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Simple Summary: Abiotic and biotic stresses are a major challenge for agricultural production. To
deal with stressed conditions, many techniques, including the use of nanoparticles (NPs), could be
considered to mitigate the adversities mediated by these stresses. The application of silicon (Si) and
Si-NPs has emerged as a common agronomic technique as it is regarded as a sustainable option.
Because of their innumerable benefits, the usage of Si and Si-NPs has attracted a great deal of interest.
As a result, their application has been found to minimize the detrimental effects of various stressors
by modifying morpho-physiological indices in plants and rhizospheric microbiome characteristics.

Abstract: Silicon (Si) is considered a non-essential element similar to cadmium, arsenic, lead, etc.,
for plants, yet Si is beneficial to plant growth, so it is also referred to as a quasi-essential element
(similar to aluminum, cobalt, sodium and selenium). An element is considered quasi-essential if it
is not required by plants but its absence results in significant negative consequences or anomalies
in plant growth, reproduction and development. Si is reported to reduce the negative impacts of
different stresses in plants. The significant accumulation of Si on the plant tissue surface is primarily
responsible for these positive influences in plants, such as increasing antioxidant activity while
reducing soil pollutant absorption. Because of these advantageous properties, the application of
Si-based nanoparticles (Si-NPs) in agricultural and food production has received a great deal of
interest. Furthermore, conventional Si fertilizers are reported to have low bioavailability; therefore,
the development and implementation of nano-Si fertilizers with high bioavailability could be crucial
for viable agricultural production. Thus, in this context, the objectives of this review are to summarize
the effects of both Si and Si-NPs on soil microbes, soil properties, plant growth and various plant
pathogens and diseases. Si-NPs and Si are reported to change the microbial colonies and biomass,
could influence rhizospheric microbes and biomass content and are able to improve soil fertility.
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1. Introduction

Silicon (Si) is not regarded as a necessary element for plants; however, some recent
studies reported this element to be beneficial for plant growth. Si is one of the most abundant
elements in the Earth’s crust and around 70% of soil mass is made up of Si [1–3]. Exposure
to Si imparts uncountable beneficial effects on various plants, especially in gramineous
and cyperaceous plants [4,5]. In addition, it could alleviate the detrimental consequences
of biotic and abiotic stresses that directly or indirectly increase the plants’ resistance to
external adversities. For example, it promotes the elongation of roots and alleviates salt
stress by reducing NaCl accumulation [2,6]. Si plays a crucial role in several physiological
and metabolic processes in plants [7]. For example, in a study, positive effects (enhanced
seed germination and chlorophyll content) of Si-based nanoparticles (Si-NPs) on Zea mays
were observed [8]. Exogenous treatment with Si-NPs reduced salt stress in Glycine max
by increasing the antioxidant activities, K+ concentration and non-enzymatic components,
and decreasing lipid peroxidation, reactive oxygen species (ROS) generation and Na+

intracellular concentration [9].
Recently, Si-NPs have been documented as a novel Si source that can be used to

enhance plant resistance under unfavorable environmental conditions. However, the
shape, size and other characteristics of Si-NPs are reported to impact directly or indirectly
the responses of plants to Si-NP application [10]. Regarding the efficacy of Si-NPs, it is
observed that the soil-applied were more effective than foliar-applied Si-NPs [11]. Si-NP
treatment improved the growth and oil content in Cymbopogon citratus [12]. It enhanced the
growth of Avena sativa and led to lignification in plant tissues [13]. It was reported that a
nano-silica fertilizer improved the leaf area index, net assimilation rate, relative growth
rate and yield of G. max [14]. Seed priming and seed soaking of Helianthus annuus in Si-NPs
improved seedlings’ shoot and root length, biomass and vigor index [15].

Seed germination and seedling growth of Agropyron elongatum have been found to be
improved by silicon dioxide nanoparticles (SiO2-NPs) [16]. Nano-SiO2-based fertilizers
are determined to be beneficial for crops as they minimize fertilizer loss such as nitrogen
and phosphorus by controlled release [17]. The application of SiO2-NPs could improve the
photosynthetic pigments and increase the photosynthetic rate [2,3,18]. It also improved
seed germination in Solanum lycopersicum; the net photosynthetic rate, photochemical
efficiency, photosystem II (PSII) activity, electron transport rate, carbonic anhydrase activity,
photochemical quenching, stomatal conductance and transpiration rate in Indocalamus
barbatus and Cucurbita pepo [19,20]; and it also increased the growth, chlorophyll and
carotenoid contents of Solanum tuberosum tubers [21]. Plants absorb Si in the form of mono-
silicic acid and it accumulates in different tissues [18,22], and its deposition may occur in
the leaf, stem and vascular tissues [1,23] and cuticles of plants [24]. In plants, there are Si
transporters in the cell membrane (low silicon; Lsi1, Lsi2) and these transporters function
as influx and efflux transporters [1,25,26].

After a review of the literature, some authors observed that Si is beneficial in control-
ling a variety of plant diseases by triggering the host defense system [27,28]. The effects
of nano-silica (i.e., synthesized using O. sativa husk) and conventional Si on the bacterial
population and seed germination of Z. mays, as well as the soil properties, have been
evaluated [29]. Soil treated with sodium silicate hindered the colonization of plant-growth-
promoting rhizobacteria, whereas the application of nano-silica enhanced the bacterial
population. As a result, Si could boost plant resistance to bacteria, fungus, nematodes and
viruses [30]. Si is reported to modulate the signaling systems that normalize the expression
of defense genes related to proteins, the structural modification of cell walls, antimicro-
bial compound synthesis, hypersensitivity responses and hormone synthesis [31]. It was
found that Si stimulated resistance in Solanum lycopersicum against Ralstonia solanacearum
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by upregulating defense gene expression [32]. The application of Si changed 26 proteins
in S. lycopersicum inoculated with R. solanacearum, and it also changed the protein level
in the host plants [33]. It was also noticed that the application of Si reduced the infec-
tion of Magnaporthe oryzae in O. sativa [34]. The application of SiO2-NPs was observed in
the management of a Meloidogyne incognita, Pectobacterium betavasculorum and Rhizoctonia
solani-mediated disease complex in Beta vulgaris L.; thus, its potential to reduce disease
severity has been revealed [30]. Therefore, these research outcomes have shown that Si
could reduce pathogen invasion in plants [35].

Therefore, this review article aims to assess the impacts of Si and Si-NPs on soil
microbes, soil properties and their effect on plant growth and diseases.

2. Source of Si and Si-NPs and Their Uptake

Si is an element with a Van der Waals radius of 210 pm that exists as different forms
in the environment, while Si nanoparticles are synthesized particles that are smaller than
100 nm with special properties. The unique characteristics of Si nanoparticles have made
them effective reagents in agricultural applications. Unlike bulk silicon, a very dull material,
ultrasmall silicon nanoparticles are extremely efficient at ameliorating soil properties [36].
Si could be found in the soil solution in a variety of forms, including monomeric (H4SiO4;
monosilicic acid), oligomeric and polysilicic acid. The monomeric form is readily bioavail-
able for plants [25]. Plants are recorded to accumulate Si up to a significant amount and
earlier studies revealed that there are three different modes of Si uptake, namely active,
passive and rejective [37]. In the active mode, plants absorb Si at a faster rate than wa-
ter, resulting in a lower Si concentration in the uptake solution; yet, in passive mode, Si
absorption by plants is similar to water uptake. Thus, in passive uptake, there are no
discernible changes in the concentration of Si in the uptake solution. Plants that uptake
using a rejective mode prefer to exclude Si, as seen by the increasing concentration of Si
in the uptake solution [38]. However, there is still great room for further investigation to
depict the mechanisms involved in the different uptake modes of Si.

In the roots, after the uptake of Si-NPs, their transport to other aerial parts is reported
by three routes viz., cell wall pores, the apoplastic pathway and the symplastic pathway
(Figure 1). The Si-NPs are recorded to travel either intracellularly or extracellularly before
they enter the xylem, according to the existing literature [39]. It was noted that the critical
value of soil-available Si content for O. sativa is 300 mg SiO2 kg−1.

Based on Si uptake accumulation, plants are categorized as high, intermediate and
low Si accumulators. It is assumed that in high Si accumulators, the amount of H4SiO4
taken up by active mechanisms is greater than concentrations taken up by mass flow due
to the high density of Si transporters in roots and shoots expediting H4SiO4 movement
through root cell membranes (Figure 1) [37,40]. The transport of Si is a multi-step process
and, from roots to shoots, silicic acid crosses the plasma membrane at biological pH. The
first Si transporter (Lsi1) was discovered in O. sativa and belongs to the Nod26-like major
intrinsic protein subfamily [41]. According to the findings of previous studies, the site of
Si uptake is in the mature regions of the roots rather than the root tips due to the higher
expression of Lsi1 genes than the apical region. Further, the expression of Lsi1 in rice at
various growth stages was found to be transiently increased around the heading stage. It
has also been shown that the maximal amount of Si was taken up during the reproductive
stage from panicle initiation to heading in O. sativa [42].

As Lsi1 are responsible for the influx of silicic acid from external media to cells,
similarly, for the efflux of Si, there are Lsi2 transporters. The mechanism of Si transport
mediated by Lsi2 is an energy-dependent active process, i.e., led by the proton gradient.
Lsi2 is expressed in the roots, similarly to Lsi1 [43]. Thus, the expression of Lsi1 and Lsi2
is reported to be regulated in a similar manner. Both Lsi1 and Lsi2 are localized at the
exodermis and the endodermis cells of the roots. The main difference is in their localization;
Lsi1 is localized on the distal side, while Lsi2 is localized on the proximal side of the
exodermis and the endodermis cells [44]. Si influx has also been identified in other plants,
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e.g., Z. mays (ZmLsi1) and Hordeum vulgare (HvLsi1), whilst very few efflux transporters in
other plants have been identified so far [45].

Figure 1. Diagrammatic presentation of silicon transport in plants.

In the soil solution, certain dissolved silicon acid forms organic and inorganic com-
pound complexes. Silcretes are a form of derived soil that contains a significant amount
of Si. In petrocalcic horizons, the Si amount is much smaller than in silcrete (8%), while
it is significantly lower in minerals of certain heavily weathered oxisols such as bauxites
and ferricretes [46]. Most of the soils are rich in Si; however, some soils are poor, especially
the plant-available type of Si [47]. The oxisols and ultisols are heavily weathered, leached,
acidic and also display poor base saturation [48]. Meanwhile, the histosols possess a
great deal of organic matter and very low mineral content [49]. Furthermore, soils with
a high proportion of quartz sand and those that have been subjected to long-term crop
productivity have low plant-available Si [46,50].

Among these, silica is listed as one of the crystalline types of Si in the solid phase
fraction [51]. The primary and secondary crystalline silicates, which are abundant in
mineral soils formed from rocks and sediments, were previously the only crystalline
types [52]. Quartz and disordered silica make up the majority of silica products. The Si
fractions in the solid phase also include amorphous, poorly crystalline and microcrystalline
shapes [52,53]. The liquid and adsorbed phases of Si are identical, with the exception that
the liquid phase components are dissolved in the soil solution, while the adsorbed phase
components are retained on soil particles as well as on Fe and Al oxides/hydroxides.

Si content and its abundance in soils are closely dependent on processes of soil
formation and consequently on the soil type. Except for organic soils (histosols), most
mineral soils are made up of sands (mostly SiO2), different forms of primary crystalline
(e.g., olivine, augite, hornblende, quartz, feldspars-orthoclase, plagioclase, albite, and
mica) and secondary minerals of silicate including clay minerals such as illite, vermiculite,
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montmorillonite, chlorite and kaolinite. These silicate compounds are, in most cases,
not very soluble and are biogeochemically inert. In soil, polymerized silicic acid is only
partly water-soluble, while H4SiO4 is the water-soluble type of Si. Water-soluble Si can
be adsorbed onto the surfaces of inorganic, organic and organic–inorganic complexes in
soil [25,47,52,54].

3. Impacts of Si-NPs on Soil Properties

Natural nano-sized materials found in soil include Si, Al, K, Na, Ca, Fe, Ba, Sr, Rb,
as well as silicates, carbonates, sulphates, oxides, hydroxides and phosphates [55]. The
soil properties viz., soil texture, pH, soil salinity (EC), soil organic matter, cation exchange
capacity (CEC), etc., control the fate and behavior of any element in the soil rhizosphere [56].
Moreover, the rhizosphere itself can also regulate the movement of the elements. Thus,
cultivated plants also might impact the uptake of the element in the soil, even when the
elements are in nano-form (Table 1).

Three main types of Si in the solid state in the soils are amorphous (i.e., poorly
crystalline), microcrystalline and crystalline. The crystalline types of Si are primarily used
as silicates and silica materials (primary and secondary), and they account for the majority
of Si in the solid phase. The primary mineral-bearing silicates inherent in soils are contained
in sand and silt particles, while the secondary silicates are found in clay particles formed
by pedogenic processes involving phyllosilicates and Al-Fe oxides/hydroxides [52]. The Si
exists as poorly crystalline and microcrystalline types, such as short-range ordered silicates,
chalcedony and secondary quartz [52].

Amorphous forms are biogenic and lithogenic and are available at quantities of up to
30 mg g−1 total soil. The biogenic types, which consist of plant residues and the remains
of microorganisms, are called biogenic opals. These biogenic opals are formed when the
soluble Si in the soil is supersaturated [57]. Plants accumulate Si as phytoliths in their leaves,
culms and stems, while microorganisms contribute as microbial and protozoic Si [52,58].
The solubility of various Si types in the solid stage significantly affects the concentration
of their soil solution. The solubility of minerals containing silica depends on the density
and range of the silica tetrahedrals [57,59]. Further, amorphous silica is anticipated to
contribute to higher solubility than quartz. However, quartz is extremely stable and
thermodynamically resistant to weathering; its solubility ranges from 0.10 to 0.25 mM
Si [57]. Thus, if the quartz is abundant in residual compounds, then its contribution to Si in
soil solution is negligible [60].

The solubility of both amorphous and crystalline silica is documented to be nearly
constant at around pH 2.0 and 8.5. However, their solubility quickly increases at pH 9.0
as the concentration of H4SiO4 decreases in the soil solution due to the dissociation of
H4SiO4 into H3SiO4

− and H+ at pH 9.0 [61]. This allows the crystalline and amorphous
silica to dissolve in order to replenish or buffer the decreased concentration of H4SiO4
in the soil solution [47]. The plant-available forms of Si present in soil range from 10 to
100 mg kg−1. In soil, less than 20 mg kg−1 Si is considered a Si deficit and the amendment
of Si is recommended [54].

Table 1. The impacts of soil properties on cultivated plants and their links to applied nano-silica.

Details of Si-NPs Soil Properties

Main Effect ReferenceNano-Si Dose and
Type of Preparation Size (nm) Texture pH SOM

(g kg−1)
EC

(dS m−1)

Chemical nano-SiO2
(1.5 mM mg Si L−1) 20–35 Clay loam 7.84 10.3 1.03

Improves growth and oil
yield of coriander under

drought stress
[62]

Chemical nano-SiO2
fertilizer (2%) 80–90 Silty clay 7.99 9.2 1.1 Records the best yield of

wheat under water deficit [63]

Chemical nano-SiO2
(60 mg L−1) 20 Conditioned soil (data not available)

Mitigates stress in rice by
enhancing antioxidant

system
[64]
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Table 1. Cont.

Details of Si-NPs Soil Properties

Main Effect ReferenceNano-Si Dose and
Type of Preparation Size (nm) Texture pH SOM

(g kg−1)
EC

(dS m−1)

Chemical chitosan-Si-
nano-fertilizer (from
0.01 to 0.16%, w/v)

100 Clay 8.20 13.78 0.56

Enhances maize growth
and yield by inducing

antioxidant defense
system

[65]

Chemical thiol
functionalized
nano-SiO2 (4%)

20 Silt loam 7.93 13.78 NA

Remediates polluted soil
from heavy metals and

improves growth of
lettuce

[66]

Biological Si-NPs (2.5
and 5.0 mmol L−1) 38.78 Loamy 7.30 6.88 7.81

Promotes common bean
under saline and polluted

soil with Pb, Ni and Cd
[67]

Chemical SiO2-NPs
(0.75, 1.5 and 2.25 mM) 10–20 Sandy loam 7.10 NA 1.20

Mitigates Cd stress by
improving antioxidants
and growth of summer

savory

[68]

Chemical Si-NPs
(100–200 mg kg−1) 8.3 Clay loam 6.60 7.0 0.70

The 200 mg kg−1 nano-Si
+ PGPB recorded highest

level of Si-soluble and
exchangeable fractions

under water deficit stress

[69]

Chemical SiO2-NPs
(150–2000 mg kg−1) 10 Commercial

soil 7.35 NA NA

Treatment of 500 mg kg−1

lowered the content of As
and Cd to 70 and 50%

under the water regimes
in rice shoots

[70]

Chemical SiO2-NPs (at
2 mM) 30 Clay loam 7.40 2.80 1.7

Improves maize yield
under applied nano-Si in

combined with Zn
nutrient

[71]

Surface-modified
nano-silica (3.0%) 18.0 NA 7.61 16.9 NA

Immobilizes bioavailable
As, Pb, Cd, by 85, 97.1,

80.1%, res. in polluted soil
[72]

Chemical nano-Si
complex with glycine,
glutamine, histidine

10–40 Silty loam 7.02 NA 0.62
Nano-Si enhances growth
of feverfew under drought
stress at foliar 1.5 or 3 mM

[73]

Chemical Si-NPs (at 1
and 2 mM) 20 Loamy 8.08 8.0 1.11

Improves antioxidants to
protect sugar beet plants

from water deficiency
stress

[74]

Chemical mercapto-
functionalized

nano-silica (0.2 to
0.1%)

20–30 NA 8.12 19.6 NA

Increases wheat grain
yield by 33.5% and soil

dehydrogenase by 43.4%
under Cd stress

[75]

Chemical nano-SiO2
(500 mg kg−1) NA Sandy loam 7.67 2.54 NA

Enhances remediation by
Erigeron annuus L. grown
in polluted soil by PAH

(150 mg kg−1)

[76]

Abbreviations: PGPB: plant-growth-promoting bacteria (Pseudomonas19 sp.); NA: not available; PAH: phenanthrene.

In addition, Si-NPs can inhibit the leaching and movement of heavy metals in soil. For
instance, it was confirmed that the application of Si-NPs subsequently improves the stable
concentrations of Cu, Zn and Ti oxides [77]. To provide detailed insights, in Table 1, we
summarize the research outcomes of recent studies that demonstrate the influences of soil
properties in cultivated plants and their association with the application of Si-NPs.
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4. Effects of Si-NPs on the Rhizospheric Microbiome

Soil is a reservoir of water and nutrients for plants and is, therefore, indispensable
for the plants’ normal functional processes. The surrounding area of the roots of plants
is known as the rhizosphere. In the rhizosphere complex, biotic and abiotic relations
exist. Thus, the rhizospheric microbiome comprises many microbial organisms, includ-
ing archaea, viruses, fungus, bacteria as well as eukaryotic microorganisms, which are
directly linked to the plant roots in a compact region of soil. It is also documented that
approximately up to 1011 microbial cells g−1 of the root are present in this rhizospheric unit,
accounting for more than 30,000 prokaryotes [78]. Moreover, the rhizospheric component of
the soil is characterized as a zone that is influenced by exudates and roots’ secretions, which
are vital for plant growth and health along with the microbial community [79]. The release
of a variety of soil metabolites viz., organic acids, inorganic acids, siderophores, sugars,
vitamins, amino acids, purines, nucleosides, polysaccharide mucilage, etc., is reported by
different researchers. Thus, this subset of soil microbial diversity is reported to be sensitive
to numerous chemical substances, including NP application and other physicochemical
changes in the rhizosphere that subsequently favor the selective enrichment of certain
microbial communities over others [80].

The microflora present in this region tends to be pathogenic as well as beneficial [81].
The beneficial rhizospheric microorganisms play a pivotal role in the immobilization/cycling
of nutrients along with the detoxification or degradation of pollutants, which results in
improved soil health (Figure 2).

The rhizosphere contains advantageous microorganisms such as phosphate-solubilizing
bacteria (PSB) and nitrogen-fixing microbes [82]. These microbes are plant growth promot-
ers and thus can exert modulatory impacts on the biological and chemical properties of
soils. Silicate-solubilizing bacteria (SSB) are also present in soil and they could convert
insoluble silicates into soluble Si and alleviate Si content in the soil. Thus, the rhizosphere
plays a vital role in the maintenance of soil properties and plant health [83]. In this context,
treatment with Si-NPs and conventional Si is found to enhance the microbial biomass in
the soils and the availability of Si to plants. Further, Si-NPs play an important role in
influencing microbial biota and soil nutrient content; hence, their application is recorded to
promote the growth of crops [84]. In this study, the PSB population (3.8 × 104 CFU g−1) was
observed to increase after Si-NP treatment, whilst there was no impact on the population
of SSB. Likewise, in a study, it was reported that the application of Si-NPs had a significant
impact on soil nutrient content and microbial biota and thus improved Z. mays growth [11].

Nitrogen-fixing bacteria have a high population among the Si amendment soil. The
foliar application of SiO2-NPs increased the bacterial communities of Paenibacillus and
Rhodobacteraceae [85], and also improved Chaetomium fungal genera in the rhizosphere.
Moreover, in this study, the comparative profusion of the genus Paenibacillus in the phylum
Firmicutes was approximately 16% higher in the soil with NPs than in the control. The genus
of Paenibacillus includes plant growth-promoting bacteria, which encourage plant growth
via different mechanisms, such as nutrient solubility, biological nitrogen-fixing, induction
of systemic resistance and plant growth regulators and organic acid production [86]. These
microbes are vital for the nitrogen and carbon cycles. Si- and SiO2-NP uptake and their
impact on soil microbial colonies require a thorough and deep investigation. Thus, treat-
ment with Si and Si-NPs can be beneficial due to their direct or indirect influences on the
economic productivity of plants.

Soil metabolites are important intermediates in many soils’ productivity and fertility
processes. Thus, shifts in the root exudate will affect the plants’ health and growth levels
or composition by attenuating soil fertility. In this context, soil metabolomics provides a
potential method for soil characterization and the evaluation of the soil microbial com-
munity’s metabolic status, as shown in a high-performance study on small molecular
organic compounds [87]. In another study, it was indicated that the rhizosphere metabolite
profile was significantly influenced following the foliar exposure of SiO2-NPs [85]. The
considerable increase in the relative profusion of numerous metabolites, including sugar
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and sugar alcohol, fatty acids and small organic acids, confirmed the influences of NPs on
carbon and nitrogen pools in the rhizosphere. Others noted the impact of some NPs such as
Si-NPs and their results indicated that oversaturation of these NPs reduced dehydrogenase
and urease activity as well as bacterial and archaeal amoA gene abundance in soil [81]; it
was confirmed that a mixture of Cu, Ag and Si decreased C and N biomass and changed
the microbial community structure in soil [88].

Figure 2. Schematic representation of interactions of Si-NPs with rhizospheric microbiome.

5. Effects of Si-NPs on Plant Growth and Development

Nanotechnology is reported as a cutting-edge technique that has been proven to be
more efficient for phytoremediation along with its application in stress mitigation [2,89].
Si-NPs may improve crop yield by influencing nutrient availability in rhizospheric soil and
absorption by the plants. Si-NPs improve the nutrient bioavailability in plants, thus acting
as a primary reason for the increased plant growth following NP application [6,90]. Due to
the importance of Si in plants, similar to other essential macronutrients, as an agricultural
nutrient, scientists have focused on applying Si-NPs in the soil in order to improve plant
growth. Moreover, Si deficiency has been linked to nutritional imbalances, resulting in
poor growth [59].

In a recent study, it was found that Si-NP priming of different seeds viz., T. aestivum,
Pisum sativum and Brassica improved the parameters of seed germination and seedling
growth [91]. Several reports have revealed that Si-NPs act as a fertilizer [3,20,92]. In
addition, treatment with Si-NPs reduced the negative effects of salt stress on vegetative
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growth and soil relative water content, resulting in a considerable improvement in plant
height, fresh and dry weights, total yield and seed quality. The various indices related to Z.
mays plants’ physiology and anatomy were considerably altered after exposure to Si-NPs
at 20–40 nm with a high surface area.

The impact of Si-NPs on plants is affected by various factors, i.e., the size, shape,
application phase and biomechanical and physical properties [10]. According to some
reports, Si-NPs can communicate directly with plants, altering their morphological behavior
and physiological activity in different ways [20]. Si-NPs, on the other hand, have been
shown in numerous experiments to be harmful to plants [54,93]. Therefore, some important
studies involving plants and Si-NPs are shown in Table 2 to provide a better understanding.

Table 2. Role of silicon nanoparticles in plant growth and development.

Structure of
Si-NPs Crop Concentration Adaptive Mechanism Reference

SiO2
(chemical) Saccharum officinarum L. 300 ppm

Improves leaf photosynthetic responses,
chlorophyll fluorescence yield,
photosynthetic pigments and

photosynthetic apparatus (PS II) during
chilling stress

[94]

SiO2
(chemical) Glycine max L. 100–2000 ppm

Si-NPs increase plant performance and
reduce the uptake of Hg in epidermis
and pericycle of roots and stems. They

enhance photosynthetic content and
antioxidant enzyme activities in

soybean during exposure to mercury
(Hg)

[95]

SiO2
(chemical) Hordeum vulgare L. 125–250 ppm

Improves plant development, green
pigments, photosynthetic activities,

plant osmolyte and metabolite profiles,
cellular damage and membrane stability
indicators, and antioxidant enzymes are

all affected.

[96]

Si-NPs
(chemical) Oryza sativa L. 1 mM Enhances gene expression and

transportation of cadmium to vacuoles. [97]

SiO2
(commercial) Trigonella foenumL. 0–2.5 mM

Increases nanoparticle translocation,
accumulation, Si uptake, cell wall
lignification and the formation of

stress-related enzymes during metal
toxicity (cadmium)

[98]

Si-NPs
(chemical) Triticum aestivumL. 10 µM Mitigates negative effects of UV

radiation on plants [99]

Mesoporous
Si-NPs (chemical)

Triticum spp. L.,
Lupinus polyphyllusL. 200–2000 ppm

Nanoparticles upregulate leaf gas
exchange responses and growth

development performance of plants
[100]

SiO2
(commercial) Pisum sativum L. 10 µM Protects plant seedlings and increases

enzymatic activities [101]

Si-NPs can also act as a strengthening substance that is responsible for improving
disease resistance by preventing fungal, bacterial and nematode infections. Si-NPs can
also reduce the transpiration rate of the plant, rendering it more resistant to limited water
supply (drought), high temperature and humidity [18,46,93,102]. Except for a few scientific
papers indicating that Si-NPs have a negative impact on plant performance, most of the
studies found Si-NPs to be beneficial or ineffectual for plants by either promoting plant
growth or having no impact [7,11,102].

Plants produce naturally mineralized NPs for proper growth and development when
subjected to different stresses [93]. The use of Si-NPs ensures better plant performance and
yield during unfavorable environmental conditions. The high surface-to-volume ratio of Si-
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NPs is reported to increase their reactivity and biochemical activities, which is responsible
for their favorable effects on plants [89,103].

6. Role of Si and Si-NPs in Abiotic Stress Tolerance in Plants

Drought, heat, salinity, heavy metals and salt contamination of soil are all critical
environmental stressors that severely affect the productivity and quality of agricultural
species around the world. Plants’ physiology, morphology and biochemistry are altered
by abiotic stresses, resulting in reduced growth and economic output [18,93,104]. Thus,
Si-NPs have been reported to serve indispensable roles by mitigating different abiotic
stress-induced consequences [4,70,105,106]. For example, metal toxicity can be minimized
and plant growth can be improved by the amendment of Si-rich materials in soils [18,93].
Si-NPs can significantly decrease the heavy metal content in plants. In a study, it was
reported that the application of Si-NPs diminished the content of Pb in the different tissues
of Brassica chinensis L. as compared to the control [85]. These results suggest that the
exogenous application of Si-NPs can minimize heavy metal uptake in plants [97,107].

Cadmium is one of the most hazardous toxic metals on the planet [108]. It inhibits plant
growth, photosynthesis and yield [2,109]. Si-NP treatment of Cd-stressed plants increased
the plant growth and biomass [110]. Moreover, it was concluded that Si-NP treatment of the
soil could promote plant growth indicators and photosynthesis while lowering Cd levels
in plants’ tissues, particularly in grains that are or are not experiencing drought stress [30].
Moreover, Si-NPs lessened oxidative stress, as evidenced by decreased H2O2 generation,
electrolyte leakage and malondialdehyde levels, as well as increasing superoxide dismutase
and peroxidase activity. Further, Si treatment protects cell membranes from injury [111].
The application of Si-NPs reduced reactive oxygen species (ROS) levels and boosted
antioxidative defense components in Cd-stressed plants [68].

The foliar application of Si-NPs significantly reduced the accumulation of Pb in the
leaves of O. sativa [110]. Treatment with Si-NPs in soil was also used as a unique strategy to
alleviate Al phytotoxicity in acidic soils, and a thorough view of the cellular and biochemical
mechanisms behind this mitigation process was provided. Arsenic is a metalloid that is
toxic to plants and adversely affects plant growth [112,113]. Si-NP treatment reduced As
stress-mediated vulnerabilities in O. sativa [114]. Si-NPs were used to prevent damage and
restore the photosynthetic mechanism. Si-NPs also enhanced the activities of antioxidant
enzymes to counter ROS generation to reestablish cellular homeostasis [112].

Here, we consider the consequences of chromium stress-induced responses in plants.
Generally, Cr is reported to accumulate in plants, causing changes in photosynthetic activ-
ity, nutrient uptake and plant development [115]. Si-NPs are reported to improve P. sativum
seedlings’ growth under Cr stress. It was found that the application of Si-NPs to Cr-stressed
plants ameliorated Cr-induced phytotoxicity symptoms, i.e., pigment content, chlorophyll
fluorescence, proteins level and nutrient status, resulting in improved growth [112]. The re-
duction in Cr accumulation in plant organs is followed by an improvement in physiological
indices. The ability of Si to upregulate the expression of osNAC proteins, which are respon-
sible for the upregulation of genes involved in stress tolerance, proline synthesis, soluble
sugar biosynthesis and redox homeostasis, could be a reflection of Si-NPs’ increased stress
tolerance. The significant roles of Si-NPs in mitigating metal toxicity in maize (Zea mays
L.) plants were recorded, which resulted in enhanced photosynthesis responses, reduced
oxidative stress, i.e., ROS, H2O2 and malondialdehyde (MDA) content, and maintained
antioxidative defense mechanisms. The application of Si-NPs decreased MDA content
during metal toxicity and positively improved cell wall breadth in the epidermis of roots,
while also downregulating metal ion absorption and the accumulation rate [99]. Si-NPs are
easily absorbed by plants as compared to inorganic Si and protect against excess metal ion
toxicity in crop plants [116].

Si-NPs significantly boost the germination and vigor index in Cucurbita plants during
saline stress conditions [20]. Si is reported to balance the homeostasis of ions and mitigate
abiotic stresses. Si-NPs provided a favorable environment for seed germination under
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salinity stress [19]. The enhancement of growth indices might reflect the photosynthetic
functions of Si-NPs, which is needed for photosynthetic leaf gas exchange and the assim-
ilation of nitrate [104,117,118]. However, Si-NPs have been implicated in the synthesis
of proteins and amino acids and in nutrient uptake; the strength and rigidity of plants
are improved through Si-NP deposition in different plant organs [43]. Si-NPs increased
the morphological and photosynthetic traits of plants via enhancing organic compound
production, i.e., proteins, pigments and phenols, relative to bulk particles [4,12]. Under
unfavorable environmental conditions, plants synthesize compatible solutes, i.e., glycine
betaine and proline, to maintain the osmotic potential within plant cells. The level of
proline is enhanced with Si-NPs. Proline is a universal osmoprotectant, acts as an antiox-
idative and energy source [119] and regulates the expression of genes, leading to osmotic
adjustment [19,120].

Si-NPs have a potential role in S. lycopersicum germination (%), time, index, vigor
index, fresh and air-dried biomass of plants [20]. Under saline conditions, the amendment
of nutrient media with Si-NPs enhanced the seed germination and seedling early growth
of Lens culinaris [15]. Si-NPs decreased the effects of saline toxicity in Ocimum basilicum
and enhanced the fresh and dry mass of plant organs, leaf chlorophyll index and proline
level [46]. In another study, Si-NPs were used to enhance the photosynthetic capacity
and mitigate the seed germination and plant growth inhibition caused by salinity in S.
lycopersicum plants [121]. Salt-stressed genes, i.e., AREB, TAS14, NCED3 and CRK1, were
found to increase their expression in S. lycopersicum subjected to saline conditions with
the application of Si-NPs, while RBOH1, APX2, MAPK2, ERF5, MAPK3 and DDF2 genes
were noted to be downregulated [121]. Si triggered modifications in plant cell metabolism,
a decline in heavy metal uptake by roots and the exudation of specific chemicals such as
organic acids and phenols [122,123].

In addition, plants can use Si-NPs as a carrier of important macronutrients (N, P
and K) and as a slow-release Si supplement to help them cope with salt stress [124].
Thus, in this context, these materials can be considered growth-promoting agents. Si
supplementation is considered to inhibit salinity in plants, so Si-NPs have been used to
improve salinity tolerance in plants [124]. Moreover, for regulated release, NPK fertilizers
and Si-NPs should be carried inside the core of controlled-release fertilizers, which can be
coated with chitosan as the first semipermeable coating and sodium alginate and kaolin as
the outermost superabsorbent coating [125]. These artificial beds could slowly disperse
nutrients, allowing plants to hold enormous amounts of water, manage salinity and thrive
in drought circumstances [124].

7. Role of Si and Si-NPs in Plant Biotic Stress Management

The application of Si decreases biotic stress severity in many plants. Si has the potential
to help plants to avoid pathogen penetration by forming physical barriers and suppressing
pathogen colonization by boosting systemic acquired resistance. Moreover, Si protects
plants by strengthening the host plant’s cuticle and cell walls, as well as producing silicate
papillae, which impede the spread of pathogenic structures. Si accumulation in the cell
wall of the host plant to form a double layer of silica makes the penetration of pathogens
difficult [126]. Si accumulation can lead to the deposition of a double layer beneath the
cuticle, preventing pathogen penetration and lowering disease incidence.

Si may play an active prophylactic role in plants. Phenolic-like compounds were
found at a high level in Si-treated plants upon infection with pathogens [127]. Si binds
with pectins, polyphenols and hemicellulose in cell walls and improves the mechanical
strength of the plant cell wall [112,128]. Si provides rigidity to the cell wall. Si treatment in
rice induced resistance against pathogens and reduced blast disease [126]. In T. aestivum
leaves, Si application inhibited the hyphae penetration of Pyricularia oryzae, while, in the
absence of Si, fungal hyphae penetrated successfully [105]. Similarly, Si treatment in O.
sativa reduced the infection and leaf lesions caused by Rhizoctonia solani and Pyricularia
grisea [129,130]. Moreover, P. oryzae penetration in O. sativa tissues decreased after Si



Biology 2021, 10, 791 12 of 19

treatment and it was suggested that the presence of the Si layer helped in blocking or
delaying pathogen penetration [131]. Si reduced sheath blight disease of O. sativa in treated
plants [129]. After treatment with Si, the number of Podosphaera fuliginea colonies was
reduced by 43–94% in Cucumis sativus [132]. Si treatment reduced the blast lesion length in
O. sativa by 40–80% [130].

Si-NPs exhibit potent antibacterial properties against a variety of plant diseases and
are thought to help in the regulation of soil N levels [133]. Si-NPs could hamper the
growth of pathogenic fungus (Fusarium oxysporum f. sp. niveum) [134] and may reduce
the growth of plant parasitic nematodes (Meloidogyne incognita), bacteria (Pectobacterium
betavasculorum) and fungus (Rhizoctonia solani) [30]. In a study, Si-NP treatment improved
the growth of P. sativum, but the highest growth was recorded when SiO2-NPs and N-
fixing bacteria (Rhizobium leguminosarum) were applied together [135]. SiO2-NP treatment
reduced the bacterial blight disease complex of P. sativum caused by a plant parasitic
nematode (Meloidogyne incognita) and bacterium (Pseudomonas syringae pv. pisi). Detailed
studies of the effects of Si and Si-NPs on plant biotic stress management, especially diseases,
are listed in Table 3.

Table 3. Effects of Si and Si-NPs on plant biotic stress management.

Nanoparticle Type Pathogen Concentration Effect Reference

Si-NPs Fusarium oxysporum f.
sp. niveum 100 mg L−1 Enhances biomass and fruit yield

in comparison to untreated plants [134]

SiO2-NPs

Meloidogyne incognita,
Pectobacterium

betavasculorum and
Rhizoctonia solani

100, 200 mg L−1 Si-NPs were most effective against
test pathogens [30]

SiO2-NPs

Xanthomonas campestris
pv. carotae,

Pectobacterium
carotovorum and fungi

Rhizoctonia solani,
Fusarium solani and

Alternaria dauci

100 mg L−1 Inhibits the growth of all tested
pathogens [23]

SiO2-Ag composites Xanthomonas oryzae >pv.
oryzae

50, 100 and 200 µg
mL−1

Displays antibacterial activity
against the tested pathogen [136]

Si Puccinia melanocephala 400, 1200 mg L−1 Reduces disease in sugarcane and
induces resistance [137]

Si-NPs Fusarium oxysporum
and Aspergillus niger 5, 10, 15 kg ha−1 Reduces the growth of pathogens [138]

Si Hemileia vastatrix 0.24 and 0.30 mg kg−1
Inhibits infection of fungus

Hemileia vastatrix and
urediniospore germination

[28]

Si Colletotrichum
sublineolum 2 mmol L−1 Reduces growth by around 20%,

acervuli found smaller in size [139]

Si Podosphaera pannosa 1 mg mL−1
Reduces disease severity by 46%

and induces phenolic acid
formation

[123]

Si Fusarium sulphureum 100 and 200 mM Decreases pathogen growth and
reduces disease [140]

SiO2 Sclerosporagraminicola 5, 10, 15 mM Inhibits the growth of the fungal
pathogen [141]

8. Molecular Mechanism of Si and Si-NP Uptake and Their Applications
in Agriculture

In plants, variations in the accumulation of Si occur. In the bryophytes and pteri-
dophytes, high Si accumulation occurs as compared to the angiosperms. In angiosperm
families, the genera of Poaceae and Cyperaceae have been reported to accumulate high
amounts of silicon, whilst the Urticaceae, Commelinaceae and Cucurbitaceae families have
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intermediate silicon accumulation [142,143]. Rice belongs to the Poaceae family and it can
accumulate around 10% Si. Hodson et al. [143] performed a meta-analysis that recorded
the following order of Si accumulation in various plant groups (from high concentrations
to low): liverworts > horsetails > clubmosses > mosses > angiosperms > gymnosperms >
ferns. Silicon uptake in plants is attributed to specific transporters.

Si is present in the soil and its uptake and transport in plants depend on the chemical
composition and plant roots. Si is taken up by plant roots as monosilicic acid and trans-
ported to the shoots. Deposition of Si mostly occurs in leaf epidermal cells, in the outer
epidermal cells of inflorescence bracts and in the root endodermis. Due to the transpiration,
Si concentrates and polymerizes into colloidal silica gel (SiO2·nH2O). Uptake of Si in rice
plants is faster, indicating the presence of Si transporters across the cell membrane [142].
To understand the molecular mechanism of Si uptake and transport in rice, a mutagenic
approach has been used and it was found that the transporter gene Lsi1 plays an important
role in Si transport. Shortly after the discovery of Lsi1, a second Si transporter gene, Lsi2,
was discovered. Lsi2 has 9–12 transmembrane domains and it is an anion transporter
coupled with a proton antiport. The discovery of these transporters has explained the
molecular mechanism of Si uptake and transport in rice plants [1,2,142]. In Z. mays plants,
Si uptake and deposition were mediated by ZmLsi1 and ZmLsi6 genes. ZmLsi1 is found to
play a key role in the uptake of Si by roots. ZmLsi6 is located in the parenchyma cells of Z.
mays leaves and it is responsible for Si unloading in xylem. Homologs of Lsi2 and HvLsi2
genes have also been reported in H. vulgare plants [144].

Si and Si-NPs have promising applications in agriculture. Si-NPs have a beneficial
impact in the agriculture sector and they may improve yields, leading to increased pro-
ductivity [145]. Moreover, additional applications of Si-NPs include pesticides, fertilizers
and herbicides. Si-NPs could be used to develop NPs. Several studies have shown that
nano-silica increases the efficiency and durability of pesticides. Si-NPs could be used for
the target-specific delivery of fertilizers and herbicides. Mesoporous silica NPs with a
pore size of 2–10 nm served as an efficient delivery vector for boron, urea and nitrogenous
fertilizers. Li et al. [146] observed that Si-NPs increased the photostability and sustained
the release of an avermectin pesticide.

9. Conclusions and Future Perspectives

The benefits of Si to a variety of crops have long been known, implying the importance
of Si fertilization as a long-term option for viable agriculture. Agricultural lands with
rigorous cultivation systems, particularly those that are naturally low in soluble Si soils,
can be modified with Si-rich materials to ensure productivity. Recently, the use of Si in
soil fertilization has emerged as a common agronomic practice in several parts of the
world. Despite significant advances in Si research and soil science in the development
and standardization of multiple processes for the extraction and quantification of various
soil Si fractions, their use in soil fertility and nutrient management is limited. The soil
interpretation test could be used to assess whether Si-based fertilization is necessary or
not, but it does not provide the exact Si concentration required to increase Si availability
to the optimal limit, nor does it indicate whether the affected plant will respond to Si
fertilization. Thus, in the near future, soil science-based Si research studies are expected
to make substantial progress in current soil Si knowledge and provide crop-producing
fertilization recommendations.
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