
HAL Id: hal-03903110
https://cnrs.hal.science/hal-03903110

Submitted on 16 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lions’ representation theorem and applications
Wolfgang Arendt, Isabelle Chalendar, Robert Eymard

To cite this version:
Wolfgang Arendt, Isabelle Chalendar, Robert Eymard. Lions’ representation theorem and ap-
plications. Journal of Mathematical Analysis and Applications, 2023, 522 (2), pp.126946.
�10.1016/j.jmaa.2022.126946�. �hal-03903110�

https://cnrs.hal.science/hal-03903110
https://hal.archives-ouvertes.fr


Lions’ representation theorem and applications

W. Arendt∗, I. Chalendar†and R. Eymard†

Abstract

The Lions’ Representation Theorem (LRT) is a version of the Lax–Milgram Theorem where complete-
ness of one of the spaces is not needed. In this paper, LRT is deduced from an operator-theoretical
result on normed spaces, which is of independent interest. As an example, we give a new characteri-
zation of dissipativity. The main part of the paper is a theory of derivations, based on LRT, which we
develop. Its aim is to establish well-posedness results, not only for evolution in time but also for more
general settings in terms of this new notion of derivation. One application concerns non-autonomous
evolution equations with a new kind of boundary condition where values at the initial and final time
are mixed.

Keywords: Lions’ representation theorem, non-autonomous evolution equations, boundary
conditions, dissipative operators.
2010 AMS classification: 47A07,47A50,47A52

1 Introduction

A most elegant way to prove well-posedness of a non-autonomous evolutionary problem has
been given by J. L. Lions [14, Chap. III, Théorème 1.1, p. 37] using a surprising version of the
Lax–Milgram Theorem, where one of the spaces is not complete (see e.g. Theorem 2.1 below).
We call it the Lions’ Representation Theorem, LRT. The purpose of this article is to study a
derivation problem with the help of Lions’ result. A Hilbert space V is given, which we choose
real for this introduction, as well as a derivation D : R → V ∗, where R is a dense subspace of
V ; i.e. D satisfies

〈Dr1, r2〉V ∗,V + 〈Dr2, r1〉V ∗,V = 0 for all r1, r2 ∈ R.

It turns out that this simple setting leads to an interesting structure and to interesting results
on boundary conditions. In fact, D can be extended naturally to a Hilbert space W which
embeds continuously into V . Given a coercive operator A ∈ L(V, V ∗), we study the problem

Du+Au = f (1.1)

where f ∈ V ∗ is given and u ∈ W is a solution to be found. We obtain well-posedness results if
we impose boundary conditions which are expressed in terms of (strongly) admissible subspaces
Z of W (see Section 3 and Section 4.2). Our main application concerns the evolution equations
also considered by Lions (and which have seen a remarkable revival recently; see e.g. Ouhabaz
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and Spina [17], Haak and Ouhabaz [13], Ouhabaz [16], Auscher and Egert [9], Dier and Zacher
[11], Achache and Ouhabaz [1, 2] as well as [7, 8]). For these evolution equations, we obtain a
new result whose originality lies in the very general boundary conditions.
It looks as follows. Let U,H be Hilbert spaces where U is continuously and densely embedded
in H so that we have the Gelfand triple

U
d→֒ H →֒ U ′.

Let W = H1(0, T ;U ′) ∩ L2(0, T ;U). Then, as is well-known, W ⊂ C([0, T ], H). Let V =
L2(0, T ;U) and let A ∈ L(V, V ∗) be coercive. Typically, one chooses for A a non-autonomous
differential operator. The following is proved in Section 5.

Theorem 1.1: Let Φ ∈ L(H) be a contraction, f ∈ L2(0, T ;U ′), y0 ∈ H . Then there exists a
unique u ∈ W such that

u′ +Au = f in L2(0, T ;V ′) (1.2)

u(0) = Φ∗u(T ) + y0 in H. (1.3)

Theorem 1.1 is known if the form a : V × V → R, given by a(u, v) = 〈Au, v〉V ∗,V is symmetric
(see [20, III. Proposition 2.4]) but the estimates given here for the non-symmetric case are more
demanding.
In Theorem 1.1, not only well-posedness but also the maximal regularity of the solution are
remarkable: all three terms of the evolution equation u′, Au and f are in the space L2(0, T ;U ′)
(see [6] for more information on such regularity properties).
The theory of derivations as developed in the present article has applications for completely dif-
ferent subjects. If we identify V and V ′ by the Riesz Theorem, then a densely defined operator
S on V is symmetric if and only if iS is a derivation. It turns out that our results on boundary
operators allow also a description of all selfajoint extensions of the symmetric operator S. In
fact we refine a version of the theory of boundary triplets as known in the literature. The circle
of these ideas is presented in [5].

We start this article by a review of the Lions’ Representation Theorem (LRT). The new point
is that we deduce it from a result on operators which are defined on normed space (incomplete,
in general). This allows us to prove LRT also in a non-Hilbert context (in contrast with Lions
[14, Théorème 1.1] and Showalter [20, III. Theorem 2.1]). We give some applications of the
non-Hilbert version to the Poisson equation for measures in Section 2. The structure of the
paper is as follows.
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2 Representation theorems for continuous linear or antilinear forms and

dissipative operators

In this section we describe (generalizations of) the Lions’ representation theorems and give an
application to dissipative operators.

2.1 Lions’ representation theorems

The Lions’ representation theorems may be expressed in terms of operators (which seems to
be new), or in terms of bilinear forms or sesquilinear forms. They depend also heavily on
the topological properties (completeness, reflexivity) of the involved normed vector spaces over
K = R or C. The antidual of a normed space X is denoted by X ′, whereas the dual space is
denoted by X∗.

Theorem 2.1 (Lions’ representation theorem, real version): LetX be a reflexive Banach space and
Y be a normed space over R. Let a : X × Y → R be bilinear such that, for each y ∈ Y ,
x 7→ a(x, y) is continuous on X . Let β > 0. The following assertions are equivalent:

(i) supx∈X,‖x‖X≤1 a(x, y) ≥ β‖y‖Y ;

(ii) for all L ∈ Y ∗, the dual of Y , there exists xL ∈ X such that

‖xL‖X ≤ 1

β
‖L‖Y ∗ and 〈L, y〉Y ∗,Y = a(xL, y〉, y ∈ Y

Next we consider the complex version.

Theorem 2.2 (Lions’ representation theorem, complex version): LetX be a reflexive Banach space
and Y be a normed space over C. Let a : X×Y → C be sesquilinear such that, for each y ∈ Y ,
x 7→ a(x, y) is continuous on X . Let β > 0. The following assertions are equivalent:

(i) supx∈X,‖x‖X≤1Re(a(x, y)) = supx∈X,‖x‖X≤1 |a(x, y)| ≥ β‖y‖Y ;

(ii) for all L ∈ Y ′, the antidual of Y , there exists xL ∈ X such that

‖xL‖X ≤ 1

β
‖L‖Y ′ and 〈L, y〉Y ′,Y = a(xL, y〉, y ∈ Y

In Theorem 2.2, it is remarkable that Y does not need to be complete and a does not need to
be continuous.
This theorem is a consequence of the following result involving operators instead of sesquilinear
forms.
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Theorem 2.3: Let E and F be normed spaces over K, T : E → F linear and β > 0. The
following assertions are equivalent:

(i) ‖Tx‖F ≥ β‖x‖E for all x ∈ E;

(ii) for all x∗ ∈ E∗, there exists y∗ ∈ F ∗ such that

x∗ = y∗ ◦ T and ‖y∗‖F ∗ ≤ ‖x∗‖E∗

β
.

(iii) for all x′ ∈ E ′, there exists y′ ∈ F ′ such that

x′ = y′ ◦ T and ‖y′‖F ′ ≤ ‖x′‖E′

β
.

Note that, in Theorem 2.3, T is not necessarily continuous. On the other side, if T ∈ L(E, F ),
then x∗ = T ∗y∗ and (ii) (resp. (iii)) means that T ∗ (resp. T ′) is surjective and ‖T ∗‖ ≤ 1

β
(resp.

‖T ′‖ ≤ 1

β
). Proof (i)⇒ (ii): Let Z = TE ⊂ F . Then T : E → Z is bijective and

‖T−1z‖E ≤ 1

β
‖z‖F , z ∈ Z.

Let x∗ ∈ E∗. Then x∗ ◦ T−1 ∈ Z∗. From the Hahn-Banach theorem, there exists y∗ ∈ F ∗ such
that y∗|Z = x∗ ◦ T−1 and

‖y∗‖F ∗ = ‖x∗ ◦ T−1‖Z∗ ≤ 1

β
‖x∗‖E∗.

Now, for x ∈ E,
〈x∗, x〉E∗,E = 〈x∗, T−1Tx〉E∗,E = 〈y∗, Tx〉F ∗,F .

(ii)⇒(i): Let x ∈ E. Then, by the Hahn-Banach theorem, there exists x∗ ∈ E∗, ‖x∗‖ ≤ 1 with
〈x∗, x〉E∗,E = ‖x‖. By (ii) there exists y∗ ∈ F ∗ with ‖y∗‖ ≤ 1

β
and x∗ = y∗ ◦ T . It follows that

‖Tx‖F ≥ β〈y∗, Tx〉F ∗,F = β〈x∗, x〉E∗,E = β‖x‖E .

The equivalence with (iii) follows from similar arguments. � Proof Proof of Theorem 2.2

First note that
sup

x∈X,‖x‖X≤1

Re a(x, y) = sup
x∈X,‖x‖X≤1

|a(x, y)|.

Indeed, for each x ∈ X and y ∈ Y , there exists θ ∈ R such that a(x, y) = eiθ|a(x, y)|. Then
Re a(e−iθx, y) = |a(x, y)| with ‖e−iθx‖X = ‖x‖X .
Let E = Y and F = X ′, the antidual of X . Define T : E → F by Tw = a(., w). Then T is
linear and

sup
x∈X,‖x‖X≤1

Re a(x, y) ≥ β‖y‖Y ⇐⇒ ‖Ty‖X′ ≥ β‖y‖Y ,

since Re a(x, y) = Re a(x, y). By Theorem 2.3, Condition (ii) of Theorem 2.2 holds if and only

if, for all L ∈ Y ′, there exists xL ∈ X ′′ ≃ X (X is reflexive) such that ‖xL‖X ≤ ‖L‖
Y ′

β
and

〈L, y〉Y ′,Y = 〈Ty, xL〉X′,X = a(xL, y), y ∈ Y.

�
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Corollary 2.4: Let K = R or C. Let X be a reflexive Banach space and Y be a normed space
such that Y embeds continuously in X . Let β > 0 and let a be a sesquilinear form on X × Y
such that

a) |a(y, y)| ≥ β‖y‖2Y for all y ∈ Y ;

b) for all y ∈ Y , x 7→ a(x, y) is continuous on X .

Let L ∈ Y ′. Then there exists xL ∈ X such that

a(xL, y) = 〈L, y〉Y ′,Y for all y ∈ Y.

Proof There exists cY > 0 such that ‖y‖X ≤ cY ‖y‖Y for all y ∈ Y . Thus for y ∈ Y \ {0},

sup
x∈X,‖x‖X≤1

|a(x, y)| ≥ 1

‖y‖X
|a(y, y)|

≥ β

‖y‖X
‖y‖2Y

≥ β

cY
‖y‖Y .

Now the claim follows from Theorem 2.2. �
Lions proved Theorem 2.1 [14, III, Théorème 1.1] (see also [20, III.2 Theorem 2.1]) considering
merely Hilbert (and pre-Hilbert) spaces. Our proof via Theorem 2.3 seems to be new.
We refer to the circle of results from Theorem 2.1 to Corollary 2.4 as LRT, that is, Lions’
representation theorems.

2.2 Dissipative operators

The following considerations are somehow a side order in this paper. Its aim is to show that
Theorem 2.3 is useful also in a non-Hilbert space situation. We will give a new characterization
of dissipativity (Theorem 2.6), a notion which will also be used in Section 3.

An operator B on a Banach space X is a linear mapping from dom(B) to X , where the domain

dom(B) of B is a subspace of X . By

‖x‖B := ‖x‖X + ‖Bx‖X

we denote the graph norm of B. The operator B is called closed if its graph

G(B) := {(x,Bx) : x ∈ dom(B)}

is closed in X ×X . This means that for xn ∈ dom(B)

xn → x and Bxn → y in X implies x ∈ dom(B) and Bx = y. (2.1)

In other words, B is closed if and only if (dom(B), ‖ · ‖B) is complete.
An operator B is called closable if (0, y) ∈ G(B) ⊂ X ×X implies y = 0. Then there exists a
unique operator B on X , the closure of B such that G(B) = G(B).



2 Representation theorems for continuous linear or antilinear forms and dissipative operators 6

We call B dissipative if

‖x− tBx‖X ≥ ‖x‖X for all x ∈ dom(B), t > 0. (2.2)

If X is a Hilbert space, this is equivalent to

Re〈Bx, x〉X ≤ 0 for all x ∈ dom(B). (2.3)

Returning to the Banach space context, we say that B is m-dissipative if B is dissipative
and (Id−tB) is surjective for one (equivalently all) t > 0. Then (Id − tB)−1 ∈ L(X) and
‖(Id−tB)−1‖ ≤ 1 for all t > 0. A densely-defined dissipative operator is closable and its
closure B is dissipative [3, Lemma 3.4.4].

Remark 2.5: The operator B generates a contractive C0-semigroup on X if and only if B is
m-dissipative and has dense domain.

If B is densely defined (i.e., if dom(B) is dense in X), then the adjoint B∗ of B is defined by
its domain dom(B∗) equal to the set

{y∗ ∈ X∗ : ∃x∗ ∈ X∗ such that 〈y∗, Bx〉X∗,X = 〈x∗, x〉X∗,X , x ∈ dom(A)}

and
B∗y∗ = x∗,

where y∗ ∈ dom(B∗) and x∗ ∈ X∗ such that 〈y∗, Bx〉X∗,X = 〈x∗, x〉X∗,X for all x ∈ dom(B).
Note that x∗ is unique since dom(B) is dense in X .
Theorem 2.3 allows us to give the following dual characterization of dissipativity, which seems
to be new.

Theorem 2.6: Let B be a densely defined operator on a Banach space X . The following asser-
tions are equivalent.

(i) B is dissipative;

(ii) for all t > 0 and for all y∗ ∈ X∗ there exists x∗ ∈ dom(B∗) such that

x∗ − tB∗x∗ = y∗ and ‖x∗‖X∗ ≤ ‖y∗‖X∗ .

Proof Consider the spaces E = dom(B) with norm ‖x‖E = ‖x‖B and F = X with ‖x‖F =
‖x‖X . Let t > 0 and consider the linear mapping T : E → F given by Tx = x − tBx.
Note that T is not continuous unless B is continuous. Since dom(B) is dense in X , one has
E∗ = X∗. Theorem 2.3 tells us that ‖x − tBx‖X = ‖Tx‖X ≥ ‖x‖X for all x ∈ E if and
only if for all x∗ ∈ X∗ there exists y∗ ∈ X∗ such that ‖y∗‖ ≤ ‖x∗‖ and x∗ = y∗ ◦ T , i.e.
〈x∗, x〉X∗,X = 〈y∗, x− tBx〉X∗,X , or equivalently

〈y∗, tBx〉X∗,X = 〈y∗ − x∗, x〉X∗,X , x ∈ dom(B).

This in turn is equivalent to y∗ ∈ dom(B∗) and tB∗y∗ = y∗ − x∗, i.e. y∗ − tB∗y∗ = x∗. � Note
that a densely defined operator B is m-dissipative if and only if B is closed, dissipative and
Id−tB∗ is injective for some (equivalently all) t > 0. Indeed, the surjectivity of Id−tB follows
from the fact that dissipativity implies that Id−tB has closed range and, in addition, Id−tB
has dense range if and only if (Id−tB∗) is injective. We illustrate Theorem 2.6 by the following
example.
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Example 2.7: Let Ω ⊂ Rd be open and bounded, X = C0(Ω) := {u ∈ C(Ω) : u|∂Ω = 0} endowed
with the supremum norm. Let Bu = ∆u, dom(B) := {u ∈ C0(Ω) : ∆u ∈ C0(Ω)}. Then B is
dissipative, closed and densely defined. Moreover B is m-dissipative if and only if Ω is Wiener
regular (see [4]). Note that C0(Ω)′ = M(Ω) := {µ : µ is a signed measure on Ω} with ‖µ‖ the
total variation of µ ∈ M(Ω).
For µ, ν ∈ M(Ω), one has

µ ∈ dom(B∗) and B∗µ = ν ⇐⇒
∫

Ω

∆udµ =

∫

Ω

udν, u ∈ dom(B).

In particular, ν = ∆µ in the sense of distributions.
Since B is dissipative, we see from Theorem 2.6 that for each t > 0 and each ν ∈ M(Ω), there
exists µ ∈ dom(B∗) such that

µ− t∆µ = ν and ‖µ‖ ≤ ‖ν‖. (2.4)

Moreover, Ω is Wiener regular if and only if the solution of (2.4) is unique for some (equivalently
all) t > 0.

3 When Lions’ Representation Theorem meets derivations

We start introducing the notion of derivation acting on a Hilbert space. Our aim is to study
perturbations of a coercive operator by a derivation, which leads to define Weak and Strong
Derivation Problems. In the remaining of this paper, V is a Hilbert space over K = R or C.
By V ′ we denote the antidual of V , that is the space of all continuous antilinear forms on V .
In the case K = R, V ′ = V ∗ where V ∗ is the dual space.

3.1 Derivations

The following definition is central for the entire article.

Definition 3.1: A derivation (or V -derivation if we want to specify the Hilbert space) is a linear
mapping

D0 : R → V ′,

whose domain R is a dense subspace of V satisfying

〈D0u, v〉V ′,V + 〈D0v, u〉V ′,V = 0,

for all u, v ∈ R.

Here, as previously, we denote by 〈 , 〉V ′,V the duality between V ′ and V , whereas 〈 , 〉V is the
scalar product in V .

Remark 3.2: In general we do not want to identify V ′ and V . But if we do so, then D0 is a
derivation if and only if D0 is antisymmetric, i.e.

〈D0u, v〉V = −〈D0v, u〉V for all u, v ∈ R.

If K = C this is the same as saying that iD0 is symmetric.
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In the remaining part of this section, D0 is a derivation according to Definition 3.1. We associate
to D0 a new Hilbert space W in the following way.

W := {v ∈ V : ∃f ∈ V ′ such that 〈f, r〉V ′,V + 〈D0r, v〉V ′,V = 0 for all r ∈ R}. (3.1)

Since R is dense in V , given v ∈ W , there exists at most one f ∈ V ′ satisfying

〈f, r〉V ′,V + 〈D0r, v〉V ′,V = 0 for all r ∈ R.

We then set Dv := f . The following is easy to see.

Lemma 3.3: a) R ⊂ W and Dr = D0r for all r ∈ R.

b) W is a Hilbert space endowed with the scalar product

〈v, w〉W := 〈v, w〉V + 〈Dv,Dw〉V ′ ,

where V ′ carries the scalar product coming from the Riesz isomorphism between V and
V ′.

c) The mapping D : W → V ′ is continuous.

It follows from this definition that

〈Dv, r〉V ′,V + 〈Dr, v〉V ′,V = 0 for all v ∈ W, r ∈ R. (3.2)

Moreover we set

b(v, w) := 〈Dv, w〉V ′,V + 〈Dw, v〉V ′,V for all v, w ∈ W. (3.3)

Then b : W ×W → K is sesquilinear and symmetric, i.e.

b(v, w) = b(w, v) for all v, w ∈ W.

We call W the extended domain of D0, D the extension of D0, and b the associated boundary

form.
If R is dense in W , then b is identically equal to 0. But in general b is different from 0 and will
be used to define boundary conditions for a Derivation Problem associated with D.
Note that b(w,w) ∈ R for all w ∈ W .

Definition 3.4: For E ⊂ W its orthogonal with respect to b is defined by

Eb := {u ∈ W : b(u, v) = 0 ∀v ∈ E}.

3.2 Admissible subspaces

Another notion of great importance in the sequel is the notion of admissible space and strongly

admissible space.

Definition 3.5: A subspace Z of W is called admissible if

a) R ⊂ Z,

b) b(w,w) ≤ 0 for all w ∈ Z.

We say that Z is strongly admissible if, in addition,

c) b(u, u) ≥ 0 for all u ∈ Zb.

Since b : W × W → K is continuous, the closure of an admissible subspace Z is admissible,
and, if Z is strongly admissible, then so is its closure Z.
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3.3 The Weak Derivation Problem

Next we consider the weak derivation problem. Let Z ⊂ W be an admissible and closed
subspace. We endow Z with the norm

‖v‖2Z := ‖v‖2W := ‖v‖2V + ‖Dv‖2V ′ .

Let A ∈ L(V, V ′) be coercive, i.e. there exists α > 0 such that

〈Au, u〉V ′,V ≥ α‖u‖2V for all u ∈ V.

Then the weak derivation problem is the following: given L ∈ Z ′ find a vector v such that

(WDP) v ∈ V and −〈Dz, v〉V ′,V + 〈Av, z〉V ′,V = 〈L, z〉Z′,Z , z ∈ Z.

Theorem 3.6: Let Z ⊂ W be a closed admissible subspace and let L ∈ Z ′. Then there exists a
vector u such that (WDP) holds. If Z is strongly admissible, then the solution is unique.

We consider Z as a space of test functions. The solutions of (WDP ) depend on the choice of
this space. We will make this dependance more transparent in Theorem 3.10, Proposition 4.3
and Theorem 4.17 below.

For the proof we need some preparation.

Lemma 3.7: Let X be a Banach space, B a closed operator on X and A ∈ L(X). Assume that
there exists α > 0 such that

‖(A− B)x‖X ≥ α‖x‖X for all x ∈ dom(B). (3.4)

Then there exists a constant β > 0 such that

‖(A−B)x‖X ≥ β(‖x‖X + ‖Bx‖X) for all x ∈ dom(B). (3.5)

Proof By assumption the space dom(B) endowed with the norm ‖x‖B := ‖x‖X + ‖Bx‖X is
complete. The mapping T := A−B : dom(B) → X is continuous. In fact

‖Tx‖X ≤ ‖A‖‖x‖X + ‖Bx‖X ≤ max{‖A‖, 1}(‖x‖X + ‖Bx‖X).
Moreover,

‖Tx‖X ≥ α‖x‖X for all x ∈ dom(B). (3.6)

Thus T is injective and Y := T dom(B) is closed in X . To see this let zn ∈ dom(B) such that
limn→∞ ‖Tzn − y‖X = 0. It follows from (3.6) that

α‖zn − zm‖X ≤ ‖Tzn − Tzm‖X .
Thus x := limn→∞ zn exists in X . Since A ∈ L(X), it follows that limn→∞Azn = Ax. Thus
limn→∞Bzn = Ax− y. Since B is closed it follows that x ∈ dom(B) and Bx = Ax− y. Hence
Tx = y. We have proved that Y is closed in X and hence complete. By the Theorem of the
Continuous Inverse, T−1 ∈ L(Y, dom(B)). Thus, for all z ∈ dom(B),

‖z‖X + ‖Bz‖X = ‖z‖B = ‖T−1Tz‖B
≤ ‖T−1‖‖Tz‖X = ‖T−1‖‖Az − Bz‖X .

Choose β = 1

‖T−1‖
. � On a Hilbert space V we obtain the following more special version.

Recall that an operator B on V is dissipative if and only if

Re〈Bv, v〉V ≤ 0 for all v ∈ dom(B).
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Proposition 3.8: Let B be a densely defined dissipative operator on a Hilbert space V and let
A ∈ L(V ) be coercive, i.e. there exists α > 0 such that

Re〈Av, v〉V ≥ α‖v‖2V for all v ∈ V. (3.7)

Then there exists β > 0 such that

‖Av −Bv‖V ≥ β(‖v‖V + ‖Bv‖V ) for all v ∈ V. (3.8)

Proof By [12, II. Proposition 3.14 (iv)] or [18, I. Theorem 4.5 (c)], B is closable and the
closure B of B is dissipative again. Thus we can assume that B is closed. One has for
T = A− B : dom(B) → V,

α‖v‖2V ≤ Re〈Av, v〉V ≤ Re〈Tv, v〉V ≤ ‖Tv‖V ‖v‖V .

Thus (3.4) is satisfied. Now the claim follows from Lemma 3.7. � Our short proof of Lemma 3.7
and Proposition 3.8 depends on the Theorem of the Continous Inverse. So we do not have a
control of the constant β. For this reason we give a second (more involved) proof which shows
that β can be chosen independently of B. Proof Second proof of Proposition 3.8 Consider
A+ := A+A∗

2
and A− := A−A∗

2
. Then

〈A+v, v〉V =
1

2
〈Av, v〉V +

1

2
〈A∗v, v〉V = Re〈Av, v〉V , v ∈ V,

and thus 〈A+v, v〉 ≥ α‖v‖2V , v ∈ V . It follows that the selfadjoint operator A+ is positive and
invertible. Let S be the (invertible and positive) square root of A+. Since ‖Sv‖2V = 〈A+v, v〉V ,
we get

‖Sv‖V ≥
√
α‖v‖V , v ∈ V. (3.9)

Since ‖Sv‖V ≤ ‖A+‖1/2‖v‖V , we also get

‖S−1v‖V ≥ 1

‖A+‖1/2
‖v‖V , v ∈ V. (3.10)

In addition, note that

〈A−v, v〉V = 〈v, A∗
−v〉V = −〈v, A−v〉V , v ∈ V,

and therefore
Re〈A−v, v〉V = 0, v ∈ V. (3.11)

Using (3.9) we first get, for all v ∈ V ,

‖(A−B)v‖2V ≥ α(‖ − S−1Bv + S−1A+v + S−1A−v‖2V )
= α(‖S−1Bv‖2V + ‖S−1A+v‖2V + ‖S−1A−v‖2V )

−2αRe〈S−1Bv, S−1A+v〉V + 2αRe〈S−1A+v, S
−1A−v〉V

−2αRe〈S−1Bv, S−1A−v〉V .

Note that

Re〈S−1A+v, S
−1A−v〉V = Re〈S−2A+v, A−v〉V = Re〈v, A−v〉V = 0 by (3.11).
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Moreover

−Re〈S−1Bv, S−1A+v〉V = −Re〈Bv, S−2A+v〉V = −Re〈Bv, v〉V ≥ 0.

In addition, since S−1A+ = S,
‖S−1A+v‖2V = ‖Sv‖2V .

It follows that

‖(A− B)v‖2V ≥ α(‖S−1Bv‖2V + ‖Sv‖2V + ‖S−1A−v‖2V )
−2αRe〈S−1Bv, S−1A−v〉V .

Now we use the Peter–Paul inequality (referring to the expression ”rob Peter to pay Paul”, also
called Young’s inequality) and obtain

2
∣∣Re〈S−1Bv, S−1A−v〉V

∣∣ ≤ 2‖S−1Bv‖V ‖S−1A−v‖V
≤ γ‖S−1Bv‖2V +

1

γ
‖S−1A−v‖2V

for all γ > 0. We then get

‖(A− B)v‖2V ≥ α(1− γ)‖S−1Bv‖2V + α(1− 1/γ)‖S−1A−v‖2V + α‖Sv‖2V .

Let γ = 1

1+s
where s > 0 be be fixed later. Then 1 − γ = s

1+s
and 1 − 1/γ = −s. Then, by

(3.9) and (3.10), it follows that

‖(A− B)v‖2V ≥ α

(
s

1 + s

1

‖A+‖
‖Bv‖2V + α‖v‖2V − s‖S−1A−‖2‖v‖2V

)
.

Then we choose s such that s‖S−1A−‖2 = α
2
. Then we obtain

‖(A− B)v‖2V ≥ β2(‖Bv‖2V + ‖v‖2V ),

where β2 = min
{

α2

2
, α2

α+2‖S−1A−‖2
1

‖A+‖

}
. In other words β does not depend on B. � Proof

Proof of Theorem 3.6 By the Riesz Representation Theorem there exists an operator A∗ ∈
L(V ) such that

〈v, A∗w〉V = 〈Av, w〉V ′,V for all v, w ∈ V.

Similarly there exists B : Z → V such that

〈Bz, w〉V = 〈Dz, w〉V ′,V for all z ∈ Z,w ∈ V.

The operator B is closed since Z is complete for the norm

‖z‖Z =
(
‖z‖2V + ‖Dz‖2V ′

)1/2
=

(
‖z‖2V + ‖Bz‖2V

)1/2
.

For the last equality we use the fact that the Riesz isomorphism is isometric.
Since Z is admissible B is dissipative. The operator A∗ is coercive. By Lemma 3.7 there exists
β > 0 such that

‖A∗z −Bz‖V ≥ β(‖z‖V + ‖Bz‖V ) for all z ∈ Z.

Thus, for z ∈ Z,
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sup‖v‖V ≤1 |〈−Dz, v〉V ′,V + 〈Av, z〉V ′,V | = sup‖v‖V ≤1 |〈−Dz, v〉V ′,V + 〈A∗z, v〉V |
= sup‖v‖V ≤1 |〈−Bz + A∗z, v〉V |
= ‖ − Bz + A∗z‖V
≥ β(‖z‖V + ‖Bz‖V ) ≥ β‖z‖Z .

By LRT (Corollary 2.4) there exists v ∈ V such that

〈L, z〉 = −〈Dz, v〉V ′,V + 〈Av, z〉V ′,V for all z ∈ Z.

For the uniqueness, we now assume that Z is strongly admissible. Let u ∈ V be the difference
of two solutions. Then

〈−Dz, u〉V ′,V + 〈Au, z〉V ′,V = 0 for all z ∈ Z. (3.12)

Taking z ∈ R we see that u ∈ W and

Du+Au = 0 in V ′.

In particular,
〈Du, z〉V ′,V + 〈Au, z〉V ′,V = 0 for all z ∈ Z. (3.13)

Subtracting (3.12) from (3.13) we deduce that

b(u, z) = 〈Du, z〉V ′,V + 〈Dz, u〉V ′,V = 0 for all z ∈ Z.

Thus u ∈ Zb. Since Z is strongly admissible, it follows that

2Re〈Du, u〉V ′,V = b(u, u) ≥ 0.

From (3.13) we deduce that

0 = Re〈Du, u〉V ′,V + Re〈Au, u〉V ′,V ≥ α‖u‖2V .
Thus u = 0. �

3.4 The Strong Derivation Problem

Next we consider the strong derivation problem. For that we have to assume that the antilinear
form L on Z has a special form.

Lemma 3.9: Let Z be a subspace of W endowed with the norm ‖ · ‖Z = ‖ · ‖W such that R ⊂ Z,
and let L ∈ Z ′. The following assertions are equivalent:

(i) there exists a constant c ≥ 0 such that |〈L, r〉V | ≤ c‖r‖V for all r ∈ R;

(ii) there exist f ∈ V ′ and g ∈ Z ′ such that 〈g, r〉Z′,Z = 0 for all r ∈ R and L = f + g.

Proof (ii) ⇒ (i) This is obvious.
(i) ⇒ (ii) Since R is dense in V , there exists f ∈ V ′ such that 〈L, r〉V ′,V = 〈f, r〉V ′,V for all
r ∈ R. Let g := L − f . Then g ∈ Z ′ and 〈g, r〉Z′,Z = 0 for all r ∈ R. � Let Z ⊂ W be an
admissible subspace and let L ∈ Z ′ be of the form L = f + g where f ∈ V ′ and g ∈ Z ′ such
that 〈g, r〉Z′,Z = 0 for all r ∈ R. The Strong Derivation Problem consists in finding a vector u
such that

(SDP) u ∈ W, Du+Au = f and b(u, z) = −〈g, z〉Z′,Z , z ∈ Z.

Thus, the functional g expresses a kind of boundary condition. In the examples (Section 5),
this will become even more transparent.
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Theorem 3.10: Let Z ⊂ W be an admissible subspace. Let L = f + g with f ∈ V ′, g ∈ Z ′ such
that 〈g, r〉Z′,Z = 0 for all r ∈ R. For u ∈ V the following are equivalent:

(i) u is a solution of (WDP);

(ii) u ∈ W and u is a solution of (SDP).

Consequently, there exists a solution of (SDP). Moreover it is unique if Z is strongly admissible.

Proof (i) ⇒ (ii) Let u be a solution of (WDP). Then

−〈Dz, u〉V ′,V + 〈Au, z〉V ′,V = 〈f, z〉V ′,V + 〈g, z〉Z′,Z , z ∈ Z. (3.14)

Taking z ∈ R we deduce that u ∈ W and

Du+Au = f in V ′. (3.15)

Evaluating at z ∈ Z ⊂ V , we obtain

〈Du, z〉V ′,V + 〈Au, z〉V ′,V = 〈f, z〉V ′,V , z ∈ Z.

Subtracting (3.14) from (3.15) yields

b(u, z) = 〈Du, z〉V ′,V + 〈Dz, u〉V ′,V = −〈g, z〉Z′,Z , z ∈ Z. (3.16)

(ii) ⇒ (i) Let u ∈ W be a solution of (SDP), i.e. (3.15) and (3.16) hold. Evaluating (3.15) at
z ∈ Z and using (3.16) we obtain

−〈Dz, u〉V ′,V + 〈Au, z〉V ′,V = −〈Dz, u〉V ′,V − 〈Du, z〉V ′,V + 〈f, z〉V ′,V

= −b(u, z) + 〈f, z〉V ′,V

= 〈g, z〉Z′,Z + 〈f, z〉V ′,V

= 〈L, z〉V ′,V , z ∈ Z.

Thus u is a solution of (WDP). �

Remark 3.11: Letting g = 0, Theorem 3.10 proves that the operator D + A : Zb → V ′ is
invertible, i.e. it is injective with a closed and dense range. This means that there exists β ′ > 0
such that, for all u ∈ Zb,

‖Du+Au‖V ′ ≥ β ′
(
‖u‖2V + ‖Du‖2V ′

)1/2
(3.17)

and that, for any w ∈ V ,

〈Dv +Av, w〉V ′,V = 0, v ∈ Zb ⇒ w = 0. (3.18)

Indeed (3.17) is equivalent to D+A is injective with closed range, whereas (3.18) is equivalent
to D + A has dense range using the Hahn–Banach theorem combined with the reflexivity of
our spaces.
Note that the existence of β ′ follows directly from Lemma 3.7. Indeed, for all u ∈ Zb, b(u, u) ≥ 0,
and the second property follows along the same lines as the proof of (i) ⇒ (ii) above (first prove
that w ∈ W , then that w ∈ Zbb = Z, and finally that Re〈A⋆w,w〉V ′,V ≤ 0).
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4 Admissible subspaces and boundary operators

If we consider D as a time derivative, then (SDP) may be interpreted as an evolution equation
with a boundary condition with respect to time.
This can be made more concrete when we make further assumptions on the associated boundary
form b and, of course, in the examples we give below.

4.1 Maximal admissible subspaces

We start considering maximal admissible subspaces. This maximality is a handy criterion for
proving strong admissibility.

Definition 4.1: A subspace Z0 of W is called maximal admissible if Z0 is admissible and if for
any admissible subspace Z1 of W , Z0 ⊂ Z1 implies Z0 = Z1.

Proposition 4.2: Let Z0 be an admissible subspace ofW . Then there exists a maximal admissible
subspace Z1 of W containing Z0. Moreover, each maximal admissible subspace of W is strongly
admissible.

Proof Let M := {Z1 ⊂ W : Z0 ⊂ Z1, Z1 admissible} ordered by inclusion. If (Zi)i∈I is a chain
in M, then Z := ∪i∈IZi is a subspace of W containing Z0. If w ∈ Z, then there exists i ∈ I
such that w ∈ Zi. Consequently b(w,w) ≤ 0. Thus Z is admissible and hence an upper bound
for the chain (Zi)i∈I . Now by Zorn’s Lemma M has a maximal element.
Let Z1 be a maximal admissible subspace and let u ∈ W such that b(u, w) = 0 for all w ∈ Z1.
Suppose that b(u, u) < 0. Then u 6∈ Z1. Thus Z2 := Z1 ⊕ Ku is a subspace of W and for
w = w1 + λu ∈ Z2,

b(w,w) = b(w1, w1) + |λ|2b(u, u) ≤ 0.

This contradicts the maximality of Z1. We have proved that b(u, u) ≥ 0 for all u ∈ Zb
1; i.e. Z1

is strongly admissible. � Let Z ⊂ W be a strongly admissible subspace and L ∈ Z ′, where
Z carries the norm of W . Then, by Theorem 3.6, (WDP) has a unique solution u ∈ V . Let

Z̃ ⊂ W be a maximal admissible subspace such that Z ⊂ Z̃. By the Hahn-Banach Theorem
there exists L̃ ∈ Z̃ ′ such that L̃|Z = L. Since Z̃ is also strongly admissible, there exists a unique

ũ ∈ V solution for (WDP) with respect to Z̃.

Proposition 4.3: One has u = ũ.

Proof One has
〈−Dz, u〉V ′,V + 〈Au, z〉V ′,V = 〈L, z〉Z′,Z for all z ∈ Z

and
〈−Dz, ũ〉V ′,V + 〈Aũ, z〉V ′,V = 〈L, z〉Z̃′,Z̃ for all z ∈ Z̃.

In particular
〈−Dz, u− ũ〉V ′,V + 〈A(u− ũ), z〉V ′,V = 0 for all z ∈ Z.

Now it follows from Theorem 3.6 applied to L = 0 that u− ũ = 0. � In view of the preceding
abservations, our aim is now to study the maximal admissible subspaces in the next subsection.
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4.2 Boundary operators

In this section we continue to study the abstact framework from Section 3. But we give more
structure to the associated boundary form b.
Let V,R,D, b be given as in Section 3 and let W be defined by (3.1) and b : W ×W → K by
(3.3). Recall that b is a continuous, symmetric sesquilinear form. Now we make the following
assumption.

Assumption 4.4: There are given a Hilbert space H and operators B0, B1 ∈ L(W,H) such that

b(v, w) = 〈B1v, B1w〉H − 〈B0v, B0w〉H for all v, w ∈ W. (4.1)

and
kerB0 + kerB1 = W. (4.2)

Remark 4.5: Such operators B0, B1 and such a Hilbert space H do always exist. For example,
we may choose H = W . There is a unique selfadjoint operator B ∈ L(W ) such that

b(v, w) = 〈Bv,w〉W .

Then B has a canonical decomposition B = B+−B− where B+ = 1

2
(B+ |B|), B− = 1

2
(|B|−B)

are positive selfadjoint operators, satisfying B+B− = B−B+ = 0. One may choose B0 =
√
B+,

B1 =
√
B−, which still satisfy B1B0 = B0B1 = 0 and therefore the image of one of them is

included in the kernel of the other (this follows from the Spectral Theorem in [19, Chapter
VII]). Since kerB0 ⊕ ImB0 = W and ImB0 ⊂ kerB1, one gets (4.2).
Other choices of B0, B1 and H different from W might be more convenient and will occur in
the examples in Section 5.

Our aim is to describe the maximal admissible subspaces in terms of B0 and B1. We need
several auxiliary results.
By B∗

0 , B
∗
1 ∈ L(H,W ) we denote the adjoint operators.

Lemma 4.6: a) RanB∗
0 ∩ RanB∗

1 = {0}.

b) R ⊂ kerB1 ∩ kerB0.

Proof a) Since by our assumption W = kerB0 + kerB1, it follows that

{0} = (kerB0 + kerB1)
⊥ = (kerB0)

⊥ ∩ (kerB1)
⊥ = RanB∗

0 ∩ RanB∗
1 .

b) Let r ∈ R. Then b(r, w) = 0 for all w ∈ W . Thus

0 = 〈B1r, B1w〉H − 〈B0r, B0w〉H = 〈B∗
1B1r − B∗

0B0r, w〉W

for all w ∈ W . Hence B∗
1B1r = B∗

0B0r. It follows from a) that

B∗
1B1r = B∗

0B0r = 0.

Hence ‖B1r‖2H = 〈B∗
1B1r, r〉W = 0 and so B1r = 0. Similarly, we obtain that B0r = 0. � Now

we can describe a first maximal admissible subspace.
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Proposition 4.7: kerB1 is a maximal admissible subspace.

Proof a) R ⊂ kerB1 by Lemma 4.6.
b) Let w ∈ kerB1. Then

b(w,w) = −‖B0w‖2H ≤ 0.

c) Let Z be admissible and such that kerB1 ⊂ Z. Let w ∈ Z. By our assumptions there exists
a decomposition

w = w0 + w1 ∈ kerB0 + kerB1.

Since kerB1 ⊂ Z it follows that w0 ∈ Z. Thus

0 ≥ b(w0, w0) = ‖B1w0‖2H − ‖B0w0‖2H = ‖B1w0‖2H ,
hence w0 ∈ kerB1. It follows that w = w0 + w1 ∈ kerB1. �

Lemma 4.8: Let x0 ∈ RanB0, x1 ∈ RanB1. Then there exists w ∈ W such that B0w = x0 and
B1w = x1.

Proof Let x0 = B0w1, x1 = B1w2 where w1, w2 ∈ W . By assumption we may write

w1 = w10 + w11 ∈ kerB0 + kerB1,

w2 = w20 + w21 ∈ kerB0 + kerB1.

Let w := w11+w20. Then B0w = B0w11 = B0w1 = x0 and B1w = B1w20 = B1w2 = x1. � The
following observation will be useful in the next proof .

Remark 4.9: The operator −D0 is also a derivation and its extended domain is W . The bound-
ary form associated with −D0 is −b and the extended operator −D. In particular

−〈Du, v〉V ′,V − 〈Dv, u〉V ′,V = −b(u, v) = 〈B0u,B0v〉H − 〈B1u,B1v〉H ,
for all u, v ∈ W .

We now show that B0 and B1 have closed images. This is surprising and due to the special
construction of b. For the proof we will use the well-posedness of the Derivation problem with
respect to Z = kerB1. The result will be important in the sequel.

Proposition 4.10: RanB0 and RanB1 are closed subspaces of H .

Proof a) Let x0 ∈ RanB0 ⊂ H . Choose Z := kerB1. Then Z is strongly admissible and
g(w) = 〈x0, B0w〉H defines a continuous antilinear form on Z, which vanishes on R.
Consider A ∈ L(V, V ′) given by 〈Av, w〉V ′,V = 〈v, w〉V . By Theorem 3.10 there exists a unique
u ∈ W such that Du+Au = 0 and

b(u, w) = −g(w) for all w ∈ kerB1.

Thus
−〈B0u,B0w〉H = −〈x0, B0w〉H for all w ∈ kerB1.

Since kerB1 + kerB0 = W , one has B0 kerB1 = B0W . It follows that

〈B0u− x0, B0w〉H = 0 for all w ∈ W.

Consequently, 〈B0u− x0, y〉H = 0 for all y ∈ RanB0. Since B0u− x0 ∈ RanB0, it follows that
B0u− x0 = 0. Thus x0 ∈ RanB0.
b) Replacing D by −D and applying a), one obtains that RanB1 is closed. �
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Lemma 4.11: Let Z ⊂ W be admissible. Then there exists a linear mapping Φ : RanB0 →
RanB1 such that

‖Φx‖H ≤ ‖x‖H for all x ∈ RanB0

and
Z ⊂ ZΦ := {w ∈ W : B1w = ΦB0w}.

Proof Since Z is admissible,

‖B1w‖H ≤ ‖B0w‖H for all w ∈ Z.

Thus, letting
Φ0B0w := B1w for all w ∈ Z

yields a well-defined mapping Φ0 : B0Z → B1Z. Then Φ0 is linear and contractive. Hence Φ0

has a unique continuous extension Φ1 : B0Z → B1Z and ‖Φ1x‖H ≤ ‖x‖H for all x ∈ B0Z.
Since RanB0 is closed, one has

RanB0 = B0Z ⊕ (B0Z)
⊥.

Let x = x0 + x1 ∈ RanB0 with x0 ∈ B0Z, x1 ∈ (B0Z)
⊥. Defining Φx := Φ1x0 yields a linear

contraction Φ : RanB0 → RanB1 satisfying the requirements of the lemma. � Now we can
describe all maximal admissible subspaces of W .

Theorem 4.12: Le Φ : RanB0 → RanB1 linear and contractive (i.e. ‖Φx‖H ≤ ‖x‖H for all
x ∈ RanB0). Then

ZΦ := {w ∈ W : B1w = ΦB0w}
is maximal admissible. Moreover, each maximal admissible subspace of W is of the form ZΦ

for some linear contraction Φ : RanB0 → RanB1.

Proof a) Since B1r = B0r = 0 for all r ∈ R by Lemma 4.6, one has R ⊂ ZΦ.
b) Let w ∈ ZΦ. Then

b(w,w) = ‖B1w‖2H − ‖B0w‖2H = ‖ΦB0w‖2H − ‖B0w‖2H ≤ 0.

c) Let Z be admissible and such that ZΦ ⊂ Z. We show that ZΦ = Z. In fact, by Lemma 4.11,
there exists a contraction Φ1 : RanB0 → RanB1 such that Z ⊂ ZΦ1

. Hence ZΦ ⊂ ZΦ1
. Thus

ΦB0w = Φ1B0w for all w ∈ ZΦ. (4.3)

But
B0ZΦ = RanB0. (4.4)

In fact, let w ∈ W . By Lemma 4.8 there exists u ∈ W such that B0u = B0w and B1u = ΦB0w.
Thus B1u = ΦB0u; i.e. u ∈ ZΦ and B0w = B0u. Thus B0w ∈ B0ZΦ. Now (4.3) implies that
Φ = Φ1. hence ZΦ ⊂ Z ⊂ ZΦ1

= ZΦ.
d) The fact that each maximal subspace of W is of the form ZΦ for some linear contraction
Φ : RanB0 → RanB1 follows from Lemma 4.11. � Next we compute the initial value condition.

Proposition 4.13: Let Φ : RanB0 → RanB1 be a contraction. Then

Zb
Φ = ZΦ∗ := {w ∈ W : B0w = Φ∗B1w}. (4.5)
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Proof Let u ∈ Zb
Φ. Then 〈B1u,B1w〉H = 〈B0u,B0w〉H for all w ∈ ZΦ. Since B1w = ΦB0w for

w ∈ ZΦ it follows that

〈Φ∗B1u−B0u,B0w〉H = 0 for all w ∈ ZΦ. (4.6)

Since by (4.4) B0ZΦ = RanB0 and since Φ∗B1u − B0u ∈ RanB0 it follows from (4.6) that
Φ∗B1u− B0u = 0, i.e. B0u = Φ∗B1u.
Conversely, if B0u = Φ∗B1u, then, for all w ∈ ZΦ,

b(u, w) = 〈B1u,B1w〉H − 〈B0u,B0w〉H
= 〈B1u,ΦB0w〉H − 〈Φ∗B1u,B0w〉H
= 0.

This proves (4.5). � Proposition 4.13 also shows that ZΦ is strongly admissible (without using
Proposition 4.2. In fact, by (4.5), if b(u, w) = 0 for all w ∈ ZΦ, then B0u = Φ∗B1u. Hence

b(u, u) = ‖B1u‖2H − ‖B0u‖2H
= ‖B1u‖2H − ‖Φ∗B1u‖2H ≥ 0.

Lemma 4.14: If Z is maximal admissible, then Zbb = Z.

Proof By Theorem 4.12, any maximal admissible subspace of W is of the form ZΦ for some
linear contraction Φ : RanB0 → RanB1. By Proposition 4.13, we have Zb

Φ = ZΦ∗ and therefore

Zbb
Φ = Zb

Φ∗ = ZΦ.

�

4.3 Boundary conditions

Next we compare maximal and strongly admissible subspaces. We already know that maximal
admissible subspaces are strongly admissible. Recall from Theorem 4.12 that the maximal ad-
missible subspaces of W are exactly the spaces ZΦ where Φ : RanB0 → RanB1 is a contraction.

Proposition 4.15: Let Z ⊂ W be strongly admissible. Then there exists exactly one maximal
admissible subspace ZΦ such that Z ⊂ ZΦ. Moreover,

Zb = ZΦ⋆ . (4.7)

Proof Let Φ : RanB0 → RanB1 be contraction such that Z ⊂ ZΦ. Then

ZΦ∗ = Zb
Φ ⊂ Zb,

where ZΦ∗ = {w ∈ W : B0w = Φ∗B1w}. Note also that −D is a derivation with extended space
W and associated with −b. Thus, by Theorem 4.12, ZΦ∗ is a maximal admissible subspace
for −b. Since Z is strongly admissible, the space Zb is admissible for −D. Since Zφ∗ ⊂ Zb, it
follows that ZΦ∗ = Zb. We have shown the second assertion.
Next we show uniqueness. Let Ψ : RanB0 → RanB1 be another contraction such that Z ⊂ ZΨ.
Then

ZΨ∗ = Zb = ZΦ∗
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by what we have just proved. We show that Ψ∗ = Φ∗ (which implies that Ψ = Φ). Let
w1 ∈ RanB1, w0 = Φ∗w1 ∈ RanB0. By Lemma 4.8, there exists w ∈ W such that w1 = B1w
and w0 = B0w. Thus

Φ∗B1w = Φ∗w1 = w0 = B0w.

Hence w ∈ ZΦ∗ = ZΨ∗ . Consequently,

Ψ∗w1 = Ψ∗B1w = B0w = w0 = Φ∗w1.

� An obvious corollary is the following.

Corollary 4.16: Let Φ,Ψ ∈ L(H) be contractions. If ZΦ = ZΨ then Φ = Ψ.

Thus, in view of Proposition 4.3, the solutions of (WDP) with respect to Z and to ZΦ are the
same.

Now in view of Theorem 4.12 we obtain from Theorem 3.6 a theorem on existence and unique-
ness of the solution to a Derivation Problem.
Let Φ : RanB0 → RanB1 be linear such that ‖Φ‖ ≤ 1. Consider the strongly admissible space

ZΦ = {w ∈ W : B1w = ΦB0w}.

Theorem 4.17: Let Φ : RanB0 → RanB1 be linear and contractive for the norm of H . Let
A ∈ L(V, V ′) be coercive, f ∈ V ′ and let y0 ∈ RanB0. Then there exists a unique u ∈ W such
that

Du+Au = f and B0u− Φ∗B1u = y0.

Proof Let Z = ZΦ and let us define g ∈ Z ′ by 〈g, z〉Z′,Z = 〈y0, B0z〉H . Then g is such that
〈g, r〉Z′,Z = 0 for all r ∈ R. By Theorem 3.10, there exists u such that (SDP) holds, that is

u ∈ W, Du+Au = f and b(u, z) = −〈g, z〉Z′,Z , z ∈ Z.

Since 〈B1u,B1z〉H = 〈B1u,ΦB0z〉H = 〈Φ∗B1u,B0z〉H , it follows that

−b(u, z)− 〈g, z〉Z′,Z = 〈B0u− Φ∗B1u− y0, B0z〉H = 0, z ∈ ZΦ.

This yields B0u− Φ∗B1u− y0 = 0, since, by Lemma 4.8, {B0z, z ∈ ZΦ} = RanB0.
Theorem 3.10 also shows the uniqueness of u since ZΦ is strongly admissible.
�

5 Non-autonomous evolution equations

In this section we establish existence and uniqueness for an evolutionary problem with very
general boundary conditions concerning the time variable which can prescribe as well an initial
value problem or a periodicity condition.
Let T > 0, U a Hilbert space over K = R or C which is continuous and densely embedded into

another Hilbert space H , i.e. U
d→֒ H . As usual we identify H with a subspace of U ′ which

yields the Gelfand triple

U
d→֒ H →֒ U ′,
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where for u ∈ U and f ∈ H , 〈f, u〉U ′,U = 〈f, u〉H.
Let V = L2(0, T ;U). Thus V ′ = L2(0, T ;U ′). Let R = C∞

c (0, T ;U) and define D : R → V ′ by
Dr = r′. Then for r1, r2 ∈ R,

〈Dr1, r2〉V ′,V + 〈Dr2, r1〉V ′,V =

∫ T

0

(〈r′1(t), r2(t)〉H + 〈r′2(t), r1(t)〉H)dt = 0.

It is not difficult to see that W as defined in Section 3 is given by

W = H1(0, T ;U ′) ∩ L2(0, T ;U).

The following integration by parts formula ([20, III Corollary 1.1 p.106]) plays an important
role.

Lemma 5.1: One has W ⊂ C([0, T ], H) and for all v, w ∈ W,

∫ T

0

〈v′(t), w(t)〉dt = −
∫ T

0

〈w′(t), v(t)〉dt+ 〈v(T ), w(T )〉H − 〈v(0), w(0)〉H.

Note that here 〈v′(t), w(t)〉 := 〈v′(t), w(t)〉U ′,U .
Thus, in this situation, the associated boundary form b : W ×W → K is given by

b(v, w) = 〈v(T ), w(T )〉H − 〈v(0), w(0)〉H.

Thus it is possible to define B1, B0 : W → H by B0w = w(0) and B1w = w(T ). Indeed, we have
that for all u ∈ W,u(t) = t

T
u(t)+T−t

T
u(t) with (t 7→ t

T
u(t)) ∈ kerB0 and (t 7→ T−t

T
u(t)) ∈ kerB1.

So we have W = kerB0 + kerB1.
Now let A ∈ L(V, V ′) be coercive.

Example 5.2: Let a : [0, T ]× U × U → K be a function such that

a) a(t, ·, ·) : U × U → K is sesquilinear;

b) |a(t, v, w)| ≤ c‖v‖U‖w‖U for all t ∈ [0, T ] and for all v, w ∈ U ;

c) a(·, v, w) : [0, T ] → K is measurable for all v, w ∈ U ;

d) Re a(t, v, v) ≥ α‖v‖2U for all t ∈ [0, T ], v ∈ U and some α > 0.

For v, w ∈ V = L2(0, T ;U), let

〈Av, w〉 =
∫ T

0

a(t, u(t), v(t))dt.

Then A ∈ L(V, V ′) is coercive.

In the following it is important to know the trace space of W .

Lemma 5.3: For all x ∈ H there exists u ∈ W such that u(0) = x.

Proof One has H = [V ′, V ]1/2, the complex interpolation space, which coincides with the real
interpolation space (V ′, V )1/2,2. The latter coincides with the trace space by [15, Proposition
1.2.10]. � Now we obtain from Theorem 4.17 the following result on existence and uniqueness.
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Theorem 5.4: Let Φ ∈ L(H) be a contraction and let y0 ∈ H . Let f ∈ L2(0, T ;U ′). Then there
exists a unique u ∈ H1(0, T ;U ′) ∩ L2(0, T ;U) such that

u′ +Au = f (5.1)

and
u(0)− Φ∗u(T ) = y0. (5.2)

For Φ = 0, Theorem 5.4 establishes well-posedness for an initial-value problem. It is due to J.
L. Lions [14], see also [20, III Proposition 2.3 p.112] or [10, XVIII.3 Théorème 2].
If Φ = Id and y0 = 0 we obtain a periodic problem. If A is selfadjoint then Theorem 5.4 is
given in [20, II. Proposition 2.4] where selfadjointness is used in the proof on page 112. The
general case given here is new and depends on our perturbation result Proposition 3.8.

Remark 5.5: The condition that Φ be a contraction cannot be improved, even in the scalar case.
Let U = H = R, a > 0 and Φ∗ = ea.

a) The problem
u′ + au = 1 on [0, 1], u(0) = Φ∗u(1)

has no solution in H1(0, 1). Indeed, if u ∈ H1(0, 1) solves the differential equation, then
(ueat)′ = eat. Thus there exists a constant c ∈ R such that u(t) = 1

a
+ ce−at. Then we get

Φ∗u(1) =
ea

a
+ c 6= u(0) =

1

a
+ c

for every choice of c.

b) The problem u′ + au = 0, u(0) = Φ∗u(1) has as solution u(t) = ce−at for all c ∈ R.
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