, respectively. 178 

It was assumed that more data points may reduce the uncertainty in the observed removal 179 

efficiency and, therefore, may results in the development of better models (Supplementary 180 

materials 7: Tables S28-S32). In the calibration process, various combinations of independent 181 

variables were used to formulate multiple linear regressions. For example, the removal 182 

efficiency was estimated using Log Koc and Log Dow in one model. Then, other variables 183 

(e.g., MW and pKa) were added into the model. The regressions models with p ≤ 0.1 and R2: 184 

> 0.60 were considered as satisfactory, and were selected for validation on an independent 185 

data (test set) (Tables S2-S4). The difference between the observed and predicted removal 186 

efficiency was used as an indicator to assess the performance of the regression models. Since 187 

these differences were both positive and negative, it was not suitable to estimate the overall 188 

mean difference because of the cancelling effect. Therefore, model performance was also 189 

assessed using root mean square error (RMSE), which was estimated from the observed and 190 

predicted removal efficiency. First, the regression models were developed separately for each 191 

category of the EOCs. For example, the removal efficiency of PhCs was predicted using the 192 

physicochemical properties of the examined PhCs. Similar approach was followed for PCPs 193 

and SHs. Then, an attempt was made to form the models by combining data of different 194 

EOCs. For example, the data of PhCs and PCPs was combined, and used to develop a 195 

predictive model that could represent both categories of these EOCs. In a similar way, 196 

combined models were developed for PhCs and SHs, PCPs and SHs, and PhCs, PCPs, and 197 
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SHs. The multiple linear regression approach was used for developing the individual as well 198 

as generic models.   199 

A novel DST, named as REOCW-PCP was developed for the potential application of the 200 

predictive models formulated for predicting the removal efficiency of EOCs based on their 201 

physicochemical properties. REOCW-PCP was developed using Microsoft Excel 2016, and is 202 

provided as a supplementary material (Excel file: REOCW-PCP-secure, along with the user 203 

manual). 204 

3. Results and Discussion 205 

3.1. Predictive models for PhCs 206 

The first three principle components (PCs) with eigenvalue > 1.0 explained 71% of the 207 

variance in the data of 33 widely studied PhCs (Figure 2 and Table 1). The first two PCs 208 

could explain 56% of the variance in the data (PC1: 39%; PC2: 17%). In PC1, the high 209 

positive loadings were observed for Log Koc, Log Kow, and Log Dow, and these variables 210 

cluster together (Figure 3). In PC2, pKa and MW indicated high positive loadings and cluster 211 

together (Figure 3 and Table 1). The removal efficiency indicated negative loadings in all 212 

three PCs. Although the variance explained by the first three PCs is not very high, the results 213 

show reasonably good prospects of establishing a relationship between the removal efficiency 214 

and physicochemical properties of PhCs. To further test the reliability of the PCA results, we 215 

also conducted PCA based on various combinations of the studied PhCs, i.e., samples with 216 

number of data points > 15, > 20, and ≥ 25. In general, the PCA results gave similar insights 217 

as obtained using 33 PhCs (Figures S1-S3 and Tables S5-S8). This reveals that processes 218 

behind the resulting models will follow a coherent pattern in all the combinations of selected 219 

PhCs. For example, Log Koc is likely to emerge as an important predictor in all the cases, and 220 
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is likely to show a significant negative correlation with the removal efficiency of PhCs 221 

(Figure 4 and Tables S13-S16). 222 

Table 1. Principle component analysis (PCA) results based on widely studied 33 PhCs, 15 PCPs, and 223 

11 SHs. 224 

 

Description 

PhCs PCPs SHs 

PC1 PC2 PC3 PC1 PC2 PC1 PC2 

Eigenvalue 1.758 1.162 1.120 2.109 1.236 1.971 1.574 

Proportion of Variance 0.387 0.169 0.157 0.556 0.191 0.486 0.310 

Cumulative Proportion 0.387 0.555 0.712 0.556 0.747 0.486 0.795 

Variables and loadings        

HC (atm m3 mol-1) 0.151 -0.639 -0.036 0.196 -0.558 0.139 0.415 

WS (mg L-1) -0.373 -0.062 0.355 -0.344 -0.066 -0.351 -0.395 

MW (g mol-1) 0.042 0.469 -0.660 0.246 0.486 -0.364 0.247 

Log Kow 0.498 -0.094 -0.259 0.466 -0.076 0.470 -0.071 

Log Koc 0.491 -0.154 0.240 0.458 0.002 0.467 0.216 

Log Dow 0.479 0.099 0.136 0.461 -0.093 0.473 -0.104 

pKa 0.071 0.499 0.491 0.184 0.623 -0.014 0.574 

RE (%) -0.336 -0.277 -0.230 0.330 -0.212 -0.249 0.468 

Note: Pharmaceuticals (PhCs); Personal care products (PCPs); Steroidal hormones (SHs); Principle component 225 

(PC); Henry's Law Constant (HC); Water solubility (WS); Molecular weight (MW); Octanol-water partition 226 

coefficient (Log Kow); Soil organic carbon sorption coefficient (Log Koc); Octanol-water distribution 227 

coefficient (Log Dow); Dissociation constant (pKa); Removal efficiency (RE). 228 

 229 

Figure 2. Scree plot indicated the variance explained by each principle component (PC) for the data of 230 

widely studied 33 PhCs; 15 PCPs; and 11 SHs.  231 
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 232 

Figure 3. Byplot of PC1 and PC2 based on principle component analysis (PCA) of 33 widely studied 233 

PhCs. 234 

Note: Removal efficiency (RE); Diclofenac (1); Ibuprofen (2); Ketoprofen (3); Naproxen (4); Salicylic acid (5); 235 

Acetaminophen (6); Codeine (7); Tramadol (8); Clarithromycin (9); Doxycycline (10); Erythromycin (11); 236 

Ofloxacin (12); Oxytetracycline (13); Sulfadiazine (14); Sulfamethazine (15); Sulfamethoxazole (16); 237 

Sulfapyridine (17); Trimethoprim (18); Monensin (19); Fexofenadine (20); Caffeine (21); Diltiazem (22); 238 

Carbamazepine (23); Mirtazapin (24); Venlafaxine (25); Atenolol (26); Metoprolol (27); Sotalol (28); Ranitidine 239 

(29); Bezafibrate (30); Clofibric acid (31); Gemfibrozil (32); and Furosemide (33).  240 

The correlation and regression outcomes were quite consistent with the PCA results (Tables 241 

S5-S8, S13-S16, and S28). The best models were formed by combining Log Koc, Log Dow, 242 

Log Kow, MW, and pKa, mostly with three or four variables together in one model. The 243 

models with one or two variables were not acceptable (R2: < 0.50; p > 0.1). This finding is 244 

consistent with Verlicchi et al. (2013) who also suggested that Log Kow alone is not a useful 245 
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predictor for the behavior of PhCs in CWs. On the other hand, these results are in contrast 246 

with the study of Zhang et al. (2018) which indicated the possibility of good prediction of the 247 

removal efficiency only with Log Dow based on high negative correlation between the two 248 

variables. Nevertheless, our results suggested that Log Dow is an important predictor when 249 

used along with other physicochemical properties.  250 

Furthermore, a negative correlation of MW, Log Dow, Low Kow, and Log Koc with the 251 

removal efficiencies of PhCs suggested that the PhCs with high values of any of these 252 

physicochemical properties might lead to a low removal efficiency in CWs (Tables S13-S16). 253 

For example, this might be the reason of the low removal efficiency in the case of diclofenac, 254 

erythromycin, clarithromycin, fexofenadine, mirtazapin, carbamazepine, bezafibrate, and 255 

gemfibrozil in CWs (Table S2). In general, the PhCs which are readily biodegradable shows 256 

much better removal efficiencies in CWs (e.g., Hijosa-Valsero et al., 2010; Reyes-Contreras 257 

et al. 2012; Chen et al., 2016). In most of the cases, highly biodegradable PhCs have low 258 

values of Log Koc, Log Dow, Log Kow, and MW, which explains good prospects of their 259 

removal by CWs as substantiated by the statistical analysis conducted in this study. 260 

 261 

Figure 4. Pearson correlation statistics among the studied physicochemical properties and the removal 262 

efficiency of widely studied 33 PhCs, 15 PCPs, and 11 SHs.  263 
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Note: 'a' shows a significant correlation between the parameters at 95% confidence level. The number of data 264 

points per pair was 33, 15, and 11 in the case of PhCs, PCPs, and SHs, respectively. 265 

For acceptable models with R2: > 0.60 and p < 0.05, the RMSEs in training set were < 15% in 266 

all the cases (Table S28). In general, the difference in the observed and predicted removal 267 

efficiency in the test set was quite good for most of the PhCs. For example, the difference in 268 

the observed and predicted removal efficiency was < 20% in the case of 13 out of 18 PhCs 269 

(72% of the cases) for the model formed based on MW, Log Dow, and Log Koc (Table S21). 270 

The differences were even < 10% for half of the cases indicating very high level of accuracy 271 

in predication in the case of venlafaxine, ofloxacin, codeine, mirtazapin, bezafibrate, 272 

oxytetracycline, tramadol, and atenolol (Figure 5). However, three PhCs (monensin, sotalol, 273 

and diltiazem) were not well predicted, as the difference in the removal efficiency was quite 274 

high (ranging from 43% to 76%).    275 

The performance of the plausible models is quite similar, as the RMSE values were around 276 

30% with small differences among different models (e.g., < 5%) (Table S28). This implies 277 

that any of these models could be used for predictions, depending upon the availability of data 278 

on physicochemical properties. However, acceptable models were further screened to 279 

facilitate the selection of the best model for application. The model given in Equation 1 is 280 

selected as the first choice, which is based on MW, Log Dow, and Log Koc (Tables S21 and 281 

S28). This model was formulated using a training set of 15 PhCs with ≥ 25 data points, and it 282 

was validated on an independent test set of 18 PhCs (Figure 5 and Table S2). The predicted 283 

removal efficiency was quite good for most of the PhCs, and the overall RMSE of 27% was 284 

the lowest compared with other models (Table S28). 285 

�� = 108.667 − 0.084 
� − 4.126 ��� ��� − 18.081 ��� ���  (1) 286 



15 

 

Where, RE is removal efficiency in %; MW is molecular weight in g mol-1; Log Dow is 287 

octanol- water distribution coefficient; and Log Koc is soil organic carbon sorption 288 

coefficient. 289 

 290 

Figure 5. Difference between the observed and predicted removal efficiency based on the best model 291 

for PhCs with MW, Log Dow, and Log Koc.  292 

 3.2. Predictive models for PCPs 293 

The first two PCs had eigenvalue > 1.0 and together could explain 75% of the variance in 294 

PCPs data (Figure 2 and Table 1). More details on PCA results with other combination of the 295 

studied PCPs are given in supplementary materials (Figure S4 and Tables S9 & S10). The 296 

first two PCs explained more variance in the case of PCPs compared with PhCs (75% VS 297 

56%) (Table 1), which illustrates better prospects of predictions in the case of PCPs compared 298 

with PhCs. The PC1 alone explained 56% of the variance in the PCPs data, with the highest 299 

positive loadings of Log Kow, Log Dow, and Log Koc, whereas, pKa and MW had highest 300 

positive loadings in PC2 (Figure 6 and Table 1). These loading results were similar to those 301 
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obtained for PhCs. However, the removal efficiency showed positive loading in the case of 302 

PCPs compared with negative loadings for PhCs (Table 1). This could be due to the 303 

differences between PhCs and PCPs in dominant removal mechanisms and the contribution of 304 

respective physicochemical properties to the removal processes. For instance, adsorption to 305 

the substrate and/or sorption onto organic surfaces is the dominant removal mechanism in 306 

most of the widely studied PCPs (e.g., Vymazal et al., 2017; Wang et al., 2019; Ilyas and van 307 

Hullebusch, 2020c). This explains a significant positive correlation of Log Kow, Log Dow, 308 

and Log Koc with the removal efficiency of PCPs (Figure 4 and Tables S17 & S18). 309 

 310 

Figure 6. Byplot of PC1 and PC2 based on PCA of 15 widely studied PCPs.   311 

Note: Acesulfame (1); Methylparaben (2); Propylparaben (3); N,N-diethyl-meta-toluamide (4); Triclosan (5); 312 

Triclocarban (6); Methyl dihydro-jasmonate (7); Cashmeran (8); Galaxolide (9); Tonalide (10); Tributyl 313 
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phosphate (11); Triphenyl phosphate (12); Tris (2-chloroethyl) phosphate (13); Oxybenzone (14);  and 314 

Sulisobenzone (15). 315 

The removal efficiency indicated a significant positive correlation with Log Dow, Log Koc, 316 

and Log Kow, which was consistent with the PCA results (Figure 4 and Table 1). The 317 

multiple linear regression models were formed using data of the training set of eight PCPs 318 

with > 5 data points and was tested to predict the removal efficiency of seven PCPs (Table 319 

S3). The RMSE values of the two promising models (R2 > 0.60; p ≤ 0.1) for the test set were 320 

14% and 21% (Table S29). The model given in Equation 2 is selected as the best performing 321 

model, which was based on two variables: Log Koc and Log Kow (Table S22), and resulted 322 

in 14% RMSE in the test set. 323 

�� = 66.292 + 21.880 ��� ��� − 30.505 ��� ���  (2) 324 

Where, RE is removal efficiency in %; Log Kow is octanol-water partition coefficient; and 325 

Log Koc is soil organic carbon sorption coefficient.  326 

The addition of MW along with Log Kow and pKa resulted in the second-best model (Table 327 

S23) with RMSE of 21% in the case of test set. The model is presented in Equation 3.   328 

�� = 49.970 − 0.056 
� + 8.710 ��� ��� − 1.605 ���  (3) 329 

Where, RE is removal efficiency in %; MW is molecular weight in g mol-1; Log Kow is 330 

octanol-water partition coefficient; and pKa is dissociation constant.  331 

In most of the cases, the difference in the observed and predicted removal efficiency was 332 

small in both models, as illustrated for the best model by Figure 7. The difference in the 333 

observed and predicted removal efficiency was < 10% in the case of five out of seven tested 334 

PCPs (cashmeran, triclocarban, triphenyl phosphate, N,N-diethyl-meta-toluamide, and tributyl 335 

phosphate). Furthermore, a significant positive correlation of Log Kow, Log Koc, and Log 336 
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Dow with the removal efficiencies of PCPs suggested that the PCPs with high values of any 337 

of these physicochemical properties might lead to a high removal efficiency in CWs (Tables 338 

S17 and S18). This might be the reason of the moderate to high removal efficiency of most of 339 

the studied PCPs with the exception of tributyl phosphate and propylparaben in CWs (Table 340 

S3). 341 

 342 

Figure 7. Difference between the observed and predicted removal efficiency based on the best model 343 

for PCPs with Log Kow and Log Koc. 344 

3.3. Predictive models for SHs 345 

The first two PCs had eigenvalue > 1.0 and could explain 80% of the variance in the SHs data 346 

(PC1: 49%; PC2: 31%) (Figure 2 and Table 1). Like PhCs and PCPs, Log Dow, Log Kow, 347 

and Log Koc showed high positive loadings in PC1. For PC2, high positive loadings were 348 

shown by pKa, RE, and HC (Figure 8 and Table 1). More detail on PCA analysis is given in 349 

supplementary materials (Figure S5 and Tables S11 & S12). The correlation and regression 350 

results were consistent with the PCA results (Figure 4 and Tables S19 & S20), indicating the 351 

important role of these physicochemical properties in estimating the removal efficiencies of 352 

the SHs in CWs. 353 
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 354 

Figure 8. Byplot of PC1 and PC2 based on PCA of 11 widely studied SHs. 355 

Note: 17α-ethinylestradiol (1); 17ß-estradiol (2); Estrone (3); Estriol (4); Progesterone (5); Norethisterone (6); 356 

Levonorgestrel (7); Androstenedione (8); Boldenone (9); Testosterone (10); and Prednisone (11).  357 

The multiple linear regression models were formed using data of the training set of six SHs 358 

with > 10 data points and was tested to predict the removal efficiency of five SHs (Table S4). 359 

The resulting predictive models were very good (R2: ≥ 0.90; p ≤ 0.1), and are given in Table 360 

S30. The best model was formed by combining MW, Log Kow, and pKa (Table S24), and 361 

yielded quite good performance for the training set (RMSE: 3%) and the test set (RMSE: 362 

15%) (Equation 4). Three out of five tested SHs (boldenone, norethisterone, and 363 

progesterone) had very less difference in the observed and predicted removal efficiency (< 364 

10%) (Figure 9). The difference in the case of other two SHs (prednisone and 365 

androstenedione) was17% and 27%, respectively.  366 
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�� = 58.032 − 0.035 
� − 7.244 ��� ��� + 3.863 ���  (4) 367 

Where, RE is removal efficiency in %; MW is molecular weight in g mol-1; Log Kow is 368 

octanol-water partition coefficient; and pKa is dissociation constant.  369 

 370 

Figure 9. Difference between the observed and predicted removal efficiency based on the best model 371 

for SHs with MW, Log Kow, and pKa. 372 

3.4. Predictive models for EOCs combining PhCs, PCPs, and SHs 373 

3.4.1. Predictive models combining PhCs and PCPs  374 

PCA results showed that removal efficiency has negative loadings for PhCs and does not 375 

cluster with Log Kow, Log Koc, and Log Dow, which have high positive loadings in PC1 376 

(Figure 3 and Table 1). In contrast, the removal efficiency cluster with Log Kow, Log Koc, 377 

and Log Dow in the case of PCPs (Figure 6 and Table 1), and these variables indicated 378 

positive loadings in PC1. Due to these differences, the correlation and multiple linear 379 

regression models were not acceptable for the training set. For example, R2 was very low (< 380 

0.25), and the regression models were not statistically significant (p > 0.1). Thus, these 381 

models were not suitable for the validation step.  382 
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This lack of adequate predictive power of the combined model of PhCs and PCPs could be 383 

attributed to the distinct differences in the physicochemical properties of these compounds as 384 

well as differences in the dominant removal mechanisms in the CWs. For example, 385 

biodegradation (aerobic and/or anaerobic) is the most dominant removal mechanism for PhCs 386 

removal (e.g., Choi et al., 2016; Nivala et al., 2019; Ilyas et al., 2020). On the other hand, 387 

PCPs have adsorption to the substrate and sorption onto organic surfaces as their major 388 

removal mechanisms (e.g., Carranza-Diaz et al., 2014; Matamoros et al., 2016; Ilyas and van 389 

Hullebusch, 2020c). Most of the PCPs have higher Log Kow, Log Dow, and Log Koc values 390 

and low water solubility compared with PhCs (Tables S2 and S3). On the other hand, 391 

Matamoros et al. (2017) reported a significant positive correlation (p < 0.05) of the removal 392 

efficiency of the combined PhCs and PCPs with Log Kow. However, the studied PhCs 393 

(diclofenac, naproxen, ibuprofen, ketoprofen, and carbamazepine) has moderate to high Log 394 

Kow which is comparable with the Log Kow of the studied PCPs (tributyl phosphate, 395 

triphenyl phosphate, tris (2-chloroethyl) phosphate, galaxolide, tonalide, oxybenzone, methyl 396 

dihydro-jasmonate, triclosan, and methyl paraben) (Tables S2 and S3). 397 

3.4.2. Predictive models combining PhCs and SHs 398 

PCA results showed that removal efficiency has negative loadings for both PhCs and SHs in 399 

PC1 and does not cluster with Log Kow, Log Koc, and Log Dow which have high positive 400 

loadings (Figures 3 & 8 and Table 1). The consistency in PCA and correlation results (Figure 401 

4 and Table 1) contributed in forming acceptable predictive models with the combined data of 402 

PhCs and SHs (Tables S25 and S31). This adequate predictive power of the combined models 403 

might be due to the similarities in the physicochemical properties of these compounds (Tables 404 

S2 and S4), as well as correspondence in their dominant removal mechanisms in the CWs. For 405 

example, the biodegradation (aerobic and/or anaerobic) is the most dominant removal 406 
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mechanism for PhCs and SHs removal (e.g., Herrera-Melián et al., 2018; Chen et al., 2019; 407 

Ilyas et al., 2020; Ilyas and van Hullebusch, 2020d). 408 

The models were formed by combining Log Koc, Log Kow, Log Dow, MW, and pKa, mostly 409 

with three or four variables together in one model. Although R2 was not high (only about 0.4), 410 

the regression models were statistically significant at 95% or 90% confidence interval (p ≤ 411 

0.1) (Table S31). Therefore, the resulting regression statistics were acceptable for the training 412 

set and were applied on the test set (Table S25). For acceptable models, the RMSEs in the 413 

training set were 15% in all the cases.  414 

The best model was formed by combining MW, Log Kow, Log Koc, and pKa (Equation 5), 415 

and yielded satisfactory results for the test set (RMSE: 27%) (Table S31). The difference in 416 

the observed and predicted removal efficiency of 17 out of 23 tested PhCs and SHs was ≤ 417 

25%. The difference in the observed and predicted removal efficiency was quite small (< 418 

10%) in the case of codeine, atenolol, ranitidine, bezafibrate, androstenedione, and 419 

gemfibrozil (Figure 10). However, six out of 23 PhCs and SHs had a quite high difference in 420 

the observed and predicted removal efficiency (ranging from 30% to 60%). 421 

�� = 75.093 − 0.094 
� + 4.249 ��� ��� − 11.878 ��� ��� + 2.541 ���  (5) 422 

Where, RE is removal efficiency in %; MW is molecular weight g mol-1; Log Kow is octanol-423 

water partition coefficient; Log Koc is soil organic carbon sorption coefficient; and pKa is 424 

dissociation constant.  425 
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 426 

Figure 10. Difference between the observed and predicted removal efficiency based on the best model 427 

for combined PhCs and SHs with MW, Log Kow, Log Koc, and pKa. 428 

3.4.3. Predictive models combining PCPs and SHs  429 

In the case of PCPs and SHs, the models were formed by combining Log Koc, Log Kow, Log 430 

Dow, and MW, mostly with two or more variables together in one model. Although R2 was 431 

not very high (about 0.5), the regression models were statistically significant at 95% or 90% 432 

confidence interval in most of the cases (p < 0.1) (Table S32). Therefore, the resulting 433 

regression statistics were acceptable (Table S26). For acceptable models, the RMSEs in the 434 

training set were 15% or 16%. The difference in the observed and predicted removal 435 

efficiency was not very large for most of the models, as illustrated by the results of the best 436 

model (Figure 11). The best performing model was formed by combining MW, Log Dow, and 437 

Log Koc (Equation 6), which yielded quite good results for both the training set (RMSE: 438 

15%) and the test set (RMSE: 23%) (Table S32). The difference in the observed and predicted 439 

removal efficiency of seven out of 14 PCPs and SHs was < 20%. Two compounds 440 

(propylparaben and boldenone) showed difference in the observed and predicted removal 441 

efficiency up to 29%. The difference in the observed and predicted removal efficiency was 442 
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small (< 15%) in the case of cashmeran, triphenyl phosphate, triclocarban, N,N-diethyl-meta-443 

toluamide, tributyl phosphate, and androstenedione (Figure 11). This indicate that the removal 444 

efficiency of these compounds could be adequately predicted by the proposed models. 445 

However, in the case of three compounds (progesterone, norethisterone, and prednisone) the 446 

difference in the observed and predicted removal efficiency was high (> 30%). 447 

�� = 48.691 + 0.049 
� + 15.545 ��� ��� − 18.451 ��� ���  (6) 448 

Where, RE is removal efficiency in %; MW is molecular weight g mol-1; Log Kow is octanol-449 

water distribution coefficient; and Log Koc is soil organic carbon sorption coefficient. 450 

The second-best model presented in Equation 7 is also possible with MW, Log Kow, and Log 451 

Koc (Table S27), which yielded almost similar results for the training and test sets (RMSEs: 452 

16% and 24%, respectively) (Table S32). However, this model was not able to explain more 453 

variance compared with the best model. Nevertheless, the differences in observed and pre-454 

dicted removal efficiencies were somewhat similar to the best model.  455 

�� = 39.301 + 0.098 
� + 15.363 ��� ��� − 20.475��� ���  (7) 456 

Where, RE is removal efficiency in %; MW is molecular weight g mol-1; Log Kow is octanol-457 

water distribution coefficient; and Log Koc is soil organic carbon sorption coefficient. 458 

The adequate predictive power of the combined model of PCPs and SHs might be due to the 459 

similarities in some of the physicochemical properties of these compounds in most of the 460 

cases (e.g., high Log Koc > 2.50 and low WS < 500) (Tables S3 and S4).  461 
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 462 

Figure 11. Difference between the observed and predicted removal efficiency based on the best model 463 

for combined PCPs and SHs with MW, Log Dow, and Log Koc. 464 

3.4.4. Predictive models combining PhCs, PCPs, and SHs  465 

The performance of combined models with PhCs, PCPs and SHs was not satisfactory, as 466 

demonstrated by weak correlations and multiple linear regression results. For example, the 467 

resulting regression statistics were not acceptable for the training set because R2 was very low 468 

(< 0.3) and the regression models were not statistically significant (p > 0.1). Thus, these 469 

models were not tested to predict the removal efficiency of the combined data of PhCs, PCPs, 470 

and SHs.  471 

This lack of adequate predictive power of the combined model could be attributed to the 472 

distinct differences in the physicochemical properties of these compounds, in particular PhCs 473 

and PCPs, as well as the differences in their dominant removal mechanisms in CWs. For 474 

example, the biodegradation (aerobic and/or anaerobic) is the most dominant removal 475 

mechanism for PhCs and SHs in CWs (e.g., Rühmland et al., 2015; Dai et al., 2017; Ilyas et 476 

al., 2020; Ilyas and van Hullebusch, 2020d). The satisfactory predictive power of the 477 

combined model of PhCs and SHs might be due to the similarities in some of the 478 
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physicochemical properties of these compounds (e.g., Log Kow, Log Dow, and Log Koc) in 479 

most of the cases (Tables S2 and S4). On the other hand, PCPs have adsorption to the 480 

substrate and/or sorption onto organic surfaces as their major removal mechanisms (e.g., 481 

Matamoros et al., 2016; Vystavna et al., 2017; Ilyas and van Hullebusch, 2020c). Most of the 482 

PCPs have much higher Log Kow, Log Dow, and Log Koc values and low WS compared 483 

with PhCs (Tables S2 and S3). The adequate predictive power of the combined model of 484 

PCPs and SHs might be due to the similarities in some of the physicochemical properties of 485 

these compounds (e.g., high Log Koc > 2.50 and low WS < 500) in most of the cases (Tables 486 

S3 and S4). These distinct features in their physicochemical properties lead to the differences 487 

in their dominant removal mechanisms and hinder the possibility to formulate a generic 488 

predictive model based on a combined data set of PhCs, PCPs, and SHs. These findings are 489 

consistent with the study by Vystavna et al. (2017). The authors reported no correlation 490 

among the physicochemical properties (WS, MW, and Log Kow) of PhCs, PCPs, and SHs 491 

with their removal efficiencies in CWs based on the PCA results.  492 

3.5. Uncertainty Analysis 493 

The removal efficiencies of PhCs, PCPs, and SHs could be predicted at variable degree of 494 

accuracy by using the proposed models. Although few models with combined data sets (e.g., 495 

PhCs and SHs; PCPs and SHs) indicated satisfactory performance, the predictions with 496 

individual models for PhCs, PCPs, and SHs were more reliable. However, there is some 497 

degree of uncertainty in the outcomes of all the predictive models, which could be considered 498 

in the analysis and the decision-making process. One way to include the uncertainty in the 499 

results is to make the predictions using more than one acceptable model, and then including 500 

the uncertainty range in the outcome. Using this approach, mean and standard deviation of the 501 

predicted removal efficiency of each PhCs, PCPs, and SHs was estimated using all the 502 

acceptable models. Figure 12, illustrates this point with an example of predicted mean and 503 
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standard deviation of PhCs based on the five acceptable models. The prediction uncertainty 504 

among different models was not very high because the standard deviations were quite small in 505 

most of the cases (< 5%). The RMSE values estimated based on the average predicted 506 

removal efficiency of all the models was 28%, which was not much different from that of the 507 

individual models (Table S28).  508 

Similar procedure was followed for PCPs and SHs, and combined models (PhCs and SHs; 509 

PCPs and SHs), and the resulting uncertainty range of predictions in their removal efficiencies 510 

are shown in Figures 13-16. The results follow similar pattern, with relatively small 511 

uncertainty ranges for most of the EOCs. The RMSE values for average of more than one 512 

model were also comparable to the best model. Therefore, it seems reasonably good to use 513 

either the best model to have one deterministic prediction of the removal efficiency or 514 

estimate mean and standard deviation based on all the promising models. The application of 515 

the latter option could be preferred, as this approach is a good reminder that the predicted 516 

values could not be taken as exact estimates and are always have some degree of uncertainty 517 

attached to them. 518 

Another source of uncertainty is related to the data of physicochemical properties and removal 519 

efficiencies. For example, there could be some degree of uncertainty attached to the mean of 520 

the observed removal efficiency (Tables S2-S4), and it is not possible to take these 521 

observations as fully accurate measure of the central tendency. Furthermore, values of some 522 

physicochemical properties like MW and WS have high degree of accuracy (less uncertainty). 523 

Whereas, values of some other physicochemical properties like Log Dow could have a bit 524 

higher degree of uncertainty because these were not easily available from the experimental 525 

studies, and were estimated from other models. 526 
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Thus, the predicated removal efficiencies should be interpreted with caution. These 527 

predictions could not be taken as absolute numbers; neither these should be considered as a 528 

substitute for rigorous experimental studies.529 
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 530 

Figure 12. Difference between the observed and predicted removal efficiency based on five acceptable models formed using data of 15 PhCs with ≥ 25 data 531 

points. 532 

Note: Standard deviation values were capped at 100 to improve the readability of the graph. Actual values can be found in the developed decision support tool (DST), 533 

REOCW-PCP provided as a supplementary material (Excel file: REOCW-PCP-secure, along with the user manual). 534 
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 535 

Figure 13. Difference between the observed and predicted removal efficiency based on two acceptable models formed using data of eight PCPs with > 5 data 536 

points. 537 

Note: Standard deviation values were capped at 100 to improve the readability of the graph. Actual values can be found in the developed DST, REOCW-PCP. 538 
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 539 

Figure 14. Difference between the observed and predicted removal efficiency based on three acceptable models formed using data of six SHs with > 10 data 540 

points. 541 

Note: Standard deviation values were capped at 100 to improve the readability of the graph. Actual values can be found in the developed DST, REOCW-PCP. 542 
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 543 

Figure 15. Difference between the observed and predicted removal efficiency based on one acceptable model formed using data of 15 PhCs and six SHs with 544 

data points ≥ 25 and > 10, respectively.  545 

Note: Standard deviation of the removal efficiency in the case of combined model of PhCs and SHs was not available because predictions are made based on one model. 546 
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 547 

Figure 16. Difference between the observed and predicted removal efficiency based on four acceptable models formed using data of eight PCPs and six SHs 548 

with data points > 5 and > 10, respectively.    549 

Note: Standard deviation values were capped at 100 to improve the readability of the graph. Actual values can be found in the developed DST, REOCW-PCP.550 
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4. Further development and applications 551 

The novel predictive models developed in this study could be useful DSTs. For example, the 552 

plausible models could be used as screening tools to obtain first-hand information on the 553 

removal efficiency of a certain PhC, PCP or SH when the wastewater containing them is 554 

treated using CWs. The predicted removal efficiency can give an overview of mean as well as 555 

range (e.g., standard deviation), providing insights into possible removal efficiency. This 556 

information may guide in decision making on research directions as well as policy actions, 557 

and practice (e.g., design and application of CWs in the field conditions). 558 

Another area of application and further development could be to include these predictive 559 

models into already existing DSTs. For example, the addition of the proposed models to 560 

QSAR toolbox could extend its screening services to the domain of wastewater treatment 561 

using CWs. The QSAR toolbox contains a wealth of information on a large number of 562 

chemicals including PhCs, PCPs, and SHs, which may offer wider scale application of the 563 

novel models developed in this study. The QSAR tool is widely used for various purposes, 564 

most notably for the screening of new drugs based on existing QSAR in order to limit 565 

experimental and clinical trials to save time, costs, and animal lives. In a similar way, 566 

screening of a large number of PhCs, PCPs, and SHs could be possible when the models 567 

developed in this study will become part of the QSAR toolbox.  568 

Moreover, the predictive models could be used in developing new DSTs for researchers, 569 

practitioners, policy makers, and citizens. For example, the authors have developed a novel 570 

DST based on this research, which is named as REOCW-PCP. The key features of the DST 571 

are schematized in Figure 17 and outlined below. REOCW-PCP was developed using 572 

Microsoft Excel 2016, and is provided as a supplementary material (Excel file: REOCW-573 

PCP-secure, along with the user manual).   574 
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 575 

Figure 17. A schematic diagram showing different modules of the developed DST, REOCW-PCP. 576 

The proposed REOCW-PCP is composed of seven modules, which could be followed 577 

sequentially. The first module displays the basic set up of REOCW-PCP, and contains the list 578 

of key questions that could be explored using the tool. REOCW-PCP can be used by an 579 

individual user or multiple users in the form of a group of different stakeholders (e.g., 580 

policy/decision makers, wastewater managers, researchers/scientists, and citizens). The key 581 

questions are enumerated below. 582 

1. What could be the removal efficiency of a certain EOC in CWs? 583 

2. What is the likelihood of removal efficiency in falling under a certain quartile range (e.g., 584 

Q1: 0-25%; Q2: 26-50%; Q3: 51-75%; Q4: 76-100%)? 585 

3. Which physicochemical properties are better predictor of the removal efficiency for a 586 

certain EOC? 587 
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4. How the predicted and experimental removal efficiencies differ from each other? 588 

5. What is the range of uncertainty in the available prediction and field observations? 589 

6. What is the potential environmental risk posed by the EOCs of interest? 590 

7. What lessons could be drawn based on the predictions and observations? 591 

The second module contains the basic data of the EOCs including their names and 592 

physicochemical properties. In this module, the user will select specific EOCs to examine. In 593 

case REOCW-PCP is used by multiple stakeholders, they need to agree on the final list of the 594 

EOCs to be examined. After selecting the EOCs from the given list, the tool automatically 595 

does the required calculations to answer the key questions. The answers to these questions are 596 

presented under module 7, and are ready for the review. However, it is recommended that the 597 

users go through all the modules (3-7) in a sequential way to develop a good understanding of 598 

the predictive models, details on calculations, and some key information provided in each 599 

module. 600 

The third module is composed of the novel predictive models developed in this research. 601 

These models are used to make prediction of the removal efficiency, and used in making the 602 

calculations required to answer the questions indicated under module 1. The fourth module 603 

displays the results of the predicted removal efficiencies. The results are shown as a 604 

deterministic value in the case of a single model application (e.g., best model) or mean and 605 

standard deviation (e.g., including uncertainty range) when multiple models are used. The 606 

fifth module enables further analysis of the results, mainly by comparing the predicted and 607 

observed removal efficiency. This will help to triangulate the predictions with experimental 608 

results, which will contribute to informed decision-making process. We have included 609 

information on environmental risk posed by the EOCs in the sixth module, which is based on 610 

our previous work (Ilyas et al., 2020; Ilyas and van Hullebusch, 2020c, 2020d). The results 611 
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are classified under various risk categories: high, medium, low, and no risk. The seventh 612 

module offers the possibility to the users of this tool to find the answers to the key questions 613 

and then discuss the lessons, and conclusions that could be drawn from the study. In this 614 

module, standard answers to the questions are generated in Tabular and Graphical forms, 615 

which will contribute to kick-off the discussion. Finally, the users may choose to finish the 616 

session or choose to repeat the whole cycle (all modules) or a part of it (e.g., specific 617 

modules) using a new set of EOCs. 618 

5. Conclusions  619 

The following conclusions are drawn from this study:  620 

1. The physicochemical properties of EOCs are good predictors of their removal efficiency 621 

in CWs. This was demonstrated by developing several plausible predictive models formed 622 

by combining two to four physicochemical properties (MW, Log Dow, Log Koc, Log 623 

Kow, and pKa) in a multiple linear regression model. Among the studied physicochemical 624 

properties, Log Koc, Log Dow, and Log Kow emerged as the most significant predictors, 625 

and combination of one or two of them with MW and/or pKa often improved the 626 

reliability of the predictions. 627 

2. The removal efficiency of PhCs, PCPs, and SHs in CWs could be predicted reasonably 628 

well using their physicochemical properties: MW, Log Dow, Log Koc, Log Kow, and 629 

pKa. In the case of PhCs, several novel models were formed to predict their removal 630 

efficiency by combining three or four of these variables together in one model and the best 631 

model was formed by combining MW, Log Dow, and Log Koc (R2: 0.601; p < 0.05; 632 

RMSEs: training set: 11%; test set: 27%). In the case of PCPs, the two plausible models 633 

were developed, one with two independent variables: Log Kow and Log Koc (R2: 0.644; p 634 

< 0.1; RMSEs: training set: 14%; test set: 14), and the other with MW, Log Kow, and pKa 635 
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(R2: 0.709 and p ≤ 0.1; RMSEs: training set: 13%; test set: 21%). Similarly, the removal 636 

efficiency of SHs could be predicted very well by combining three of the five 637 

physicochemical properties and the reliability of the developed models was quite high, as 638 

demonstrated by a very good performance statistics for the three plausible models (R2: ≥ 639 

0.90; p ≤ 0.1; RMSEs: training set: 3-4%; test set: 15-19 %). 640 

3. The resulting regression statistics of a generic model by combing PhCs, PCPs, and SHs 641 

were not acceptable for the training set, as demonstrated by a very low performance 642 

statistics (R2: < 0.3; p-values were much higher than 0.1). The lack of adequate predictive 643 

power of the combined model could be attributed to the distinct differences in the 644 

physicochemical properties of PhCs and PCPs as well as the differences in their dominant 645 

removal mechanisms in CWs. For example, most of the PCPs have much higher Log 646 

Kow, Log Dow, and Log Koc values and low WS compared with PhCs. Consequently, 647 

biodegradation (aerobic and/or anaerobic) is the most dominant removal mechanism for 648 

PhCs, and adsorption to the substrate and sorption onto organic surfaces for PCPs in CWs. 649 

These distinct features in their physicochemical properties lead to the differences in their 650 

dominant removal mechanisms and could limit the possibility to formulate a generic 651 

predictive model based on a combined data set of PhCs, PCPs, and SHs.  652 

4. The adequate predictive power of the combined model of PhCs and SHs was achieved, 653 

which might be due to the similarities in some of the physicochemical properties of these 654 

compounds (e.g., Log Kow, Log Dow, and Log Koc) in most of the cases. The best 655 

performing model was formed by combining MW, Log Kow, Log Koc, and pKa, which 656 

demonstrated a very good performance for the training set (RMSE: 3%) and the test set 657 

(RMSE: 15%). 658 
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5. The combination of PCPs and SHs also resulted in reasonably good predictive models. 659 

The adequate predictive power of the combined model of PCPs and SHs might be due to 660 

the similarities in some of the physicochemical properties of these compounds (e.g., high 661 

Log Koc > 2.50 and low WS < 500) in most of the cases. The best model was formed by 662 

combining MW, Log Dow, and Log Koc, which yield quite good results for the training 663 

set (RMSE: 15%) and the test set (RMSE: 23%).  664 

6. It is very important to recognize the inherent uncertainties associated with the prediction 665 

process. These uncertainties could be related to the input data (e.g., removal efficiencies 666 

and physicochemical properties of EOCs) and the variability in the predictions made from 667 

multiple plausible models. Therefore, these uncertainties should be recognized, and the 668 

prediction results should be used with caution. It is advisable to estimate the mean and 669 

standard deviation based on all the promising models, even though one estimate from the 670 

best model could also serve the purpose. Where field data is available, a comparison with 671 

observed values is advisable. 672 

7. From the application point of view, the novel and plausible predictive models developed 673 

in this study could be useful DSTs. In particular, the proposed models could serve as 674 

screening tools to gain insights about the removal efficiency of a certain PhC, PCP or SH 675 

in CWs. Moreover, the models could be included into existing DSTs such as inclusion 676 

into the QSAR toolbox to extend its capabilities to offer the screening of EOCs removal 677 

by CWs. There are good prospects to develop new DSTs using the predictive models 678 

developed in this study. For example, a novel DST named as REOCW-PCP was 679 

developed based on the findings of this research. In general, the information obtained by 680 

the use of the proposed predictive models and developed REOCW-PCP could contribute 681 

to enhance the knowledge and understanding for the design and application of CWs for 682 

EOCs removal from the wastewater 683 
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