
HAL Id: hal-03902461
https://hal.science/hal-03902461

Submitted on 15 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model Checking Dynamic Pushdown Networks with
Locks and Priorities
Marcio Diaz, Tayssir Touili

To cite this version:
Marcio Diaz, Tayssir Touili. Model Checking Dynamic Pushdown Networks with Locks and Priorities.
NETYS, May 2018, Essaouira, Morocco. �10.1007/978-3-030-05529-5_16�. �hal-03902461�

https://hal.science/hal-03902461
https://hal.archives-ouvertes.fr

Model Checking Dynamic Pushdown Networks
with Locks and Priorities

Marcio Diaz1 and Tayssir Touili2

1 LIPN and University Paris Diderot, France
diaz@lipn.univ-paris13.fr

2 LIPN, CNRS and University Paris 13, France
touili@lipn.univ-paris13.fr

Abstract. A dynamic pushdown network (DPN) is a set of pushdown
systems (PDSs) where each process can dynamically create new instances
of PDSs. DPNs are a natural model of multi-threaded programs with
(possibly recursive) procedure calls and thread creation. A PL-DPN is
an extension of DPNs that allows threads to synchronize using locks
and priorities. Transitions in a PL-DPN can have different priorities and
acquire/release locks. We consider in this work model checking PL-DPNs
against single-indexed LTL and CTL properties of the form

∧
fi such

that fi is a LTL/CTL formula over the PDS i. We show that these model
checking problems are decidable. We propose automata-based approaches
for computing the set of configurations of a PL-DPN that satisfy the
corresponding single-indexed LTL/CTL formula.

1 Introduction

Writing multi-threaded programs is notoriously difficult, as concurrency related
bugs are hard to find and reproduce. This difficulty is increased if we consider
that several software systems consist of different components that react to the
environment and use resources like CPU or memory according to a real time need.
For instance, in systems that control automobiles we can have a component in
charge of the music sub-system and another component in charge of the braking
sub-system. Obviously, the braking sub-system should have a higher priority
access to the resources needed, since a delay in the action of the brakes can cost
lives.

The programming model used in the vast majority of these software systems,
used from automobiles to spacecrafts, defines a set of threads that perform
computation monitoring or respond to events. Each thread is typically assigned
a priority and are scheduled by a priority round-robin preemptive scheduler: if a
thread with a higher static priority becomes ready to run, the currently running
thread will be preempted and returned to the wait list for its priority level. The
round-robin scheduling policy allows each thread to run only for a fixed amount
of time before it must yield its processing slot to another thread of the same
priority.

m0

m1

mf

a0

a1

b0

b1

b2

bf

a2

af

spawn(a0)

spawn(b0)

acq l

send()

rel l

acq l

rec()

rel l

Fig. 1. Control-flow graph of a main thread starting at m0 that creates two child
threads starting at a0 and b0. The child threads execute a loop and use a lock l.

The use of threads with different priorities and other synchronization prim-
itives, like locks, can easily lead to a large number of undesirable behaviors.
Consider for example the control flow graph of Figure 1. It consists of three
threads: a main thread M starting at control location m0 that creates two threads
A and B. The thread A takes and releases (uses) a lock l inside a loop, and the
thread B loops while holding the lock l (between b1 and b2). Suppose that A
and B should act like daemon threads, continuously running in the background
reacting to events. This means that the LTL formula G F a1 ∧G F b1, saying
that a1 is executed frequently often and b1 is executed frequently often, should be
valid for all executions.

But this is not the case in the program of Figure 1: once thread B starts
executing its loop and holding lock l, thread A is going to starve since it cannot
take the lock until it is released. A similar problem occurs if threads A and B
have different priority of execution, the thread with lower priority will starve. The
program of Figure 1 shows that there is a real need for formal methods to find
automatic verification techniques for checking liveness properties in multi-threaded
programs with locks and priorities. Indeed, starvation or absence of livelocks are
among the most crucial properties that need to be checked for multi-threaded
programs.

Dynamic pushdown networks (DPNs) [13] are a natural model for multi-
threaded programs with (possibly recursive) procedure calls and thread creation.
A DPN consists of a finite set of pushdown systems (PDSs), each of them models
a sequential program that can dynamically create new instances of PDSs. The
model-checking problems of DPNs against Linear Temporal Logic (LTL), Com-
putation Tree Logic (CTL) and reachability properties are well studied in the
literature [6–10,13].

However, DPNs cannot model communication between processes. Previous
works [5,16,24,25] extended DPNs with locks and priorities (called PL-DPN),

where PDSs can communicate using locks and priorities. This allows to model
multithreaded programs where threads communicate via locks and where each
thread can have a different priority. Indeed, locks and priorities are frequently
used in multithreaded programs as synchronisation primitives. However, only
reachability properties are studied for PL-DPNs [25] with some restricted lock
and priority usages.

In general, the model checking problem of DPNs against unrestricted LTL or
CTL formulas (where atomic propositions can be interpreted over the control
states of two or more threads) is undecidable. In [6] it is shown that this problem
becomes decidable if we consider single-indexed LTL/CTL properties (formulas
of the form

∧
fi s.t. fi is a LTL/CTL formula interpreted over the PDS i). On

the other hand, pairwise reachability of PL-DPNs without thread creation is
undecidable in the general case [4, 25]. It becomes decidable if locks are accessed
in a well-nested style [4], where each thread can only releases the latest acquired
lock, and a thread does not change its priority while holding a lock [25].

In this work, we combine these ideas and show that model-checking single
indexed LTL/CTL properties is decidable for PL-DPNs under these restrictions.
It is non-trivial to do LTL/CTL model checking for PL-DPNs, since the number
of instances of PDSs can be unbounded. Checking independently whether all the
different PDSs satisfy the corresponding subformula fi is not correct. Indeed, we
do not need to check whether an instance of a PDS j satisfies fj if this instance
is not created during a run. The approach of [6] cannot be directly applied to
perform single-indexed LTL/CTL model-checking for PL-DPNs due to locks and
priorities. Indeed, we have to consider communication between each instance
of PDSs running in parallel in the network. To overcome this problem, we will
reduce single-indexed LTL/CTL model-checking for PL-DPNs to the membership
problem of PL-DPNs with Büchi acceptance condition (PL-BDPNs). This latter
problem is reduced to the membership problem of DPNs with Büchi acceptance
condition (BDPNs).

In [25] we presented an approach for checking pairwise reachability of PL-DPNs
using priority-lock structures, an extension of acquisition structures introduced
in [16]. This structure is used to get rid of locks and priorities in PL-DPNs such
that pairwise reachability of PL-DPNs can be reduced to constrained pairwise
reachability on DPNs. It works by keeping track of the locks and priorities used
in a run. For pairwise reachability, we only need to consider finite runs, as a
configuration of a PL-DPN reaches another configuration only using finite steps.
However, we have to consider infinite runs of PL-DPNs when we study LTL/CTL
model checking.

In this work, we adapted the priority-lock structures to keep track also of
the infinitely used locks and priorities. Indeed, we need to assure that a finally
acquired lock cannot be infinitely used and that an infinitely used priority does
not block other threads. Also, in the case of CTL model checking, we modified
the priority-lock structure to keep track of the locks and priorities of differents
branched runs.

After getting rid of locks and priorities using the modified priority-lock
structure, we construct Büchi dynamic PDSs (resp. alternating Büchi dynamic
PDSs) which are a synchronization of a PDS i and the LTL (resp. CTL) formula fi.
The language accepted by a Büchi dynamic PDS corresponds to the configurations
that satisfy the formula fi. This language is computed by the automata-based
approach for standard LTL/CTL model checking for PDSs [6].

Thus, the contributions of this paper are:

– An algorithm for single-indexed LTL Model Checking for PL-DPNs, developed
in section 4.

– An algorithm for single-indexed CTL Model Checking for PL-DPNs, devel-
oped in section 5.

For lack of space proofs can be found in the extended version of this paper at [1].

2 Model Definition

Let L be the set of all locks and I be the set of all priorities. A PL-DPN can be
seen as a collection of threads running in parallel, each of them having a set of
acquired locks and a priority. They are able to:

1. Perform pushdown operations. This can be used to model calls and returns
from (possible recursive) functions.

2. Change its priority if its set of acquired locks is empty. Removing this con-
straint leads to undecidability [25].

3. Acquire a lock that does not belong to any set of acquired locks (of the
running threads).

4. Release a lock belonging to its set of acquired locks.
5. Create a new thread with any (initial) priority and an empty set of acquired

locks.

Definition 1. Dynamic Pushdown System with Locks and Priorities (PL-DPDS)
is a tuple P = (P, Γ, δ, ηp, ηl), where P is a finite set of control states, Γ is a
finite stack alphabet, ηp is a function from control states to priorities from I,
ηl is a function from control states to set of locks from L, δ is a finite set of
transition rules of the following forms:

1. pγ
τ
↪−→ qw, with ηp(q) = ηp(p) and ηl(q) = ηl(p);

2. pγ
ch(x)
↪−−−→ qw, with ηp(q) = x and ηl(q) = ηl(p) = ∅;

3. pγ
acq l
↪−−−→ qw, with ηp(q) = ηp(p), ηl(q) = ηl(p) ∪ {l} and l 6∈ ηl(p);

4. pγ
rel l
↪−−→ qw, with ηp(q) = ηp(p), ηl(q) = ηl(p) \ {l} and l ∈ ηl(p);

5. pγ
τ
↪−→ q1w1 B q2w2, with ηp(q1) = ηp(p), ηl(q1) = ηl(p) and ηl(q2) = ∅.

where p, q1, q2 ∈ P, γ ∈ Γ , w,w1, w2 ∈ Γ ∗, l ∈ L, x ∈ I.

A local configuration pω ∈ PΓ ∗ of a PL-DPDS P = (P, Γ, δ, ηp, ηl), represents
the state of a thread. The state of a thread consists of a priority, a set of acquired
locks and a stack. The priority of a thread and the set of acquired locks are
represented by its control state p and can be retrieved from it by using the
functions ηp and ηl, respectively. The stack of a thread is represented by the
sequence of stack letters ω ∈ Γ ∗.

The function ηp assigns a priority to each control state. Intuitively, this means
that a thread can be in configurations with different priorities. The function ηl
assigns a set of locks to each control state. This set of locks represents the locks
held (acquired but not yet released) by the thread at such configuration.

Definition 2. A Dynamic Pushdown Network with Priorities and Locks (PL-
DPN) is a tuple (Act, L, I,P1, . . . ,Pn) such that L is a set of locks, I is set
of priorities (natural numbers), Act is a finite set of actions {acq(l), rel(l)|l ∈
L} ∪ {ch(x)|x ∈ I} ∪ {τ}, where the action acq(l) (resp. rel(l)) for every l ∈ L
denotes the acquisition (resp. release) of the lock l, the action ch(x) denotes the
change to priority x and the action τ denotes a pushdown action. For every
i ∈ {1, . . . , n}, Pi is a PL-DPDS.

A global configuration of a PL-DPN M is a sequence of local configurations,
each of them corresponding to the configuration of one of the threads running in
parallel on the system. Let ConfM be the set of all global configurations of a
PL-DPN M .

Following previous works we assume that locks are used in a well-nested
fashion, i.e. a process has to release locks in the opposite order of acquisition, an
assumption that is often satisfied in practice. Note that for non-well-nested locks
even simple reachability problems are undecidable [23].

2.1 Example

The PL-DPN modeling the program of Figure 1 is defined as follows M =
({acq l, rel l, ch l, τ}, {l}, {1},P1,P2,P3) where:

– P1 = ({p1}, {m0,m1,mf}, {p1m0
τ
↪−→ p1m1Bp1a0, p1m1

τ
↪−→ p1mfBp1b0}, ηp, ηl)

such that ηp(p1) = 1 and ηl(p1) = ∅.

– P2 = ({p1, p1,l}, {a0, a1, a2, af}, {p1a0
acq l
↪−−−→ p1,la1, p1,la1

τ
↪−→ p1,la2, p1,la2

τ
↪−→

p1af , p1af
τ
↪−→ p1a0}, ηp, ηl) such that ηp(p1) = ηp(p1,l) = 1 and ηl(p1) =

∅, ηl(p1,l) = {l}.

– P3 = ({p1, p1,l}, {b0, b1, b2, bf}, {p1b0
acq l
↪−−−→ p1,lb1, p1,lb1

τ
↪−→ p1,lb2, p1,lb2

rel l
↪−−→

p1bf , p1,lb2
τ
↪−→ p1,lb1}, ηp, ηl) such that ηp(p1) = ηp(p1,l) = 1 and ηl(p1) =

∅, ηl(p1,l) = {l}.

The initial configuration of this PL-DPN M is p1m0.

3 Semantics of the Model

The semantics of PL-DPNs is defined such that:

– Transitions of threads with highest priority should be executed first.

– Transitions that manipulate locks should follow the locking rules:

• A transition attempting to acquire a lock can only be executed if the
lock is free, i.e. does not belong to any set of acquired locks.

• A transition attempting to release a lock can only be executed if the lock
is in possession of the corresponding thread, i.e. in its set of acquired
locks.

We overload the functions ηp and ηl to global configurations as follows: for all
c = p1ω1 . . . pnωn ∈ ConfM , ηp(p1ω1 . . . pnωn) := max(ηp(p1), . . . , ηp(pn)) and
ηl(p1ω1 . . . pnωn) := ηl(p1) ∪ · · · ∪ ηl(pn).

Definition 3. The transition relation −→M is defined as the smallest relation
in ConfM × ConfM such that ∀c1, c2 ∈ ConfM :

1. c1 pγr c2 −→M c1 qωr c2, if ηp(p) = ηp(c1 pγr c2) and pγ
act
↪−−→ qω ∈ ∆,

s.t. act ∈ {τ, rel l} ∪ {ch(x) | x ∈ I};
2. c1 pγr c2 −→M c1 qωr c2, if ηp(p) = ηp(c1 pγr c2), l 6∈ ηl(c1 pγr c2) and

pγ
acq l
↪−−−→ qω ∈ ∆;

3. c1 pγr c2 −→M c1 q2ω2 q1ω1r c2, if ηp(p) = ηp(c1 pγr c2) and pγ
τ
↪−→

q1ω1 B q2ω2 ∈ ∆;

where p, q, q1, q2 ∈ P, γ ∈ Γ, ω, ω1, ω2, r ∈ Γ ∗, l ∈ L.

The semantics above says that:

1. A thread in a local configuration with control state p and top of stack γ can
move to a local configuration with control state q, replacing the top of its stack

γ by w, if there is a τ , ch(x) or release rule pγ
lab
↪−−→ qw ∈ ∆ and its priority

(ηp(p)) is equal to the highest priority among all the threads (ηp(c1 pγr c2));

2. A thread in a local configuration with control state p and top of stack γ can
move to a local configuration with control state q, replacing the top of its

stack γ by w, if there is an acquire rule pγ
acq l
↪−−−→ qw ∈ ∆, the lock that the

rule attempts to take is free (l 6∈ ηl(c1 pγr c2)), and its priority (ηp(p)) is
equal to the highest priority among all the threads (ηp(c1 pγr c2));

3. A thread in a local configuration with control state p and top of stack γ can
move to a local configuration with control state q1, replacing the top of its
stack γ by w1 and create another thread in control state q2 with stack w2, if

there is a rule pγ
τ
↪−→ q1w1 B q2w2 ∈ ∆ and its priority (ηp(p)) is equal to the

highest priority among all the threads (ηp(c1 pγr c2)).

Note that the semantics of locks corresponds to the one of spin-locks, found
in most of the libraries for threads (like Pthreads). Spin-locks are similar to
mutexes, but they might have lower overhead for very short-term blocking. When
the calling thread requests a spin-lock that is already held by another thread,
the calling thread spins in a loop to test if the lock has become available. This
means that if a thread with lower priority, holding a lock l, is interrupted by
a thread with higher priority, attempting to acquire the same lock, then the
program becomes blocked (assuming there is only one CPU). In this paper we
assume that programs are free of deadlocks since they can be detected using the
technique of our previous work [25].

Given a configuration c, the set of immediate predecessors of c in a PL-DPN
M is defined as preM (c) = {c′ ∈ ConfM : c′ −→M c}. This notation can be
generalized straightforwardly to sets of configurations. Let pre∗M denote the
reflexive-transitive closure of preM . For the rest of this paper, we assume that
we have fixed a PL-DPN M = (Act, L, I,P1, . . . ,Pn).

4 Single-Indexed LTL Model Checking for PL-DPNs

4.1 Linear Temporal Logic (LTL) and Büchi Automata

From now on, we fix a finite set of atomic propositions AP .

Definition 4. The set of LTL formulas is given by (where q ∈ AP):

ϕ ::= q | ϕ1 ∧ ϕ2 | ¬ϕ | Xϕ | F ϕ | G ϕ | ϕ1 U ϕ2

Given an ω-word α = α0α1 . . . over 2AP , let αk denote the suffix of α starting
from αk. The notation α |= ϕ indicates that α satisfies ϕ, where |= is inductively
defined as follows: α |= q if q ∈ α0; α |= ¬ϕ if α¬ |= ϕ; α |= ϕ1 ∧ ϕ2 if α |= ϕ1

and α |= ϕ2; α |= Xϕ if α1 |= ϕ; α |= ϕ1Uϕ2 if there exists k ≥ 0 such that
αk |= ϕ2 and for every j : 1 ≤ j < k, αj |= ϕ1. The temporal operators F and G
can be defined using the following equivalences: F ϕ ≡ true Uϕ, G ϕ ≡ ¬F ¬ϕ.

Definition 5. A Büchi automaton (BA) B is a tuple (G,Σ, θ, g0, F), where G
is a finite set of states, Σ is the input alphabet, θ ⊆ G × Σ × G is a finite set
of transitions, g0 ∈ G is the initial state and F ⊆ G is a finite set of accepting
states.

A run of B over an ω-word α0α1 . . . is a sequence of states q0q1 . . . s.t. q0 = g0

and (qi, αi, qi+1) ∈ θ for every i ≥ 0. A run is accepting iff it infinitely often visits
some states in F .

Theorem 1. (From [3]) Given a LTL formula f we can construct a BA Bf (s.t.
Σ = 2AP) recognizing all the ω-words that satisfy f .

4.2 The Model Checking Problem

The model checking problem of PL-DPNs against doble-indexed LTL formulas
where the validity of atomic propositions depends on two or more PL-DPNs is
undecidable [4].

In this work, in order to obtain decidability results, we consider the model-
checking problem of PL-DPNs against single-indexed LTL properties of the form
f =

∧n
i=1 fi, where fi is interpreted over the PL-DPDS Pi.

Let λ be a labeling function λ :
⋃
i Pi → 2AP , that assigns to each control

location of the PL-DPN M a set of atomic propositions.

Definition 6. Given a labeling function λ, a local run r = p0w0p1w1 . . . of the
PL-DPDS Pi satisfies fi, denoted by r |= fi, iff the ω-word λ(p0)λ(p1) . . . satisfies
fi.

Definition 7. A global run R satisfies f =
∧
i fi, denoted by R |= f , iff all local

runs of each instance of Pi running in parallel in R satisfy fi.

Definition 8. A PL-DPN M , with initial configuration p0γ0, satisfies f =
∧
i fi,

denoted by M |= f , iff all global runs starting with p0γ0 satisfy f .

From now on, we fix a single-indexed LTL formula f =
∧n
i=1 fi.

4.3 Priority-Lock Structures

Definition 9. (From [25]) A priority-lock structure of a global run R of a PL-
DPN under DPN semantics, is defined as either a tuple Jx, y, gr, ga, laK or the
symbol ⊥.

In [25] is given an algorithm to compute a priority-lock structure from a global
run R such that we get ⊥ if the run is not a valid under PL-DPN semantics,
or we get the tuple Jx, y, gr, ga, laK if the run is valid under PL-DPN semantics,
where:

– x is the lowest transition priority, from the control states visited during the
run,

– y is the highest final priority, from the control states of the final configuration,
– gr is a set of dependencies between lock usages (acquire and release of a lock)

and final releases of a lock (release without acquisition),
– ga is a set of dependencies between lock usages and initial acquisitions of a

lock (acquisition of a lock without the corresponding release),
– la set of lock actions and their corresponding priorities.

In this work we just need to know that given a PL-DPN M and a regular set
of configurations S, we can construct a DPN M ′, with priority-lock structures
embedded in the control states, such that the predecessor configurations of S over
M are the predecessor configurations of S over M ′ with a priority-lock structure
not equal to ⊥. Formally, from [25]:

Theorem 2. pre∗M (S) = {pω | (p, s)ω ∈ pre∗M ′(S × J∞, 0, ∅, ∅, ∅K) ∧ s 6= ⊥}.
Using the previous theorem we can reduce LTL/CTL model checking on the

PL-DPN M to a series of pre∗ queries over the DPN M ′. In order to keep the
queries consistent with each other, taking in account the priorities and locks, we
will need to inspect the priority-lock structure stored in the configurations. For
that, given a control state p in the DPN M ′, let X(p), U(p), R(p) and A(p) be
the lowest transition priority, set of lock usages, set of initial releases and set of
final acquisitions, respectively, embedded in the control state p.

Example The PL-DPN M of Example 2.1 can be reduced to the DPN M ′ =
({τ},P ′1,P ′2,P ′3) where:

– P ′1 = ({p′0 = (p1, J1, 1, ∅, ∅, ∅K), p′1 = (p1, J1, 1, ∅, ∅, {(l, usg, 1, 1)}K),
p′2 = (p1, J1, 1, ∅, ∅, {(l, acq, 1, 1)}K),
p′3 = (p1, J1, 1, ∅, ∅, {(l, acq, 1, 1), (l, usg, 1, 1)}K), p′4 = (p1,⊥), }, {m0,m1,mf},
{p′1m0

τ
↪−→ p′1m1 B p′1a0, p

′
3m0

τ
↪−→ p′1m1 B p′2a0, p

′
3m0

τ
↪−→ p′2m1 B p′1a0,

p′4m0
τ
↪−→ p′2m1 B p′2a0, p

′
2m0

τ
↪−→ p′0mf B p′2b0, p

′
1m0

τ
↪−→ p′0mf B p′1b0, })

– P ′2 and P ′3 are defined similar. In particular, they have the same set of control
states.

4.4 The Model-Checking Approach

The next step is to define a DPN with Büchi acceptance condition.

Definition 10. A Büchi DPDS (BDPDS) is a tuple BP = (P, Γ,∆, F), where
(P, Γ,∆) is a DPDS and F ⊆ P is a finite set of accepting control locations.

For i ∈ {1, . . . , n} , let Bi = (Gi, Σi, θi, g
0
i , Fi) be the Büchi automaton

recognizing the ω-words that satisfy the LTL formula fi.

Definition 11. We define BDPDSs BPi = ((Pi × Gi) × (2L × I), Γi, ∆
′
i, F
′
i)

where F ′i = {((p, g), (A(p), X(p))) | (p, g) ∈ Pi × Fi)}. ∆′i is computed such
that for every (g1, λ(p), g2) ∈ θi, a ∈ Act, x, x1, x2 ∈ I, u, u1, u2 ∈ 2L and
(p2, s2)ω2 ∈ Pj × Γ ∗j we have:

1. ((p, g1), (u, x))γ
a
↪−→ ((p1, g2), (u, x))ω1 ∈ ∆′i, if pγ

a
↪−→ p1ω1 ∈ ∆i,

2. If pγ
a
↪−→ p1ω1 B p2ω2 ∈ ∆i,

2.1. ((p, g1), (u1∪u2, x))γ
a
↪−→ ((p1, g2), (u1, x1))ω1B((p2, g

0
j), (u2, x2))ω2 ∈ ∆′i,

if A(p1) ∩ u1 = A(p2) ∩ u2 = ∅ and x1 = x2,

2.2. ((p, g1),⊥)γ
a
↪−→ ((p1, g2), (u1, x1))ω1 B ((p2, g

0
j), (u2, x2))ω2 ∈ ∆′i, other-

wise.

Sometimes we write a configuration ((p′, g), (u, x)) of a BPi as (p, s), where
p = (p′, g) is called control state and s = (u, x) is called “priority-lock structure”.

Let L(BPi) be the set of all the tuples ((p, g0i), (u, x))γ,D) such that BPi has
an accepting run starting from the configuration ((p, g0i), (u, x))γ, using infinitely
the lowest priority x, the set of locks u and spawning the set of configurations D.
We can compute the language of BPi using the algorithm from [6]:

Theorem 3. (From [6]) For every BDPDS BPi = (Pi, Γi, ∆i, Fi) we can con-
struct a finite automaton Ai such that L(Ai) = L(BPi).

4.5 Main Algorithm

Given a PL-DPN M = (Act,P1, . . . ,Pn) and a single-indexed LTL formula
f =

∧
i fi, in order to check if M |= f , we proceed as follows:

1. Create the DPN M ′ = (P ′1, . . . ,P ′n), as in Section 5.1.
2. Create Buchi automatons B¬i satisfying the formulas ¬fi.
3. Construct BDPDSs B¬i P ′i from the DPN M ′ and the Buchi automatons B¬

of (2), as in Definition 11.
4. If an initial configuration ((p′0, g0), (u, x))γ0 is in X, the set of configurations

that satisfy the formula ¬f , with some set of locks u and priority x then
M 6|= f . Otherwise we continue to the next step, to be sure there are no
livelocks.

5. Create Buchi automatons Bi satisfying the formulas fi.
6. Construct BDPDSs BiP ′i from them the DPN M ′ and the Buchi automatons
Bi of (5), as in Definition 11.

7. If an initial configuration ((p′0, g0),⊥)γ0 is in Y , the set of of configurations
that satisfy the formula f , then there is a livelock and M 6|= f , otherwise
M 6|= f .

We can construct the set X in the following iterative way:

1. X ′ =
⋃
i L(B¬i P ′i).

2. X = {pγ | (pγ,D) ∈ Z ∧D ∩X ′ 6= ∅}.
3. If X 6= X ′, set X ′ = X and go to 2. Otherwise return X.

where Z is the language of initial configurations of all infinite paths in each
DPDS P ′i. We can construct the set Y in the following iterative way:

1. Y ′ =
⋃
i L(BiP ′i).

2. Y = {(pγ,D) ∈ Y ′ | ∀p′γ′ ∈ D ∃D′ ⊆ ConfM ′ s.t. (p′γ′, D′) ∈ Y ′}.
3. If Y 6= Y ′, set Y ′ = Y and go to 2. Otherwise return Y .

Theorem 4. A PL-DPN M satisfies a single-indexed LTL formula f (M |= f)
iff there is not initial configuration in X with non-bottom priority-lock structure
and there is not initial configuration in Y with bottom priority-lock structure.

4.6 Example

We want to check if the single-indexed LTL formula f = f1 ∧ f2 ∧ f3, where
f1 = true, f2 = GF a1 and f3 = GF b1, is satisfied by the PL-DPN M =
(Act,P1,P2,P2) of Example 2.1.

The first step was to create the DPN M ′ = (P ′1,P ′2,P ′3) as in Example 4.3.
The second step is to create Buchi automatons B¬1 , B¬2 and B¬3 recognizing the
ω-words that satisfy the formulas ¬f1 = false, ¬f2 = FG ¬a1 and ¬f3 = FG ¬b1,
respectively. Then we create the BDPDSs B¬1 P ′1, B¬2 P ′2 and B¬2 P ′3 using Definition
11. The next step is to construct the set of configurations X, we get:

1. X ′ = L(B¬P1) ∪ L(B¬P2) ∪ L(B¬P3) = ∅ ∪ ∅ ∪ ∅ = ∅.
2. X = {pγ | (pγ,D) ∈ Z) ∧D ∩ ∅ 6= ∅} = ∅.

We have that X = ∅, this means that the negation of f is not satisfied, but
still can be the case that we have some livelock. Thus we continue calculating Y .
The algorithm proceeds as follows:

1. L(BP ′1) = {(((p′3, g0),⊥)m0, {((p′1, g0), ({l}, 1))a0, ((p
′
2, g0), (∅, 1))b0}), . . . }.

2. L(BP ′2) = {((p′1, g0), ({l}, 1))a0, ∅)} with A(p′1) = ∅.
3. L(BP ′3) = {((p′2, g0), (∅, 1))b0, ∅)} with A(p′2) = {l}.
4. Y ′ = L(BP ′1) ∪ L(BP ′2) ∪ L(BP ′3).
5. Y = {(((p′3, g0),⊥)m0, {((p′1, g0), ({l}, 1))a0, ((p

′
2, g0), (∅, 1))b0})}.

We can observe that Y has the initial configuration ((p′3, g0),⊥)m0. This
configuration has a ⊥ priority-lock structure, since the child corresponding to
thread A infinitely uses lock l and the child corresponding to thread B acquire
lock l without releasing it (see the rules of Definition 11). This means that there
is a livelock and then the formula f is not always satisfied int the PL-DPN M .

5 Single-Indexed CTL model checking of PL-DPNs

In this section we consider single-indexed CTL model checking for PL-DPNs. For
technical reasons we suppose that CTL formulas are given in positive normal
form, i.e. only atomic propositions are negated.

Definition 12. The set of CTL formulas is given by (where a ∈ AP):

ϕ ::= q | ¬q | ϕ∧ϕ | ϕ∨ϕ | AXϕ | EXϕ | A(ϕUϕ) | E(ϕUϕ) | A(ϕRϕ) | E(ϕRϕ)

The other standard CTL operators can be expressed by the above operators.
For instance EFϕ = E(true Uϕ), AFϕ = A(true Uϕ), EGϕ = E(false Rϕ) and
AGϕ = A(false Rϕ). The closure cl(ϕ) is the set of all the sub-formulas of ϕ
(including ϕ). Let At(ϕ) = {a ∈ AP | a ∈ cl(ϕ)} and clR(ϕ) = {θ ∈ cl(ϕ) | θ =
E(ϕ1Rϕ2) ∨ θ = A(ϕ1Rϕ2)}.

Let λ : AP → 2
⋃
Pi×Γ∗i a valuation assigning to each atomic proposition a

finite set of local configurations. A local configuration c satisfies a CTL formula
fi (denoted by c |= fi) iff there exists D ⊆ Di such that c |=D fi holds, where
|=D is inductively defined as follows:

– c |=∅ a if c ∈ λ(a).
– c |=∅ ¬a if c 6∈ λ(a).
– c |=D ϕ1 ∧ ϕ2 if ∃D1, D2 ⊆

⋃
Di such that D = D1 ∪ D2, c |=D1 ϕ1 and

c |=D2
ϕ2;

– c |=D ϕ1 ∨ ϕ2 if c |=D ϕ1 or c |=D ϕ2;
– c |=D AXϕ if for every c1, . . . , cm ∈ ConfM such that c⇒ cjBDj , cj |=Dj

ϕ
and D =

⋃
j Dj ;

– c |=D EXϕ if there exist c′ ∈ ConfM such that c⇒i c
′ BD′, c′ |=D′′ ϕ and

D = D′ ∪D′′;
– c |=D A(ϕ1Uϕ2) if for every path c0c1 . . . with c0 = c for every m ≥

1,∃D′m ⊆ D, such that cm−1 ⇒ cm B D′m, and ∃k such that ck |=Dk
ϕ2,

∀j < k cj |=Dj
ϕ1.

– c |=D E(ϕ1Uϕ2) if exists a path c0c1 . . . with c0 = c, for every m ≥ 1,
∃D′m such that cm−1 ⇒ cm B D′m and ∃k such that ck |=Dk

ϕ2, ∀k, j < k
cj |=Dj

ϕ1.
– c |=D A(ϕ1Rϕ2) if for every path c0c1 . . . with c0 = c, for every m ≥ 1 ∃D′m

such that cm−1 ⇒ cm BD′m and either for all j, cj |=Dj ϕ2 or ∃k such that
ck |=D′′k

ϕ1 and ∀j ≤ k, cj |=Dj ϕ2.
– c |=D E(ϕ1Rϕ2) if exists a path c0c1 . . . with c0 = c, for every m ≥ 1 ∃D′m

such that cm−1 ⇒ cm BD′m and either for all j, cj |=Dj
ϕ2 or ∃k such that

ck |=D′′k
ϕ1 and ∀j ≤ k, cj |=Dj

ϕ2.

Intuitively, c |=D fi means that c satisfies fi and the executions that made c satisfy
fi spawn the configurations in D, i.e. when a transition rule qγ ↪→ p1w1 B p2w2

is used to make fi satisfied, p2w2 is in D.

5.1 Priority-Lock Alternating BDPDSs

Definition 13. A priority-lock alternating BDPDS (PL-ABDPDS) is a tuple
BPi = (Pi, Γi, ∆i, Fi), where Pi is a finite set of control locations, Γi is the stack
alphabet, Fi ⊆ Pi is a set of accepting control locations, ∆i is a finite set of
transition rules in the form of pγ ↪→ {p1ω1, . . . , phωh}B {q1u1, . . . , qkuk}.

An PL-ABDPDS BP induces a relation → defined as follows: for every
ω ∈ Γ ∗ if pγ ↪→ {p1ω1, . . . , phωh} B {q1u1, . . . , qkuk} ∈ ∆ , then pγω →
{p1ω1ω, . . . , phωhω}B {q1u1, . . . , qkuk}. Intuitively, if BP is at the configuration
pγω, it can fork into h copies in the configurations p1ω1ω, . . . , phωhω and creates
k new instances. We write pγ ↪→ {p1ω1, . . . , phωh} if pγ ↪→ {p1ω1, . . . , phωh}B ∅.

A run is accepting if each branch of this run infinitely often visits some control
locations in F . Let L(BP) be the set of all the pairs (c,D) such that BP has an
accepting run from c and that creates the set of configurations D.

5.2 Computing an Alternating BDPDS

To perform single-indexed CTL model checking for PL-DPNs we follow the
approach for LTL model checking, but in this case we need alternating BDPDSs,
since CTL formulas can be translated to alternating Büchi automata.

On [6] it is shown how to model check DPNs against CTL formulas using
alternating BDPDS. Here we reduce CTL model checking in a PL-DPN to CTL
model checking in a DPN by using priority-lock structures and applying the
result of [6].

Let BPi = (P ′i , Γi, ∆
′
i, Fi) be the PL-ABDPDS such that P ′i = Pi × cl(fi),

Fi = {(p, a) | a ∈ cl(fi) ∩ AP, p ∈ f(a)} ∪ {(p,¬a) | ¬a ∈ cl(fi), a ∈ AP, p 6∈

f(a)} ∪ Pi × clR(fi), where clR(fi) is the set of formulas of cl(fi) of the form
E(ϕ1Rϕ2) or A(ϕ1Rϕ2); and ∆′i is the smallest set of transitions rules such that
for every control location p ∈ Pi, every subformula ϕ ∈ cl(fi) and every γ ∈ Γi
we have:

1. If ϕ = a, a ∈ AP and p ∈ f(a) then (p, ϕ)γ ↪→ (p, ϕ)γ ∈ ∆′;
2. If ϕ = ¬a, a ∈ AP and p 6∈ f(a) then (p, ϕ)γ ↪→ (p, ϕ)γ ∈ ∆′;
3. If ϕ = ϕ1 ∧ ϕ2 then (p, ϕ)γ ↪→ {(p, ϕ1)γ, (p, ϕ2)γ} ∈ ∆′i;
4. If ϕ = ϕ1 ∨ ϕ2 then (p, ϕ)γ ↪→ {(p, ϕ1)γ} ∈ ∆′i and (p, ϕ2)γ ↪→ {(p, ϕ2)γ} ∈
∆′i;

5. If ϕ = EFϕ1 then: if pγ ↪→ p′ω B p′′ω′ ∈ ∆i then (p, ϕ)γ ↪→ {(p′, ϕ1)ω} B
{p′′ω′} ∈ ∆′i, similar for non-spawning rules;

6. If ϕ = AXϕ1 then (p, ϕ)γ ↪→ {(p′, ϕ1)ω | pγ ↪→ p′ω B p′′ω′ ∈ ∆i}B {p′′ω′ |
pγ ↪→ p′ω B p′′ω′ ∈ ∆′i};

7. If ϕ = E(ϕ1Uϕ2) then: (p, ϕ)γ ↪→ {(p, ϕ1)γ, (p, ϕ2)γ} ∈ ∆′i, and if pγ ↪→
p′ω B p′′ω′ ∈ ∆i then (p, ϕ)γ ↪→ {(p, ϕ1)γ, (p′, ϕ)ω} B {p′′ω′} ∈ ∆′i, similar
for non-spawning rules;

8. If ϕ = A(ϕ1Uϕ2) then: (p, ϕ)γ ↪→ {(p, ϕ2)γ} ∈ ∆′i, if pγ ↪→ p′ω B p′′ω′ ∈ ∆i

then (p, ϕ)γ ↪→ {(p, ϕ1)γ, (p′, ϕ)ω | pγ ↪→ p′ω B p′′ω′ ∈ ∆i} B {p′′ω′} ∈ ∆′i,
similar for non-spawning rules;

9. If ϕ = E(ϕ1Rϕ2) then: if pγ ↪→ p′ω B p′′ω′ ∈ ∆i then (p, ϕ)γ ↪→
{(p, ϕ2)γ, (p, ϕ1)γ} ∈ ∆′i and (p, ϕ)γ ↪→ {(p, ϕ2)γ, (p′, ϕ)ω}B {p′′ω′} ∈ ∆′i;

10. If ϕ = A(ϕ1Rϕ2) then (p, ϕ)γ ↪→ {(p, ϕ2)γ, (p, ϕ1)γ} ∈ ∆′i and (p, ϕ)γ ↪→
{(p, ϕ2)γ, (p′, ϕ)ω | pγ → p′ω B p′′ω′ ∈ ∆i} B {p′′ω′ | pγ ↪→ p′ω B p′′ω′ ∈
∆i} ∈ ∆′i.

References

1. Extended version: https://github.com/marcio-diaz/cuddly-sniffle/blob/

master/ltl-ctl-pl-dpn.pdf.
2. Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability Analysis of

Pushdown Automata: Application to Model Checking. In CONCUR’97. LNCS 1243,
1997.

3. Moshe Y. Vardi and Pierre Wolper. Automata-theoretic techniques for modal logics
of programs. J. Comput. Syst. Sci., 32(2):183-221, 1986.

4. Vineet Kahlon and Aarti Gupta. An automata-theoretic approach for model checking
threads for LTL properties. In LICS, pages 101-110, 2006.

5. Peter Lammich, Markus Müller-Olm, Helmut Seidl, and Alexander Wenner. Con-
textual locking for dynamic pushdown networks. In SAS, 2013.

6. Fu Song and Tayssir Touili. Model checking dynamic pushdown networks. In APLAS,
2013.

7. Alexander Wenner. Weighted dynamic pushdown networks. In ESOP, pages 590-609,
2010.

8. Peter Lammich and Markus Müller-Olm. Precise fixpoint-based analysis of programs
with thread creation and procedures. In CONCUR, pbages 287-302, 2007

9. Thomas Martin Gawlitza, Peter Lammich, Markus M?ller-Olm, Helmut Seidl, and
Alexander Wenner. Join-lock-sensitive forward reachability analysis for concurrent
programs with dynamic process creation. In VMCAI, pages 199-213, 2011.

10. Denis Lugiez. Forward analysis of dynamic network of pushdown systems is easier
without order. Int. J. Found. Comput. Sci., 22(4):843-862, 2011.

11. Gawlitza, T. M., Lammich, P., Müller-Olm, M., Seidl, H. and Wenner, A. Join-
lock-sensitive forward reachability analysis for concurrent programs with dynamic
process creation. In Verification, Model Checking, and Abstract Interpretation,
pages 199-213, 2011.

12. Wenner, A. Weighted dynamic pushdown networks. In Programming Languages
and Systems, pages 590-609, 2010.

13. Bouajjani, A., Müller-Olm, M., and Touili, T. Regular symbolic analysis of dynamic
networks of pushdown systems. In CONCUR, pages 473-487, 2005.

14. Kidd, N., Jagannathan, S., and Vitek, J. One stack to run them all. In Model
Checking Software, pages 245-261, 2010.

15. Atig, M. F., Bouajjani, A., and Touili, T. Analyzing Asynchronous Programs with
Preemption. In FSTTCS, pages 37-48, 2008.

16. P. Lammich, M. Müller-Olm, and A. Wenner. Predecessor sets of dynamic pushdown
networks with tree-regular constraints. In CAV, pages 525-539, 2009.

17. Bouajjani, A., Esparza, J., Schwoon, S., and Strejček, J. Reachability Analysis of
Multithreaded Software with Asynchronous Communication. In FSTTCS, pages
348-359, 2005.

18. P. Lammich and M. Müller-Olm. Precise fixpoint-based analysis of programs with
thread creation and procedures. In CONCUR, pages 287-302, 2007.

19. Mayr, R. Process rewrite systems. Information and Computation, 156(1), pages
264-286, 2000.

20. S. Goller and A. W. Lin. The complexity of verifying ground tree rewrite systems.
In LICS, pages 279-288, 2011.

21. Rance Cleaveland and Matthew Hennessy. Priorities in process algebras. Inf. Com-
put., 87(1-2):58-77, 1990.

22. Lugiez, D. Forward analysis of dynamic network of pushdown systems is easier
without order. In Reachability Problems, pages 127-140, 2009.

23. Kahlon, V., Ivancic, F., Gupta, A. Reasoning about threads communicating via
locks. In Computer Aided Verification, pages 505-518, 2005.

24. Diaz, M., Touili, T. Reachability Analysis of Dynamic Pushdown Networks with
Priorities. In NETYS, 2017.

25. Diaz, M., Touili, T. Dealing with Priorities and Locks for Concurrent Programs. In
ATVA, 2017.

