The importance of selecting Bayesian nonparametric survival models: application to the estimation of unemployment durations - CNRS - Centre national de la recherche scientifique Access content directly
Journal Articles International Journal of Economic Performance - المجلة الدولية للأداء الاقتصادي Year : 2022

The importance of selecting Bayesian nonparametric survival models: application to the estimation of unemployment durations

Hamimes Ahmed
  • Function : Author
  • PersonId : 1208161

Abstract

The Kaplan-Meier and Fleming-Harrington estimator in the frequentist approach are functional methods. We compare in this article the different Bayesian structures of the Kaplan-Meier and Fleming-Harrington estimators through the information deviance criterion in a real example describes the duration of unemployment of 1064 individuals in an employment agency. employment at the local employment agency in Ain El Benian. This study clearly shows the importance of bayesian model selection in duration models.
Fichier principal
Vignette du fichier
The importance of selecting Bayesian nonparametric survival models application to the estimation of unemployment durations.pdf (1.03 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

hal-03905250 , version 1 (21-12-2022)

Licence

Attribution

Identifiers

  • HAL Id : hal-03905250 , version 1

Cite

Hamimes Ahmed. The importance of selecting Bayesian nonparametric survival models: application to the estimation of unemployment durations. International Journal of Economic Performance - المجلة الدولية للأداء الاقتصادي, 2022, 5 (2), https://www.asjp.cerist.dz/en/article/206532. ⟨hal-03905250⟩

Collections

CNRS INSMI
1 View
3 Download

Share

Gmail Facebook Twitter LinkedIn More