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CONVERGENCE OF IPDG FOR COUPLED TIME-DEPENDENT

NAVIER-STOKES AND DARCY EQUATIONS

NABIL CHAABANE, VIVETTE GIRAULT, CHARLES PUELZ, BEATRICE RIVIERE

Abstract. A numerical method is proposed and analyzed for the coupled time-dependent Navier-

Stokes equations and Darcy equations. Existence and uniqueness of the solution is obtained under

a small data condition. A priori error estimates are derived. Numerical examples confirm the

theoretical convergence rates.

Keywords: multiphysics, error analysis, Beavers-Joseph-Sa↵man

1. Introduction

The coupling of free flow and porous media is an important model problem arising from several

fields, such as energy, environment and bio-medicine. While the case of coupled Stokes and Darcy

equations has been extensively studied mathematically and numerically (see a non-exhaustive list

in the introduction of [6]), the case of coupled Navier-Stokes and Darcy equations has been the

subject of very few publications. We refer to [15] for the steady-state coupling; both existence and

uniqueness of a weak solution are proved and a priori error estimates for a numerical error are

derived. Other related works are [13, 14, 2, 9, 10].

This article is dedicated to the numerical analysis for a discretization of the time-dependent

Navier-Stokes equations coupled with Darcy equations. The interface conditions are the Beavers-

Joseph-Sa↵man conditions. To our knowledge, the only previous publications on the time-dependent

coupling are [7, 8]; however the interface conditions in those two papers include inertial e↵ects,

which makes the analysis easier both for the weak solution and the numerical solution. In a more

recent work, we showed existence and uniqueness of a weak solution to the coupled time-dependent

Navier-Stokes and Darcy problem [6]. The present work is a continuation of this analysis, in the

sense that we propose a discrete solution and we show optimal a priori error estimates between

the weak solution and the numerical solution. We choose to discretize the equations by locally
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mass conservative interior penalty discontinuous Galerkin methods, of arbitrary order. We remark

that the proof of existence and uniqueness of the discrete solution, which requires a small data

condition, is not straightforward and follows a technical and convoluted argument, which can be

traced back to [18]. The proof for the error estimates is also non-standard in the sense that one has

to carefully bound terms with the appropriate norms. To our knowledge, the current paper is the

first one to analyze convergence of a scheme for the time-dependent coupled case with the Beavers-

Joseph-Sa↵man equations. While the obtained theoretical results are what we would expect, one

important contribution of this paper is on the analysis itself. Our analysis is valid in 2D and 3D,

and allows for rough (non-smooth) interface.

An outline of the paper follows. Section 2 introduces the equations and the discrete spaces. The

following section describes the numerical method, and is followed by a section on useful inequalities.

Section 5 contains the proof for existence and uniqueness of the numerical solution. A priori error

estimates are derived next. They are confirmed by numerical tests in Section 7. Concluding remarks

follow.

2. Model problem

Let ⌦ ⇢ Rd, d = 2, 3, be a bounded connected domain with a Lipschitz–continuous boundary,

partitioned into two disjoint subdomains, ⌦1 and ⌦2, so that ⌦ = ⌦1 [ ⌦2. The free flow region

and the porous medium are ⌦1 and ⌦2 respectively. We assume that each subdomain ⌦i also has

a Lipschitz–continuous boundary. Let �12 denote the interface between ⌦1 and ⌦2. The interface

�12 may be a polygonal curve or surface and does not have to be smooth. Let �i be the exterior

boundary of ⌦i, i = 1, 2. The boundary �2 is partitioned into two disjoint open sets, �2 = �2D[�2N ,

and we assume that |�1| > 0 and |�2D| > 0, where | · | denotes the measure.

We denote by n⌦i the exterior unit vector normal to �i and by n12 the unit normal vector to

�12 pointing from ⌦1 to ⌦2. In the case d = 3, we choose a pair of orthonormal tangent vectors,

⌧ j

12, j = 1, 2, on the tangent plane to �12. For two-dimensional domains, the vector ⌧ 1
12 is the unit

tangent vector to �12.

We are interested in studying a fully discrete discontinuous Galerkin approximation to the fol-

lowing equations posed in each subdomain (the equalities below hold almost everywhere in the
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domains or on the boundaries, according to the context):

@u

@t
�r · (2µD(u)� p1I) + u ·ru = f1, in ⌦1 ⇥ (0, T ), (1)

r · u = 0, in ⌦1 ⇥ (0, T ), (2)

�r ·Krp2 = f2, in ⌦2 ⇥ (0, T ), (3)

with the symmetric gradient D(u) = 1
2 (ru+ru

T ). Equations (1), (2) represent the incompressible

Navier-Stokes equations, where u and p1 are the fluid velocity and pressure respectively in ⌦1. The

fluid viscosity is denoted by µ > 0. Equation (3) represents the single phase flow equation in a

porous medium, where p2 is the fluid pressure in ⌦2. The matrix K is the ratio of the permeability

matrix to the fluid viscosity. It is assumed to be symmetric positive definite, with eigenvalues

uniformly bounded above and bounded below away from zero. This system is complemented by

the boundary and the interface conditions below. First we prescribe standard conditions on �i:

u = 0, on �1 ⇥ (0, T ), (4)

p2 = 0, on �2D ⇥ (0, T ), (5)

Krp2 · n⌦2 = 0, on �2N ⇥ (0, T ). (6)

On the interface �12, we prescribe the following interface conditions:

u · n12 = �Krp2 · n12, on �12 ⇥ (0, T ), (7)

�
(�2µD(u) + p1I)n12

�
· n12 = p2, on �12 ⇥ (0, T ), (8)

u · ⌧ j

12 = �2µGj
�
D(u)n12

�
· ⌧ j

12, 1  j  d� 1, on �12 ⇥ (0, T ), (9)

where

G
j =

µ↵

(K⌧ j

12, ⌧
j

12)
1/2

.

The interface conditions (7)–(9) have been discussed extensively in the literature for the steady-state

coupling of porous media and free flows [3, 21, 10, 12, 15]. The condition (9) is the Beavers-Joseph-

Sa↵man condition. We note that ↵ > 0 is a given constant, usually obtained from experimental

data.

Finally, to simplify the discussion, we prescribe a zero initial condition:

u = 0, in ⌦1 ⇥ {0}. (10)
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The relevant spaces for the exact solution (u, p1, p2) are

X = {v 2 H
1(⌦1)

d ; v = 0 on �1}, (11)

M1 = L
2(⌦1), (12)

M2 = {q 2 H
1(⌦2) ; q = 0 on �2D}. (13)

For the discretization, we assume that the domain has a polygonal or polyhedral boundary, ac-

cording to the dimension, so that it can be entirely triangulated. This simplifies substantially the

numerical analysis. Let Eh

i
be a regular family of conforming triangulations of ⌦i, i = 1, 2, with

maximum mesh size h, made of triangles or tetrahedra, according to the dimension, regular in the

sense of Ciarlet [11], i.e., there exists a constant ⌘ > 0, independent of h, such that

8E 2 E i

h
,

hE

%E
 ⌘, (14)

where hE is the diameter of E and %E is the diameter of ball inscribed in E. For the sake of brevity,

we only consider the case when the traces of Eh

i
on the interface �12 coincide; but the analysis below

extends easily to the case of non matching grids. We denote by �h

i
the set of faces of Eh

i
interior to

⌦i, for i = 1, 2. For each interior face e we associate a fixed unit normal vector ne. For a boundary

face e 2 �1 [ �2 the unit vector ne coincides with the outward normal vector. For a face in �12,

we set ne = n12, so that ne is the outward normal to ⌦1. If a normal vector ne points from the

element E1 to the element E2, we define the jump and average of discontinuous functions as

['] = '|E1 � '|E2 , {'} =
1

2
('|E1 + '|E2) .

By convention, for a face on the boundary �1 [ �2, the jump and average are defined to be equal

to the trace of the function on that face.

To define the finite element spaces, take two integers, k1 � 1 and k2 � 1, and set

X
h =

�
v 2 L

2(⌦1)
d; 8E 2 Eh

1 , v|E 2 Pk1(E)d
 
, (15)

M
h

1 =
�
q 2 L

2(⌦1); 8E 2 Eh

1 , q|E 2 Pk1�1(E)
 
, (16)

M
h

2 =
�
q 2 L

2(⌦2); 8E 2 Eh

2 , q|E 2 Pk2(E)
 
. (17)
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The discrete DG spaces Xh and M
h

2 are equipped with mesh dependent norms denoted respectively

by k · kX and k · kM2 ,

8v 2 X
h
, kvkX =

0

@2
X

E2Eh
1

kD(v)k2
L2(E) +

X

e2�h
1[�1

�e

he

k[v]k2
L2(e)

1

A
1/2

, (18)

8q 2 M
h

2 , kqkM2 =

0

@
X

E2Eh
2

kK1/2rqk2
L2(E) +

X

e2�h
2[�2D

�e

he

k[q]k2
L2(e)

1

A
1/2

, (19)

where he denotes the diameter of e and �e denotes a positive parameter, possibly depending on e,

but independent of h, and bounded below and above,

0 < �min  �e  �max.

The norm on M
h

1 is the L
2 norm,

8q 2 M
h

1 , kqkM1 = kqkL2(⌦1). (20)

We end this section by introducing additional notation. We define the inner-product of two functions

f, g on a domain O ⇢ Rd, d = 2, 3, as

(f, g)O =

Z

O

fg.

This notation is extended to vector functions. The classical Sobolev spaces are denoted by W
k,m(O)

and by H
k(O) if m = 2. Finally the usual Sobolev norms and semi-norms are denoted by kfkHk(O)

and |f |Hk(O) respectively.

3. Numerical scheme

The discretization of problem (1)–(10) makes use of the following discrete bilinear forms:

aS(u,v) =2µ
X

E2Eh
1

(D(u),D(v))E � 2µ
X

e2�h
1[�1

({D(u)ne}, [v])e

+ 2✏1µ
X

e2�h
1[�1

({D(v)ne}, [u])2 + µ

X

e2�h
1[�1

�e

he

([u], [v])e,
(21)

bS(v, q) = �
X

E2Eh
1

(q,r · v)E +
X

e2�h
1[�1

({q}, [v] · ne)e, (22)
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aD(p, q) =
X

E2Eh
2

(Krp,rq)E �
X

e2�h
2[�2D

({Krp · ne}, [q])

+ ✏2

X

e2�h
2[�2D

({Krq · ne}, [p])e +
X

e2�h
2[�2D

�e

he

([p], [q])e,
(23)

where the parameters ✏i, i = 1, 2, take the value 1, 0, or �1, according to the choice of DG method:

non symmetric, incomplete, or symmetric. We use an upwind discretization of the nonlinear con-

vection term,

cNS(z,u;v,w) = `h(u;v,w) + nh(z,u;v,w), (24)

where

`h(u;v,w) =
X

E2Eh
1

(u ·rv,w)E +
1

2

X

E2Eh
1

(r · u,v ·w)E � 1

2

X

e2�h
1[�1

([u] · ne, {v ·w})e, (25)

nh(z,u;v,w) =
X

E2Eh
1

(|{u} · nE |(vint � v
ext),wint)@E (z)\�12

, (26)

and @E (z) denotes the portion of @E where flow enters E,

@E (z) = {x 2 @E ; {z} · nE < 0}, (27)

and the superscript int (respectively, ext) refers to the interior value to E (respectively, exterior

value to E) at any point x of @E). Finally, the time derivative is approximated by backward Euler

in time and the nonlinear term is linearized by time–lagging. Denote the time step by �t > 0, and

let ti = i�t, with 0  i  NT , such that tNT = T .

The numerical scheme is the following: Starting from u
0
h
= 0, find (un+1

h
, p

n+1
1h , p

n+1
2h ) 2 X

h ⇥

M
h

1 ⇥M
h

2 , for all 0  n  NT such that

(
u
n+1
h

� u
n

h

�t
,v)⌦1 + aS(u

n+1
h

,v) + bS(v, p
n+1
1h ) + aD(pn+1

2h , q) + cNS(u
n

h
,u

n

h
;un+1

h
,v)

+(pn+1
2h ,v · n12)�12 � (un+1

h
· n12, q)�12 +

d�1X

j=1

� 1

Gj
(un+1

h
· ⌧ j

12,v · ⌧ j

12)�12

= (fn+1
1 ,v)⌦1 + (fn+1

2 , q)⌦2 , 8(v, q) 2 X
h ⇥M

h

2 , (28)

bS(u
n+1
h

, q) = 0. 8q 2 M
h

1 . (29)

The discretization of the spatial operators in (1)–(3) by the DG forms aS , bS and aD has been

described in previous works on the steady-state coupling. Readers can refer for instance to [15].

The discretization of the time derivative by a first order finite di↵erence is trivial.
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In view of (29), it is convenient to introduce the kernel

V
h =

�
v 2 X

h ; 8q 2 M
h

1 , bS(v, q) = 0
 
. (30)

4. Useful inequalities

In this section, we recall inequalities that will be used in the subsequent estimates. All constants

are independent of h and the functions. To simplify, the range of exponents related to Sobolev’s

inequalities are given in the case d = 3. First, we have the equivalence of norms,

8vh 2 X
h
, kvhkX  C

0

@
X

E2Eh
1

krvhk2L2(E) +
X

e2�h
1[�1

�e

he

k[vh]k2L2(e)

1

A
1/2

, (31)

8vh 2 X
h
,

� X

E2Eh
1

krvhk2L2(E)

�1/2  CkvhkX . (32)

This last inequality comes from Proposition 4.7 in [15], see also [4, 5]. Next, we have the trace

inequalities,

for 2  r  4, 8vh 2 X
h
, kvhkLr(�12)  C

0

@
X

E2Eh
1

krvhk2L2(E) +
X

e2�h
1[�1

�e

he

k[vh]k2L2(e)

1

A
1/2

,

(33)

for 2  r  4, 8qh 2 M
h

2 , kqhkLr(�12)  CkqhkM2 . (34)

Similarly, we have Sobolev’s imbeddings [1, 17],

for 2  r  6, 8vh 2 X
h
, kvhkLr(⌦1)  C

0

@
X

E2Eh
1

krvhk2L2(E) +
X

e2�h
1[�1

�e

he

k[vh]k2L2(e)

1

A
1/2

,

(35)

for 2  r  6, 8qh 2 M
h

2 , kqhkLr(⌦2)  CkqhkM2 . (36)

When r = 2, the constant in (36) will be denoted by C1. By combining (32) with (35) or (33), we

also obtain,

for 2  r  6, 8vh 2 X
h
, kvhkLr(⌦1)  CkvhkX , (37)

for 2  r  4, 8vh 2 X
h
, kvhkLr(�12)  CkvhkX . (38)

When r = 2, the constant in (37) will be denoted by C2.
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Lastly, here are some inequalities satisfied by the discrete forms. The bilinear forms have the

following ellipticity properties [20],

8vh 2 X
h
, C3µkvhk2X  aS(vh,vh), (39)

8qh 2 M
h

2 , C4kqhk2M2
 aD(qh, qh), (40)

provided the coe�cients �e are chosen appropriately when ✏i = 0 or �1. Moreover, whatever the

coe�cients �e, the forms aD and aS are continuous in the discrete spaces,

8vh,wh 2 X
h
, aS(vh,wh)  C5µkvhkXkwhkX , (41)

8ph, qh 2 M
h

2 , aD(ph, qh)  C6kphkM2kqhkM2 . (42)

For the nonlinear form, instead of ellipticity, we have (see Lemma 4.11 in [15])

8uh,vh 2 X
h
, cNS(uh,uh;vh,vh) �

1

2
(uh · n12,vh · vh)�12 . (43)

Using (38), we easily obtain, for a constant C7:

8vh,wh 2 X
h
,

1

2
(vh · n12,wh ·wh)�12  C7kvhkXkwhk2X . (44)

We also have the following continuity with respect to the last three variables (see (4.23) in [15]):

8uh,vh,wh, zh 2 X
h +X, cNS(zh,uh;vh,wh)  C8kuhkXkvhkXkwhkX . (45)

5. Analysis of the discrete problem

5.1. Preliminary results. Problem (28)–(29) may be reduced by eliminating p
n+1
1h as follows:

Starting from uh = 0, find (un+1
h

, p
n+1
2h ) 2 V

h ⇥M
h

2 such that

(
u
n+1
h

� u
n

h

�t
,v)⌦1 + aS(u

n+1
h

,v) + aD(pn+1
2h , q) + cNS(u

n

h
,u

n

h
;un+1

h
,v)

+(pn+1
2h ,v · n12)�12 � (un+1

h
· n12, q)�12 +

d�1X

j=1

� 1

Gj
(un+1

h
· ⌧ j

12,v · ⌧ j

12)�12

= (fn+1
1 ,v)⌦1 + (fn+1

2 , q)⌦2 , 8(v, q) 2 V
h ⇥M

h

2 . (46)

In the above we used the notation:

f
n+1
1 (·) = f1(t

n+1
, ·), f

n+1
2 (·) = f2(t

n+1
, ·).

We start with a useful property of the nonlinear term.
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Lemma 5.1. For all uh,vh,wh 2 X
h, we have

cNS(uh,uh;uh,uh � vh)� cNS(vh,vh;vh,uh � vh)

� 1

2
(vh · n12, (uh � vh) · (uh � vh))�12 � C9kuhkXkuh � vhk2X ,

(47)

|cNS(uh,uh;uh,wh)� cNS(vh,vh;uh,wh)|  C10kuh � vhkXkwhkXkuhkX , (48)

with constants C9 and C10 independent of h.

Proof. In order to obtain (47), we rewrite, using the notation wh = uh � vh

cNS(uh,uh;uh,uh � vh)� cNS(vh,vh;vh,uh � vh) = cNS(vh,vh;wh,wh) + cNS(uh,wh;uh,wh)

+ nh(uh,vh;uh,wh)� nh(vh,vh;uh,wh).

Using (43), (45), and Proposition 4.10 in [15], we obtain (47).

In order to obtain (48), we rewrite the di↵erence as follows:

cNS(u,u;u,w)�cNS(v,v;u,w) = `h(u;u,w)� `h(v;u,w) + nh(u,u� v;u,w)

+ nh(u,v;u,w)� nh(v,v;u,w)

= `h(u� v;u,w) + nh(u,u� v;u,w) + nh(u,v;u,w)� nh(v,v;u,w)

= cNS(u,u� v;u,w) + nh(u,v;u,w)� nh(v,v;u,w).

The proof follows from the continuity of cNS (see (45)) and Proposition 4.10 in [15]. ⇤

The next theorem, which is the most technical part of this work, proves an important bound for

the interaction term on the interface. It will be used in the existence proof of the discrete solution

for controlling the discrete time derivative after one time step, see Proposition 5.8.

Theorem 5.2. There is a constant C11, independent of h such that for all uh 2 V
h and for all

q2h 2 M
h

2 ,

|(q2h,uh · n12)�12 |  C11kq2hkM2kuhkL2(⌦1). (49)

Proof. Observe that (49) follows immediately from Green’s formula when q2h is in H
1(⌦2) and

uh in H0(div,⌦) with divuh = 0. Although, Green’s formula cannot be applied here because the

discretization is nonconforming, this observation suggests to regularize the discrete functions in

order to use Green’s formula.
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First, we examine the local e↵ect of Green’s formula on functions of Mh

1 . Let q1h be a function

of Mh

1 and let uh be a function of Xh. Using the definition of bS and Green’s formula in each

E 2 Eh

1 , we infer

(q1h,uh · n12)�12 = �bS(uh, q1h) +
X

E2Eh
1

(rq1h,uh)E �
X

e2�h
1

([q1h], {uh} · ne)e.

If in addition uh satisfies (29), then we have

(q1h,uh · n12)�12 =
X

E2Eh
1

(rq1h,uh)E �
X

e2�h
1

([q1h], {uh} · ne)e.

Finally, by using an equivalence of norms, we easily obtain:

|(q1h,uh · n12)�12 |  CkuhkL2(⌦1)

0

@
X

E2Eh
1

krq1hk2L2(E) +
X

e2�1
h

1

he

k[q1h]k2L2(e)

1

A
1/2

. (50)

Therefore, if we able to relate functions of Mh

2 to suitable functions of Mh

1 , we should be able

to obtain (49). This is achieved in three steps: regularizing the functions of Mh

2 , extending the

regularized functions continuously to H
1(⌦1), and discretizing the extended functions in M

h

1 .

1) The functions q2h of Mh

2 are regularized by means of a Scott & Zhang interpolant [22], but since

the functions q2h are smooth in each E, averages can be replaced by pointwise values, as follows.

For a vertex a that does not belong to the interface �12, we associate an element Ea 2 Eh

2 such

that a is a vertex of Ea and choose for nodal value at a the value q2h|Ea(a). For a vertex a 2 �12,

we associate an element Ea 2 Eh

2 such that Ea has a face on �12 and a is a vertex of this face and

similarly choose for nodal value at a the value q2h|Ea(a). Then the interpolant Rh(q2h) 2 H
1(⌦2) is

the globally continuous function that is piecewise P1 in each element E and takes the above nodal

values at the vertices a of Eh

2 . Note that its trace Rh(q2h)|�12 only depends on q2h|�12 . The operator

Rh is stable in the sense that there is a constant C independent of h such that

8q2h 2 M
h

2 , kRh(q2h)kH1(⌦2)  Ckq2hkM2 . (51)

This uniform stability of Rh is established in Lemma 5.3.

2) As Rh(q2h) belongs to H
1(⌦2), we apply the standard extension operator E : H1(⌦2) ! H

1(⌦)

to Rh(q2h), so that E(Rh(q2h)) 2 H
1(⌦), coincides with Rh(q2h) in ⌦2,

kE(Rh(q2h))kH1(⌦)  CkRh(q2h)kH1(⌦2), (52)
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with a constant C independent of h, and

E(Rh(q2h)) = Rh(q2h), on �12. (53)

3) The extended function E(Rh(q2h)) is approximated in ⌦1 by a function of Mh

1 defined as follows.

For any q in H
1(⌦1), for each element E 2 Eh

1 that does not lie on the interface �12, we choose

Sh(q)|E =
1

|E|

Z

E

q;

for an element E 2 Eh

1 that has a face e on �12, we choose

Sh(q)|E =
1

|e|

Z

e

q.

Note that in both cases, Sh preserves the constant functions in each E, i.e. if q|E = C, then

Sh(q)|E = C. Now, we write

|(q2h,uh · n12)�12 |  |(q2h � Sh(q2h),uh · n12)�12 |+ |(Sh(q2h),uh · n12)�12 |, (54)

where, to simplify, Sh(q2h) stands for Sh(E(Rh(q2h))). Let us start with the second term. As

Sh(q2h) 2 M
h

1 is a piecewise constant, (50) reduces to

��(Sh(q2h),uh · n12)�12

��  CkuhkL2(⌦1)

0

@
X

e2�h
1

1

he

k[Sh(q2h)]k2L2(e)

1

A
1/2

 CkuhkL2(⌦1)

0

@
X

e2�h
1

1

he

k[Sh(q2h)� E(Rh(q2h))]k2L2(e)

1

A
1/2

. (55)

We have for any face e ⇢ �h

1 :

k[Sh(q2h)�E(Rh(q2h))]kL2(e)  k(Sh(q2h)�E(Rh(q2h)))|E�kL2(e)+k(Sh(q2h)�E(Rh(q2h)))|E+kL2(e),

where E� and E+ are elements of Eh

1 sharing the face e. Since Sh preserves the piecewise constants

in each E, we have for any q 2 H
1(E), when passing to the reference element Ê

k(Sh(q)� q)|E�kL2(e)  C |e|1/2|q̂|
H1(Ê)  C

� |e|
|E�|

�1/2
hE� |q|H1(E�).

This yields

1

he

k(Sh(q2h)� E(Rh(q2h)))|E�k2L2(e)  CkrE(Rh(q2h))k2L2(E�),
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with a similar bound for the term in E+, and thus we have

0

@
X

e2�h
1

1

he

k[Sh(q2h)� E(Rh(q2h))]k2L2(e)

1

A
1/2

 CkrE(Rh(q2h))kL2(⌦1).

Then from (55) and the stability of E (see (52)) and Rh (see (51)), we conclude that

��(Sh(q2h),uh · n12)�12

��  CkuhkL2(⌦1)krE(Rh(q2h))kL2(⌦1)  CkuhkL2(⌦1)kq2hkM2 . (56)

Next we insert Rh(q2h) in the first term of (54),

|(q2h � Sh(q2h),uh · n12)�12 |  |(q2h �Rh(q2h),uh · n12)�12 |+ |(Rh(q2h)� Sh(q2h),uh · n12)�12 |.

By construction, on any face e ⇢ �12, since Sh preserves the constant functions on e, we have

kq � Sh(q)kL2(e)  C|e|1/2|q̂|H1(ê),

for su�ciently smooth functions q. Here q is the trace on e of Rh(q2h) 2 P1(E2), where E2 is the

element of Eh

2 adjacent to e. Therefore,

|q̂|H1(ê) = | \Rh(q2h)|H1(ê)  C| \Rh(q2h)|H1(Ê).

Hence, we have on one hand

kRh(q2h)� Sh(q2h)kL2(e)  C
� |e|
|E2|

�1/2
hE2 |Rh(q2h)|H1(E2).

On the other hand, denoting by E1 the element of Eh

1 adjacent to e, we have

kuh · n12kL2(e)  C
� |e|
|E1|

�1/2kuhkL2(E1).

By multiplying these two estimates, we obtain

��(Rh(q2h)� Sh(q2h),uh · n12)e
��  C|Rh(q2h)|H1(E2)kuhkL2(E1).

Therefore, denoting by Di the layer of elements of Eh

i
adjacent to �12, i = 1, 2, and applying (59)

below, we infer

��(Rh(q2h)� Sh(q2h),uh · n12)�12

��  C|Rh(q2h)|H1(D2)kuhkL2(D1)  Ckq2hkM2kuhkL2(D1). (57)

It remains to evaluate (q2h�Rh(q2h),uh ·n12)�12 . For this, by proceeding exactly as in Lemma 5.3

below, we easily derive that

��(q2h �Rh(q2h),uh · n12)�12 |  Ckq2hkM2kuhkL2(D1). (58)
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Then (49) follows from (54), (56)–(58). ⇤

Lemma 5.3. The operator Rh, defined above, is stable in the following sense: There exists a

constant C, independent of h, such that

8q2h 2 M
h

2 , kRh(q2h)kH1(⌦2)  Ckq2hkM2 . (59)

Proof. In each E of Eh

2 , we insert the standard Lagrange interpolant of q2h, Lh(q2h) 2 P1,

Rh(q2h)� q2h = Rh(q2h)� Lh(q2h) + Lh(q2h)� q2h.

So

(
X

E2Eh
2

kr(Rh(q2h)� q2h)k2L2(E))
1/2 (

X

E2Eh
2

kr(Rh(q2h)� Lh(q2h))k2L2(E))
1/2

+ (
X

E2Eh
2

kr(Lh(q2h)� q2h)k2L2(E))
1/2

.

The classical Lagrange interpolation results, the regularity of the family of triangulations, and a

local inverse inequality yield

kr(Lh(q2h)� q2h)kL2(E)  ChE |q2h|H2(E)  C |q2h|H1(E).

Similarly

kLh(q2h)� q2hkL2(E)  ChE |q2h|H1(E).

Hence

(
X

E2Eh
2

kr(Lh(q2h)� q2h)k2L2(E))
1/2 + kLh(q2h)� q2hkL2(⌦2)  C(

X

E2Eh
2

krq2hk2L2(E))
1/2

. (60)

To bound the term r(Rh(q2h)� Lh(q2h)) in E, we write

(Rh(q2h)� Lh(q2h))|E =
d+1X

i=1

(Rh(q2h)(Ai)� Lh(q2h)(Ai))'i,

where Ai, 1  i  d+1, are the vertices of E and 'i the corresponding nodal basis functions. Thus,

r(Rh(q2h)� Lh(q2h))|E =
d+1X

i=1

(Rh(q2h)(Ai)� q2h(Ai))r'i.

Since

kr'ikL2(E)  C(i)
|E|1/2
%E

,
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where C(i) is a constant that depends only on the reference element Ê, we conclude that

kr(Rh(q2h)� Lh(q2h))kL2(E)  C
|E|1/2
%E

d+1X

i=1

|Rh(q2h)(Ai)� q2h(Ai)|. (61)

For a given vertex Ai of E, there is a sequence of elements, say E1, E2, ..., Em, such that E = E1,

Ai is a vertex of all E1, E2, ..., Em, Rh(q2h)(Ai) = q2h|Em(Ai) and each consecutive pair of elements

share an interior face (i.e. a face that belongs to �h

2 ) denoted by ej , 2  j  m. The regularity

assumption on the family of meshes imply that the integer m is bounded by a constant, say M ,

that is independent of E and h. The di↵erence q2h �Rh(q2h) can be re-rewritten as follows:

q2h(Ai)�Rh(q2h)(Ai) = q2h|E1(Ai)� q2h|Em(Ai)

= q2h|E1(Ai)� q2h|E2(Ai) + · · ·+ q2h|Em�1(Ai)� q2h|Em(Ai).

Each di↵erence in the above sum is bounded by Lemma 5.4 below,

|q2h(Ai)�Rh(q2h)(Ai)|  C

mX

j=2

1

|ej |1/2
||[q2h]||L2(ej). (62)

Therefore by substituting (62) into (61), using the regularity (14) of the family of triangulations,

and combining with (60), we have

(
X

E2Eh
2

kr(Rh(q2h)� q2h)k2L2(E))
1/2  Ckq2hkM2 . (63)

The same argument gives

kRh(q2h)� q2hkL2(⌦2)  C hkq2hkM2 , (64)

and by a triangle inequality, this yields (59). ⇤

The next lemma is written in the setting of Mh

2 , but it holds in a general situation.

Lemma 5.4. Let e be a face of �h

2 , A a vertex of e and let E+ and E� be the two elements adjacent

to e. There exists a constant C, independent of h such that

8q 2 M
h

2 , |q(A)|E+ � q(A)|E� |  C
1

|e|1/2
k[q]kL2(e).

Proof. Let us transform the union E+ [ E� by means of a continuous, piecewise a�ne mapping,

into the union of two reference unit tetrahedra Ê+ [ Ê�. As usual, the composition is denoted by

a hat. We have

|q(A)|E+ � q(A)|E� | = |q̂|
Ê+

(Â)� q̂|
Ê�

(Â)| = |[q̂](Â)|  k[q̂]kL1(ê).
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Then equivalence of norms yields

k[q̂]kL1(ê)  Ĉk[q̂]kL2(ê)  C|e|�1/2k[q]kL2(e).

⇤

5.2. Existence and uniqueness of the numerical solution. Although, at each time step, (46)

is a square linear system in finite dimension, proving the nonsingularity of its matrix without

restricting the time step is not straightforward. This is due to the fact that the nonlinear term, not

being antisymmetric (see (43) and (44)) cannot be eliminated on the interface. Let us start with

a first su�cient condition for uniqueness. To simplify the discussion, all proofs are written in the

case d = 3.

Lemma 5.5. Let 1  n  NT � 1. If at step n, (un

h
, p

n

2h) is given satisfying

kun

h
kX  µC3

C7
, (65)

then, if the solution (un+1
h

, p
n+1
2h ) of (46) exists, then it is unique.

Proof. Assume that at step n+1, (46) has two solutions (un+1
h

, p
n+1
2h ) and (ũn+1

h
, p̃

n+1
2h ) for a given

(un

h
, p

n

2h); then their di↵erence (wn+1
h

, z
n+1
2h ) solves

1

�t
(wn+1

h
,v)⌦1 + aS(w

n+1
h

,v) + aD(zn+1
2h , q) + cNS(u

n

h
,u

n

h
;wn+1

h
,v) + (zn+1

2h ,v · n12)�12

�(wn+1
h

· n12, q)�12 +
d�1X

j=1

� 1

Gj

w
n+1
h

· ⌧ j

12,v · ⌧ j

12)�12 = 0, 8(v, q) 2 V
h ⇥M

h

2 . (66)

By testing (66) with (v, q) = (wn+1
h

, z
n+1
2h ) and using (39), (40), (43), and (44), we obtain

1

�t
kwn+1

h
k2
L2(⌦1)

+ µC3kwn+1
h

k2
X
+C4kzn+1

2h k2
M2

+
d�1X

j=1

k 1

G
1/2
j

w
n+1
h

· ⌧ j

12k2L2(�12)

 C7kun

h
kXkwn+1

h
k2
X
.

Then (65) implies wn+1
h

= 0 and z
n+1
2h = 0. ⇤

Checking (65) for arbitrary n is not easy because it consists in a bound for the maximum in

time in the norm k · kX , whereas the standard basic a priori estimate, written below, is a bound for

the maximum in time in the L
2 norm. It is an a priori estimate because it assumes existence of a

solution.
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Lemma 5.6. For 1  n  NT , define

Hn =
C

2
2

µC3
�t

nX

i=1

kf i1k2L2(⌦1)
+

C
2
1

2C4
�t

nX

i=1

kf i

2k2L2(⌦2)
. (67)

Let u0
h
= 0 and let 1  n  NT � 1. If for all i, 0  i  n, (46) has a solution (ui

h
, p

i

2h) satisfying

kui

h
kX  µC3

2C7
, (68)

then for all i, 1  i  n+ 1,

kui

h
k2
L2(⌦1)

 Hi. (69)

Proof. The proof is sketched because it is standard. By testing (46) with (v, q) = (un+1
h

, p
n+1
2h ) and

using (39), (40), (43), and (44), we derive

1

2�t

⇣
kun+1

h
k2
L2(⌦1)

� kun

h
k2
L2(⌦1)

+ kun+1
h

� u
n

h
k2
L2(⌦1)

⌘
+ µC3kun+1

h
k2
X
+ C4kpn+1

2h k2
M2

+
d�1X

j=1

k 1

G
1/2
j

u
n+1
h

· ⌧ j

12k2L2(�12)

 C7kun

h
kXkun+1

h
k2
X
+ kfn+1

1 kL2(⌦1)ku
n+1
h

kL2(⌦1) + kfn+1
2 kL2(⌦2)kp

n+1
2h kL2(⌦2).

Then by applying the inequalities (37) and (36) with r = 2, and suitable Young’s inequalities to

the last two terms of the right-hand side, and using (68), we deduce

1

2�t

⇣
kun+1

h
k2
L2(⌦1)

� kun

h
k2
L2(⌦1)

+ kun+1
h

� u
n

h
k2
L2(⌦1)

⌘
 C

2
2

2µC3
kfn+1

1 k2
L2(⌦1)

+
C

2
1

4C4
kfn+1

2 k2
L2(⌦2)

.

The result follows by summing this inequality and using the fact that u
0
h
= 0. Note that we can

also derive a bound for �t
P

n+1
i=1 kui

h
k2
X

and �t
P

n+1
i=1 kpi2hk2M2

by increasing Hn, but it does not

seem to be useful in the rest of the analysis. ⇤

Experience shows that a bound for kun

h
kX stems from a suitable bound for the discrete time

derivative, (see formula (3.112) Chapter 3 in [23] or [18]), as expressed in the next lemma. To

simplify, for a given sequence (gi)i, we denote the di↵erence and discrete time-derivative by

�ig = g
i+1 � g

i
, �tg

i =
�ig

�t
=

g
i+1 � g

i

�t
. (70)

Lemma 5.7. Define

G1 =
C

2
2

µC3
kf1k2L1(0,T ;L2(⌦1)3)

, G2 =
C

2
1

C4
kf2k2L1(0,T ;L2(⌦2))

. (71)
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Let u0
h
= 0 and 0  n  NT � 1. If for all i, 0  i  n, (46) has a solution (ui

h
, p

i

2h) satisfying

kui

h
kX  µC3

4C7
, (72)

then

kun+1
h

k2
X

 2

µC3

⇣
H1/2

n+1k�tun

h
kL2(⌦1) + G1 +

G2

4

⌘
,

kpn+1
2h k2

M2
 2

C4

⇣
H1/2

n+1k�tun

h
kL2(⌦1) +

G1

3
+

G2

2

⌘
.

(73)

Proof. Again, by testing (46) with (v, q) = (un+1
h

, p
n+1
2h ) and using (39), (40), (43), and (44), we

obtain

µC3kun+1
h

k2
X
+ C4kpn+1

2h k2
M2

+
d�1X

j=1

k 1

G
1/2
j

u
n+1
h

· ⌧ j

12k2L2(�12)

 k�tun

h
kL2(⌦1)ku

n+1
h

kL2(⌦1) + C7kun

h
kXkun+1

h
k2
X

+ kfn+1
1 kL2(⌦1)ku

n+1
h

kL2(⌦1) + kfn+1
2 kL2(⌦2)kp

n+1
2h kL2(⌦2).

Next, by applying (37) and (36), and suitable Young’s inequalities to the last two terms of the

right-hand side, and using (72), we deduce

1

2
µC3kun+1

h
k2
X

k�tun

h
kL2(⌦1)ku

n+1
h

kL2(⌦1) + G1 +
G2

4
,

1

2
C4kpn+1

2h k2
M2

k�tun

h
kL2(⌦1)ku

n+1
h

kL2(⌦1) +
G1

3
+

G2

2
.

Then (73) follows by observing that (72) implies (69) and by substituting (69) into this inequality.

⇤

In order to derive a bound for �tun

h
, let us start with n = 0. As u0

h
= 0, �tu0

h
reduces to 1

�t
u
1
h
.

Proposition 5.8. Let G1 and G2 be defined by (71). We have,

k�tu0
h
kL2(⌦1) kf1kL1(0,T ;L2(⌦1)3) +

C11

C
1/2
4

(
G1

2
+ G2)

1/2
,

1

�t
ku1

h
k2
X

 1

2µC3

⇣
kf1k2L1(0,T ;L2(⌦1)3)

+
C

2
11

C4
(
G1

2
+ G2)

⌘
.

(74)

Proof. As u0
h
= 0, (46) reduces to

1

�t
(u1

h
,v)⌦1 + aS(u

1
h
,v) + aD(p12h, q) + (p12h,v · n12)�12 � (u1

h
· n12, q)�12

+
d�1X

j=1

� 1

Gj

u
1
h
· ⌧ j

12,v · ⌧ j

12)�12 = (f11 ,v)⌦1 + (f1
2 , q)⌦2 .
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The proof of (74) is not completely straightforward because the factor (�t)�1 can only be controlled

by canceling ku1
h
kL2(⌦1) on both sides of the above equation, and this entails the elimination of the

data in ⌦2. Therefore, (46) must be tested with (v, q) = (u1
h
, 0). Then (39) leads to

1

�t
ku1

h
k2
L2(⌦1)

+µC3ku1
h
k2
X
+

d�1X

j=1

k 1

G
1/2
j

u
1
h
· ⌧ j

12k2�12

 kf11 kL2(⌦1)ku1
h
kL2(⌦1) + |(p12h,u1

h
· n12)�12 |

 kf11 kL2(⌦1)ku1
h
kL2(⌦1) + C11kp12hkM2ku1

h
kL2(⌦1),

(75)

where (49) is used to bound the last term. This leads to the intermediate bound

1

�t
ku1

h
kL2(⌦1)  kf11 kL2(⌦1) + C11kp12hkM2 . (76)

By applying Young’s inequality to the right-hand side of (76) so that the term 1
�t

ku1
h
k2
L2(⌦1)

is

eliminated, we also obtain

1

�t
ku1

h
k2
X

 1

2µC3

�
kf11 k2L2(⌦1)

+ C
2
11kp12hk2M2

�
. (77)

Finally, an easy variant of one step of the proof of Lemma 5.7 gives a bound for kp12hk2M2
,

kp12hk2M2
 1

C4

⇣
C

2
2

2µC3
kf11 k2L2(⌦1)

+
C

2
1

C4
kf1

2 k2L2(⌦2)

⌘
. (78)

Then (74) follows by substituting (78) into (76) and (77). ⇤

The following lemma treats the general case. Note that its su�cient condition (80) implies the

previous ones, (65), (68), and (72).

Lemma 5.9. Define the discrete time derivative of Hn,

Fn =
C

2
2

µC3
�t

nX

i=1

k�tf i1k2L2(⌦1)
+

C
2
1

2C4
�t

nX

i=1

k�tf i

2k2L2(⌦2)
. (79)

Let u0
h
= 0 and let 1  n  NT � 1. If for all i, 0  i  n, (46) has a solution (ui

h
, p

i

2h) satisfying

kui

h
kX  µC3

4
�
C7 +

1
2C10

� , (80)

where C10 is the constant in (48), then

k�tun

h
k2
L2(⌦1)

 k�tu0
h
k2
L2(⌦1)

+
1

2�t
µC3k�0uhk2X + Fn. (81)
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Proof. Let 1  n  NT � 1 and let us take the di↵erence of equation (46) at steps n+1 and n and

test it with v = �nuh and q = �np2h. This leads to

1

�t
(�nuh � �n�1uh, �nuh)⌦1 + µC3k�nuhk2X + C4k�np2hk2M2

+ cNS(u
n

h
,u

n

h
;un+1

h
, �nuh)

�cNS(u
n�1
h

,u
n�1
h

;un

h
, �nuh) +

d�1X

j=1

k 1

G
1/2
j

�nuh · ⌧ j

12k2�12
 (�nf1, �nuh)⌦1 + (�nf2, �np2h)⌦2 .

To handle the nonlinear terms, we write

cNS(u
n

h
,u

n

h
;un+1

h
, �nuh)� cNS(u

n�1
h

,u
n�1
h

;un

h
, �nuh)

= cNS(u
n

h
,u

n

h
; �nuh, �nuh) + cNS(u

n

h
,u

n

h
;un

h
, �nuh)� cNS(u

n�1
h

,u
n�1
h

;un

h
, �nuh),

and use (43), (44), and (48). This gives

1

�t
(�nuh � �n�1uh, �nuh)⌦1 + µC3k�nuhk2X + C4k�np2hk2M2

 |(�nf1, �nuh)⌦1 |+ |(�nf2, �np2h)⌦2 |+ C7kun

h
kXk�nuhk2X

+C10kun

h
kXk�n�1uhkXk�nuhkX . (82)

Then, proceeding as in Lemma 5.6, and applying suitably Young’s inequality, we infer

1

�t
(�nuh��n�1uh, �nuh)⌦1 +

1

2
µC3k�nuhk2X �

�1
2
C10 + C7

�
kun

h
kXk�nuhk2X

 1

2

⇣
C

2
2

µC3
k�nf1k2L2(⌦1)

+
C

2
1

2C4
k�nf2k2L2(⌦2)

+ C10kun

h
kXk�n�1uhk2X

⌘
.

As the assumption (80) permits to control both contributions of the nonlinear term, by summing

this inequality over n, we derive

1

�t
k�nuhk2L2(⌦1)

+
1

2
µC3

⇣ nX

i=1

k�iuhk2X �
nX

i=1

k�i�1uhk2X
⌘

 1

�t
k�0uhk2L2(⌦1)

+
C

2
2

µC3

nX

i=1

k�if1k2L2(⌦1)
+

C
2
1

2C4

nX

i=1

k�if2k2L2(⌦2)
,

thus proving (81). ⇤

The results of this section are finalized in the following theorem.
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Theorem 5.10. Assume that for 1  n  NT � 1, the data satisfy

H
1
4
n+1

n3

2

⇣
kf1kL1(0,T ;L2(⌦1)3) +

C11

C
1/2
4

�G1

2
+ G2

�1/2⌘
+ F1/2

n

o1/2
+
�
G1 +

G2

4

�1/2

 1p
2
(µC3)

3/2 1

4
�
C7 +

1
2C10

� .
(83)

Then, starting from u
0
h
= 0, (46) defines a unique solution (un

h
, p

n

2h) for all n, 1  n  NT . This

solution is bounded uniformly with respect to n and h, the part u
n

h
satisfies (80) for all n and

kpn2hkM2 satisfies a similar bound.

Proof. By substituting (74) into (81), we find

k�tun

h
kL2(⌦1) 

3

2

⇣
kf1kL1(0,T ;L2(⌦1)3) +

C11

C
1/2
4

�G1

2
+ G2

�1/2⌘
+ F1/2

n
.

When substituted into (73), this bound gives, for 1  n  NT � 1,

kun+1
h

kX 
r

2

µC3

n
H1/4

n+1

⇣3
2

�
kf1kL1(0,T ;L2(⌦1)3) +

C11

C
1/2
4

�G1

2
+ G2

�1/2�
+ F1/2

n

⌘1/2

+
�
G1 +

G2

4

�1/2o
.

(84)

When n = 1, we simply have

ku1
h
kX 

r
1

µC3

⇣
G1 +

G2

2

⌘1/2
, (85)

which of course is smaller than the right-hand side of (84). Then the condition on the data (83)

follows by prescribing that the right-hand side of (84) be smaller than the right-hand side of (80).

Note that (83) also implies that the right-hand side of (85) is smaller than that of (80). This gives a

uniform (in n and h) upper bound for kun

h
kX for all n � 1. The same procedure leads to a uniform

upper bound for kpn2hkM2 ; for the sake of brevity, we do not specify the factors of this last bound.

Finally, as (80) implies (65), Lemma 5.5 guarantees existence and uniqueness of the solution of

(46) at each time step. ⇤

From here on, we assume that the small data condition (83) holds, so that un

h
satisfies (80) for

all n.

6. Convergence estimate for the time–lagging scheme

Recall that the family of triangulations Eh

1 and Eh

2 are regular in the sense of (14).
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6.1. Interpolations and approximations. As is usual in discretizing incompressible fluids, we

need an approximation operator that preserves the discrete divergence.

Lemma 6.1. There is an approximation operator ⇧h 2 L(X,X
h) satisfying

bS(⇧h(v)� v, q) = 0, 8v 2 X, 8q 2 M
h

1 , (86)

and for all E in Eh

1 , for all v in X \W
s,r(E)d, 1  r  1, 1  s  k1 + 1,

k⇧h(v)� v)kLr(E)  Ch
s|v|W s,r(�E), kr(⇧h(v)� v)kLr(E)  Ch

s�1|v|W s,r(�E), (87)

with a constant C independent of h and E, where �E ⇢ ⌦1 is a macro-element used in the con-

struction of ⇧h(v) in E. We also have for all s, 1  s  k1 + 1,

8v 2 X \H
s(⌦1), k⇧h(v)� vkX  Ch

s�1|v|Hs(⌦1). (88)

Proof. The proof proceeds by suitably correcting a standard approximation operator. Here the

correction is done by the Raviart-Thomas operator [19] acting on the Scott-Zhang operator [22].

Let Sh 2 L(X,X
h \X) be the Scott-Zhang interpolation operator and set

⇧h(v) = Sh(v) + ch(v), 8v 2 X,

where ch(v) belongs to the space RTk1�1(⌦1), which is the velocity space for the Raviart-Thomas

element of order k1 � 1. Let RT h be the Raviart-Thomas operator that maps functions into the

discrete space RTk1�1(⌦1). We choose

ch(v) = RT h(v � Sh(v)).

By the properties of the Raviart-Thomas interpolant, we have

�
qh,r · ch(v)

�
⌦1

=
�
qh,r · (v � Sh(v))

�
⌦1

, 8qh 2 M
h

1 ,

({qh}, [ch(v)] · ne)e = 0, 8e 2 �h

1 [ �1, 8qh 2 M
h

1 .

This implies (86). For the error estimates, we write

⇧h(v)� v = Sh(v)� v +RT h(v � Sh(v)),
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use the local properties of the Raviart-Thomas interpolant, for any r, 1  r  1,

8E 2 Eh

1 , kRT h(v � Sh(v))kLr(E)  ChEkr(v � Sh(v))kLr(E),

8E 2 Eh

1 , kr(RT h(v � Sh(v)))kLr(E)  Ckr(v � Sh(v))kLr(E),

and the quasi-local properties of the Scott-Zhang operator. This yields (87). For the bound (88),

we estimate the jumps of RT h(v � Sh(v)) and use trace inequalities. ⇤

To interpolate the pressures, we use for p1 a local L2 projection ⇡h on Pk1�1 in each element

E of Eh

1 , and for p2 the continuous Lagrange interpolant Lh in Pk2 . On one hand, the continuous

Lagrange interpolant has zero jump and preserves the zero boundary value on �2D. On the other

hand, since k1�1 � 0, the local projection preserves the mean value. Thus we indeed have ⇡h(p1) in

M
h

1 and Lh(p2) in M
h

2 \M2. They satisfy the following approximation errors for all r, 1  r  1,

8E 2 Eh

1 , 8s 2 [0, k1], 8p1 2 W
s,r(E), k⇡h(p1)� p1kLr(E)  Ch

s|p1|W s,r(E), (89)

8E 2 Eh

2 , 8s 2 [2, k2 + 1], ` = 0, 1, 8p2 2 W
s,r(E), |Lh(p2)� p2|W `,r(E)  Ch

s�`|p2|W s,r(E). (90)

This last bound also holds when s = 1 and r > d, the restriction on r arising from the continuity

required to define pointwise values.

Before proceeding, let us recall two more useful properties of the nonlinear term. They are

established by Proposition 4.1 in [16] in the case when d = 2, but the proof easily extends to d = 3.

Proposition 6.2. There exists a constant C, independent of h, such that for all u in
�
L
1(⌦1) \

W
1,3(⌦1)

�d
, for all vh 2 V

h, and all wh and zh in X
h,

��cNS(zh,vh;u,wh)
��  C

�
kukL1(⌦1) + |u|W 1,3(⌦1)

�
kvhkL2(⌦1)kwhkX . (91)

If in addition, u is in H
3/2(⌦1)d, then

��cNS(zh,vh;u�⇧h(u),wh)
�� C

�
ku�⇧h(u)kL1(⌦1) + |u�⇧h(u)|W 1,3(⌦1) + |u|H3/2(⌦1)

�

⇥ kvhkL2(⌦1)kwhkX .

(92)

When u is smoother, a positive power of h multiplies the last term in parentheses above, but

this is not required by the analysis below.
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Let un
, p

n

1 , p
n

2 denote the exact solutions evaluated at time t
n. We define the following errors:

�n = u
n

h
�⇧h(u

n), ⇠
n

1 = p
n

1h � ⇡h(p
n

1 ), ⇠
n

2 = p
n

2h � Lh(p
n

2 ) (93)

⇣n = u
n �⇧h(u

n), ⌘
n

1 = p
n

1 � ⇡h(p
n

1 ), ⌘
n

2 = p
n

2 � Lh(p
n

2 ). (94)

6.2. Error estimates. The following theorem proves an upper bound for the error on uh and p2h.

The assumption on the triangulation is (14).

Theorem 6.3. Under the assumption (83), there is a constant C independent of h and �t such

that for all 1  m  NT , we have,

kum � u
m

h
k2
L2(⌦1)

+ µC3�t

mX

n=1

kun � u
n

h
k2
X
+ C4�t

mX

n=1

kpn2 � p
n

2hk2M2

+�t

mX

n=1

d�1X

j=1

k 1p
Gj

(un � u
n

h
) · ⌧ j

12k2L2(�12)
 C(h2k1 + h

2k2 +�t
2).

This bound is valid if the exact solution satisfies the following regularity assumptions: u 2 L
1(0, T ;Hk1+1(⌦1)d),

@u
@t

2 L
2(0, T ;L1(⌦1)d)\L2(0, T ;Hk1(⌦1)d),

@
2u

@t2
2 L

2((0, T )⇥⌦1)d and p2 2 L
1(0, T ;Hk2+1(⌦2)).

Proof. Recall the discrete derivative �t defined in (70). The pointwise error equations of scheme

(28)–(29) are,

8v 2 X
h
,

⇣
�tu

n

h
� �tu

n
,v

⌘

⌦1

+
⇣
�tu

n �
�@u
@t

�n+1
,v

⌘

⌦1

+ aS(u
n+1
h

� u
n+1

,v) + aD(pn+1
2h � p

n+1
2 , q2) + bS(v, p

n+1
1h � p

n+1
1 )

+ cNS(u
n

h
,u

n

h
;un+1

h
,v)� cNS(u

n+1
,u

n+1;un+1
,v)

+ (pn+1
2h � p

n+1
2 ,v · n12)�12 � ((un+1

h
� u

n+1) · n12, q2)�12

+
d�1X

j=1

⇣ 1

Gj
(un+1

h
� u

n+1) · ⌧ j

12,v · ⌧ j

12

⌘

�12

= 0,

8q1 2 M
h

1 , bS(u
n+1
h

� u
n+1

, q1) = 0.
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We rewrite the error equations by inserting the interpolants and using the property (86)

8v 2 X
h
, (�t�

n
,v)⌦1

+ aS(�
n+1

,v) + aD(⇠n+1
2 , q2) + bS(v, ⇠

n+1
1 )

+ cNS(u
n

h
,u

n

h
;un+1

h
,v)� cNS(u

n+1
,u

n+1;un+1
,v)

+ (⇠n+1
2 ,v · n12)�12 � (�n+1 · n12, q2)�12 +

d�1X

j=1

� 1

Gj
�n+1 · ⌧ j

12,v · ⌧ j

12

�
�12

=

✓�@u
@t

�n+1 � �tu
n
,v

◆

⌦1

+ aS(⇣
n+1

,v) + aD(⌘n+1
2 , q2) + bS(v, ⌘

n+1
1 )

+ (�t⇣
n
,v)⌦1

+ (⌘n+1
2 ,v · n12)�12 � (⇣n+1 · n12, q2)�12 +

d�1X

j=1

� 1

Gj
⇣n+1 · ⌧ j

12,v · ⌧ j

12

�
�12

,

(95)

8q1 2 M
h

1 , bS(�
n+1

, q1) = 0. (96)

Next we choose v = �n+1, q1 = ⇠
n+1
1 , and q2 = ⇠

n+1
2 in (95) and (96), apply coercivity of aS and

aD to obtain.

⇣
�t�

n
,�n+1

⌘

⌦1

+ µC3k�n+1k2
X
+ C4k⇠n+1

2 k2
M2

+
d�1X

j=1

�� 1p
Gj

�n+1 · ⌧ j

12k2L2(�12)

+ cNS(u
n

h
,u

n

h
;un+1

h
,�n+1)� cNS(u

n+1
,u

n+1;un+1
,�n+1)


⇣�@u

@t

�n+1 � �tu
n
,�n+1

⌘

⌦1

+ aS(⇣
n+1

,�n+1) + aD(⌘n+1
2 , ⇠

n+1
2 ) + bS(�

n+1
, ⌘

n+1
1 )

+
�
�t⇣

n
,�n+1

�
⌦1

+ (⌘n+1
2 ,�n+1 · n12)�12 � (⇣n+1 · n12, ⇠

n+1
2 )�12

+
d�1X

j=1

� 1

Gj
⇣n+1 · ⌧ j

12,�
n+1 · ⌧ j

12

�
�12

.

We rewrite the term involving cNS . Recall that cNS(z,u;v,w) is linear in u, v, and w. Further,

when v has zero jump across elemental interfaces, the nonlinear part nh of cNS depending on z

vanishes for any z. For instance, because the exact solution has zero jump almost everywhere on

faces, we have the following equality:

cNS(u
n+1

,u
n+1;un+1

,�n+1) = cNS(u
n

h
,u

n+1;un+1
,�n+1). (97)
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The linearity of the last three arguments of cNS imply

cNS(u
n

h
,u

n

h
;un+1

h
,�n+1)� cNS(u

n+1
,u

n+1;un+1
,�n+1)

= cNS(u
n

h
,u

n

h
;�n+1

,�n+1) + cNS(u
n

h
,�n;⇧h(u

n+1),�n+1)� cNS(u
n

h
, ⇣n;⇧h(u

n+1),�n+1)

+cNS(u
n

h
,u

n � u
n+1;⇧h(u

n+1),�n+1)� cNS(u
n

h
,u

n+1; ⇣n+1
,�n+1).

Using (43), (44), and (80), we then have

⇣
�t�

n
,�n+1

⌘

⌦1

+
3

4
µC3k�n+1k2

X
+ C4k⇠n+1

2 k2
M2

+
d�1X

j=1

k 1p
Gj

�n+1 · ⌧ j

12k2L2(�12)

 |cNS(u
n

h
,�n;⇧h(u

n+1),�n+1)|+ |cNS(u
n

h
, ⇣n;⇧h(u

n+1),�n+1)|

+ |cNS(u
n

h
,u

n � u
n+1;⇧h(u

n+1),�n+1)|+ |cNS(u
n

h
,u

n+1; ⇣n+1
,�n+1)|

+
⇣�@u

@t

�n+1 � �tu
n
,�n+1

⌘

⌦1

+ aS(⇣
n+1

,�n+1) + aD(⌘n+1
2 , ⇠

n+1
2 ) + bS(�

n+1
, ⌘

n+1
1 )

+
�
�t⇣

n
,�n+1

�
⌦1

+ (⌘n+1
2 ,�n+1 · n12)�12 � (⇣n+1 · n12, ⇠

n+1
2 )�12

+
d�1X

j=1

� 1

Gj
⇣n+1 · ⌧ j

12,�
n+1 · ⌧ j

12

�
�12

= T1 + · · ·+ T12.

(98)

The remainder of the proof is devoted to a brief derivation of bounds for each term Ti, 1  i  12.

Many details are skipped because this derivation uses well-established techniques, see for instance

the analysis in [16, 15]. To avoid particular cases, the estimates are derived when d = 3. Since

the left-hand side of (98) does not contain the energy norm of �n, this term has to appear in the

upper-bound of the right-hand side of (98) in the L
2 norm, in order to be controlled by Gronwall’s

lemma.

1) The term T1 is split as follows

T1 = cNS(u
n

h
,�n;⇧h(u

n+1),�n+1) = cNS(u
n

h
,�n;un+1

,�n+1)� cNS(u
n

h
,�n; ⇣n+1

,�n+1).

For the first term, we apply (91),

��cNS(u
n

h
,�n;un+1

,�n+1)
��  Ck�nkL2(⌦1)k�n+1kX

�
kun+1kL1(⌦1) + |un+1|W 1,3(⌦1)

�
,
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and for the second we apply (92),

��cNS(u
n

h
,�n; ⇣n+1

,�n+1)
�� Ck�nkL2(⌦1)k�n+1kX

⇣
|un+1|H3/2(⌦1) + kun+1 �⇧h(u

n+1)kL1(⌦1)

+ |un+1 �⇧h(u
n+1)|W 1,3(⌦1)

⌘
.

Then the stability properties of ⇧h and a suitable application of Young’s inequality yield the bound

for T1, for any positive �1:

|T1|  �1µC3k�n+1k2
X
+

C
2

�1µC3
k�nk2

L2(⌦1)
. (99)

2) Now, we assume that u belongs to L
1(0, T ;Hk1+1(⌦1)d). A bound for the term T2 is obtained

by using the continuity (45) of the form cNS ,

|T2| = |cNS(u
n

h
, ⇣n;⇧h(u

n+1),�n+1)|  C8k⇣nkX k⇧h(u
n+1)kX k�n+1kX .

Then (88) and Young’s inequality imply, for any positive �2:

|T2|  �2µC3k�n+1k2
X
+

C
2

�2µC3
h
2k1 |u|2

L1(0,T ;Hk1+1(⌦1)d)
. (100)

3) Here we assume in addition that the time derivative @u
@t

belongs to L
2(0, T ;L1(⌦1)d). As u

is divergence free and has no jumps, the term T3 simplifies to

T3 = cNS(u
n

h
,u

n�u
n+1;⇧h(u

n+1),�n+1) =
X

E2Eh
1

((un � u
n+1) ·r⇧h(u

n+1),�n+1)E

+
X

E2Eh
1

�
|(un � u

n+1) · nE |(⇧h(u
n+1)int �⇧h(u

n+1)ext),�n+1,int
�
@E (un

h)\�12
.

But

u
n � u

n+1 = �
Z

t
n+1

tn

@u

@t
(s)ds.

Therefore

���(un � u
n+1) ·r⇧h(u

n+1),�n+1
�
E

�� 
Z

t
n+1

tn

k@u
@t

kL2(E)k�n+1kL6(E)|⇧h(u
n+1)|W 1,3(E),

and the stability of ⇧h implies that

���(un � u
n+1) ·r⇧h(u

n+1),�n+1
�
E

��  C

p
�tk@u

@t
kL2(E⇥]tn,tn+1[)k�n+1kL6(E)|un+1|W 1,3(�E).
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By summing over E, this yields for the interior part of T3,

���
X

E2Eh
1

((un�u
n+1)·r⇧h(u

n+1),�n+1)E
���  C

p
�tk@u

@t
kL2(⌦1⇥]tn,tn+1[)k�n+1kXkukL1(0,T ;W 1,3(⌦1)d).

(101)

For the part on faces, since u
n+1 has zero jump, we write

|⇧h(u
n+1)int �⇧h(u

n+1)ext| = |[⇧h(u
n+1)]| = |[⇧h(u

n+1)� u
n+1]|.

Hence, for any element E 2 Eh

1

���|(un � u
n+1) · nE |(⇧h(u

n+1)int �⇧h(u
n+1)ext),�n+1,int

�
e

�� 
p
�tk@u

@t
kL2(tn,tn+1;L1(e)d)

⇥k[⇧h(u
n+1)� u

n+1]kL2(e)k�n+1|EkL2(e), 8e ⇢ @E.

By applying a trace inequality to the jump term and an equivalence of norms to k�n+1kL2(e), and

by summing over all elements E, we obtain
���
X

E2Eh
1

�
|(un � u

n+1) · nE |(⇧h(u
n+1)int �⇧h(u

n+1)ext),�n+1,int
�
@E (un

h)\�12

���

 C

p
�tk@u

@t
kL2(tn,tn+1;L1(⌦1)d)k�

n+1kXkukL1(0,T ;H1(⌦1)d).

(102)

Then (101), (102), and Young’s inequality imply a bound for T3, for any positive �3:

|cNS(u
n

h
,u

n � u
n+1;⇧h(u

n+1),�n+1)|  �3µC3k�n+1k2
X
+

C
2

�3µC3
�tk@u

@t
k2
L2(tn,tn+1;L1(⌦1)d)

.

(103)

4) The bound for T4 follows closely the bound for T3, but without the derivative in time. We skip

the details and state the result

|T4| = |cNS(u
n

h
,u

n+1; ⇣n+1
,�n+1)|  �4µC3k�n+1k2

X
+ h

2k1
C

2

�4µC3
. (104)

5) Regarding T5, Taylor’s expansion yields for any function v of one variable t,

�tv
n = v

0(tn+1)� 1

�t

Z
t
n+1

tn

(s� t
n)v00(s)ds.

Therefore, assuming that @
2u

@t2
belongs to L

2(⌦1 ⇥ (0, T ))d, T5 has the bound, for any positive �5:

|T5|  C

p
�tk�n+1kXk@

2
u

@t2
kL2(⌦1⇥(tn,tn+1))  �5µC3k�n+1k2

X
+

C
2

�5µC3
�tk@

2
u

@t2
k2
L2(⌦1⇥(tn,tn+1)).

(105)
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6) For the interior linear terms T6, T7 and T8, we easily derive for any positive �6, �7, �8 (see for

instance [20]):

|T6| �6µC3k�n+1k2
X
+

(µC)2

�6C3
h
2k1 ,

|T7| �7C4k⇠n+1
2 k2

M2
+

C
2

�7C4
h
2k2 ,

|T8| �8µC3k�n+1k2
X
+

C
2

�8µC3
h
2k1 ,

(106)

assuming in addition that p2 belongs to L
1(0, T ;Hk2+1(⌦2)).

7) For the interior term T9 that involves a discrete time derivative, we write, as for T3,

�t⇣
n =

1

�t

Z
t
n+1

tn

@

@t
(⇧h(u(s))� u(s))ds.

Hence for any positive �9:

|T9|  �9µC3k�n+1k2
X
+

C
2

�9µC3

h
2k1

�t
k@u
@t

k2
L2(tn,tn+1;Hk1 (⌦1)d)

, (107)

provided @u
@t

belongs to L
2(0, T ;Hk1(⌦1)d).

8) There remains to consider the face terms T10, T11 and T12. As in the case of the face terms in

cNS above, they are treated by trace inequalities and equivalence of norms. Thus, for any positive

�10, �11, �12:

|T10| �10µC3k�n+1k2
X
+

C
2

�10µC3
h
2k2 ,

|T11| �11C4k⇠n+1
2 k2

M2
+

C
2

�11C4
h
2k1 ,

|T12| �12µC3k�n+1k2
X
+

C
2

�12µC3
h
2k1 .

(108)

The rest of the argument is standard. We combine all the bounds above and choose suitably the

parameters �i for all 1  i  12, so that the contributions of �n+1k2
X

and k⇠n+1
2 k2

M2
are balanced

by the corresponding terms in the left-hand side of (98). We sum the equations from n = 0 to

n = m� 1, multiply by 2�t, use the fact that �0 = 0 and conclude with Gronwall’s lemma. ⇤

We end this section with a brief discussion on the Navier-Stokes pressure error. We only consider

the case when aS is symmetric, as the non-symmetric formulation yields suboptimal convergence

rates. As usual, deriving an error estimate on the pressure p
n

1h is more delicate because it cannot
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be dissociated from the error on �tu
n

h
; this can be seen by inspecting the error equation (95). An

estimate for �t�n, more precisely

�t

mX

n=0

k�t�nk2
L2(⌦1)

,

can be obtained by testing (95) with �t�n, multiplying by �t and summing over n from 0 to m�1,

for 1  m  NT . Owing to the symmetry of aS , its contribution to the sum is

�t

m�1X

n=0

aS(�
n+1

, �t�
n) =

1

2

⇣
aS(�

m
,�m) +

m�1X

n=0

aS(�
n+1 � �n

,�n+1 � �n)
⌘
.

Regarding the right-hand side, the factor �t�n must be bounded in the L
2 norm because this is

the only norm available in the left-hand side. When this is not possible, for instance in the case of

�t aS(⇣
n+1

, �t�n), we apply a summation by parts that transfers the discrete time derivative on

⇣n, which can then be handled by supposing that the exact solution is su�ciently smooth in time.

For brevity, we skip the details. The only di�culty concerns the nonlinear term. Its contribution

can be split as

cNS(u
n

h
,u

n;un+1
h

� u
n+1

, �t�
n) + cNS(u

n

h
,u

n

h
� u

n;un+1
h

� u
n+1

, �t�
n)

+ cNS(u
n

h
,u

n

h
� u

n;un+1
, �t�

n)� cNS(u
n

h
, �u

n;un+1
, �t�

n).

Assuming that the exact solution is su�ciently smooth, the above terms are easily bounded except

the second term,

cNS(u
n

h
,u

n

h
� u

n;un+1
h

� u
n+1

, �t�
n).

To see this, it su�ces to consider one interior term; the terms on faces require a slightly more

technical treatment but lead to similar results. Thus, we consider

���(un

h
� u

n).r(un+1
h

� u
n+1), �t�

n
�
E

��  k�t�nkL2(E)|un+1
h

� u
n+1|W 1,3(E)kun

h
� u

nkL6(E).

After summation over E and over n, we have

���t

m�1X

n=0

cNS(u
n

h
,u

n

h
� u

n;un+1
h

� u
n+1

, �t�
n)
��

 �t

m�1X

n=0

k�t�nkL2(⌦1)kun

h
� u

nkL6(⌦1)

� X

E2Eh
1

|un+1
h

� u
n+1|3

W 1,3(E)

�1/3

 C�t

m�1X

n=0

k�t�nkL2(⌦1)kun

h
� u

nkX
� X

E2Eh
1

|un+1
h

� u
n+1|3

W 1,3(E)

�1/3
,
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after using (37) with r = 6 in the second factor. Since we have no bound for the last factor, we

break it into two terms by inserting the interpolant ⇧h(un+1), applying an inverse inequality to

|un+1
h

�⇧h(u
n+1)|W 1,3(E) = |�n+1|W 1,3(E),

and using the approximation properties of ⇧h, see (87), to bound the other part, |⇣n+1|W 1,3(E),

assuming that the exact solution is smooth enough. Now, since the inverse inequality brings the

factor |E|�1/6 ⇠ h
�1/2
E

, after applying Jensen’s inequality, this factor is bounded by,

1

min
E2Eh

1

p
hE

⇣ X

E2Eh

|�n+1|3
H1(E)

⌘1/3
 C

min
E2Eh

1

p
hE

k�n+1kX .

Summarizing, we have to deal with

C

m�1X

n=0

�t

minE
p
hE

k�t�nkL2(⌦1)k�nkXk�n+1kX

 �

2
�t

m�1X

n=0

k�t�nk2
L2(⌦1)

+
C

2

2�

1

min
E2Eh

1
hE

max
1nm�1

(k�nk2
X
)

mX

n=1

�tk�nk2
X
,

for some parameter � > 0 to be chosen further on. The factor 1
minE hE

must be compensated by the

error bound on the velocity derived in Theorem 6.3. In the worst case, k1 = k2 = 1 (which is the

smallest degree), Theorem 6.3 states that

�t

mX

n=1

kun

h
� u

nk2
X

 C(h2 + (�t)2).

In this case, we require that the mesh satisfies for some constant D > 0, independent of h and �t,

to be chosen later,

h
2 + (�t)2

min
E2Eh

1
hE

 D, (109)

which is more restrictive than (14), but milder than quasi uniformity in space. With this assumption,

after suitable applications of Young’s inequality and choices of the parameters, and supposing that

the solution is su�ciently smooth, the error equation yields the following inequality:

↵1�t

m�1X

n=0

k�t�nk2
L2(⌦1)

+ ↵2µC3k�mk2
X
+ ↵3C4�t

mX

n=1

k⇠n+1
2 k2

M2

 K1

�
h
2k1 + h

2k2 + (�t)2
�
+K2D max

1nNT�1
(k�nk2

X
),

(110)



CONVERGENCE OF IPDG FOR COUPLED TIME-DEPENDENT NAVIER-STOKES AND DARCY EQUATIONS31

where ↵1, ↵2, ↵3, K1 and K2 are constants that depend on the choice of the parameters, but are

independent of h and �t. Let n0 be an index where the maximum of k�nk2
X

is attained; (110) with

n0 instead of m implies in particular that

↵2µC3k�n0k2
X

 K1

�
h
2k1 + h

2k2 + (�t)2
�
+K2Dk�n0k2

X
.

Therefore, it su�ces to choose for instance

D  ↵2

2K2
µC3,

to derive that

max
1nNT�1

(k�nk2
X
)  2K1

↵2µC3

�
h
2k1 + h

2k2 + (�t)2
�
.

Thus we have the following theorem; to simplify we do not specify the precise regularity of the

solution.

Theorem 6.4. Assume that in addition to (14), the mesh and time step satisfy (109). Then, if

✏1 = �1, there is a constant C independent of h and �t such that for all 1  m  NT , we have

�t

m�1X

n=0

k�t(un � u
n

h
)k2

L2(⌦1)
 C(h2k1 + h

2k2 +�t
2). (111)

Finally, the following error estimate on the pressure is easily derived from this result and the

inf-sup condition in Lemma 6.1: with the assumption (109), there is a constant C independent of

h and �t such that for all 1  m  NT ,

�t

mX

n=1

kpn1 � p
n

1hk2M1
 C(h2k1 + h

2k2 +�t
2). (112)

7. Numerical results

In this section, we verify the convergence results numerically. The computational domain ⌦ 2 R2

is subdivided into a Navier-Stokes region ⌦1 = (0, 1)⇥(0, 1) and a Darcy region ⌦2 = (0, 1)⇥(�1, 0).

The solution (u, p1, p2) is chosen to satisfy the model (1)–(6) and the interface jump conditions (7)–

(9). The initial velocity does not vanish, and our analysis above can be extended to this case. The

exact solutions are given as follows:

u(t, x, y) = ((y2 � 2y + 2x� 4y3x� 3) cos(⇡t), (x2 � x� 2y + y
4) cos(⇡t)),

p1(t, x, y) = (�x
2
y + xy + y

2 � 4 + 8y3) cos(⇡t), p2(x, y) = (�x
2
y + xy + y

2) cos(⇡t).
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First, we derive spatial rates of convergence by computing the solution on a sequence of uniformly

refined meshes. The scheme (28)–(29) is used with parameters ✏1 = ✏2 = �1, which corresponds

to the symmetric formulations for aS and aD. The penalty parameter is chosen constant, �e = 40.

The time step is �t = 10�4 and NT = 100. We vary the polynomial approximations. In the first

scenario, we use discontinuous linear polynomials for the Navier-Stokes velocity and Darcy pressure

and we use piecewise constants for the Navier-Stokes pressure. In other words, k1 = k2 = 1.

Table 1 shows the numerical errors in the Navier-Stokes subdomain and Table 2 shows the errors in

the Darcy subdomain. The notation rh is used for the elementwise gradient operator, also called

broken gradient. We also report the convergence rates. We obtain optimal rates as predicted by our

theory. In addition, the results indicate that the errors for the Navier-Stokes velocity and Darcy

pressure converge optimally in the L
2 norm.

h ||u� uh||L2(⌦1) Conv. ||rh(u� uh)||L2(⌦1) Conv. ||p1 � p1h||L2(⌦1) Conv.

1/2 2.0216e-01 1.5412e+00 2.6151e+00

1/4 5.4695e-02 1.89 8.6260e-01 0.84 2.4187e+00 0.11

1/8 1.6506e-02 1.73 4.5047e-01 0.94 1.9402e+00 0.32

1/16 4.8106e-03 1.78 2.2324e-01 1.01 1.2947e+00 0.58

1/32 1.3381e-03 1.85 1.0930e-01 1.03 7.5122e-01 0.79

Table 1. Spatial convergence rates for the Navier-Stokes velocity and pressure

with the choice k1 = k2 = 1 and ✏1 = ✏2 = �1.

h ||p2 � p2h||L2(⌦2) Conv. ||rh(p2 � p2h)||L2(⌦2) Conv.

1/2 6.0193e-02 4.5512e-01

1/4 1.5648e-02 1.94 2.4628e-01 0.89

1/8 4.0403e-03 1.95 1.2674e-01 0.96

1/16 1.0346e-03 1.97 6.4049e-02 0.98

1/32 2.6144e-04 1.98 3.2157e-02 0.99

Table 2. Spatial convergence rates for the Darcy pressure with the choice k1 =

k2 = 1 and ✏1 = ✏2 = �1.
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Next, we increase the polynomial degree and choose k1 = k2 = 2. We repeat the experiments

and show the errors and rates in Table 3 and Table 4. They are optimal..

h ||u� uh||L2(⌦1) Conv. ||rh(u� uh)||L2(⌦1) Conv. ||p1 � p1h||L2(⌦1) Conv.

1/2 2.6944e-02 4.3835e-01 4.9743e-01

1/4 4.3001e-03 2.65 1.1511e-01 1.93 1.6088e-01 1.63

1/8 5.8130e-04 2.89 2.8713e-02 2.00 4.6854e-02 1.78

1/16 7.3852e-05 2.98 7.0518e-03 2.03 1.2636e-02 1.89

1/32 1.0249e-05 2.85 1.7388e-03 2.02 3.2828e-03 1.94

Table 3. Spatial convergence rates for the Navier-Stokes velocity and pressure for

the choice k1 = k2 = 2 and ✏1 = ✏2 = �1,

h ||p2 � p2h||L2(⌦2) Conv. ||rh(p2 � p2h)||L2(⌦2) Conv.

1/2 3.1803e-03 5.4874e-02

1/4 4.9972e-04 2.67 1.4217e-02 1.95

1/8 6.8328e-05 2.87 3.6107e-03 1.98

1/16 8.8834e-06 2.94 9.0948e-04 1.99

1/32 1.1711e-06 2.92 2.2822e-04 1.99

Table 4. Spatial convergence rates for the Darcy pressure for the choice k1 =

k2 = 2 and ✏1 = ✏2 = �1.

In the following experiments, we choose the parameters ✏1 = ✏2 = 1, which corresponds to

the non-symmetric formulations of aS and aD. We repeat the tests above by first considering

k1 = k2 = 1 and then k1 = k2 = 2. Tables 5, 6, 7, 8 show the numerical errors and their rates.

The rates in the broken gradient norm for the Navier-Stokes velocity and the Darcy pressure are

optimal, as predicted by our theory. The rates for the L
2 norm for the Navier-Stokes pressure are

also optimal. The proof remains an open question since the bound (112) is only valid for the case

✏1 = �1. We also note that rates in L
2 for the Darcy pressure are suboptimal, which is consistent

with the classical theory for the non-symmetric interior penalty Galerkin method [20].
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h ||u� uh||L2(⌦1) Conv. ||rh(u� uh)||L2(⌦1) Conv. ||p1 � p1h||L2(⌦1) Conv.

1/2 2.0771e-01 1.4522e+00 3.3226e+00

1/4 9.5577e-02 1.12 8.2012e-01 0.82 1.4329e+00 1.21

1/8 3.8831e-02 1.30 4.4140e-01 0.89 5.2375e-01 1.45

1/16 1.1797e-02 1.72 2.1486e-01 1.04 2.5820e-01 1.02

1/32 3.1715e-03 1.90 1.0454e-01 1.04 1.2895e-01 1.00

Table 5. Spatial convergence rates for the Navier-Stokes velocity and pressure for

the choice k1 = k2 = 1 and ✏1 = ✏2 = 1.

h ||p2 � p2h||L2(⌦2) Conv. ||rh(p2 � p2h)||L2(⌦2) Conv.

1/2 8.1224e-02 4.8229e-01

1/4 1.6212e-02 2.32 2.2337e-01 1.11

1/8 3.6515e-03 2.15 1.0779e-01 1.05

1/16 8.7554e-04 2.06 5.3084e-02 1.02

1/32 2.1485e-04 2.03 2.6360e-02 1.01

Table 6. Spatial convergence rates for the Darcy pressure for the choice k1 =

k2 = 1 and ✏1 = ✏2 = 1

h ||u� uh||L2(⌦1) Conv. ||rh(u� uh)||L2(⌦1) Conv. ||p1 � p1h||L2(⌦1) Conv.

1/2 5.4021e-02 4.6690e-01 7.9517e-01

1/4 1.2614e-02 2.10 1.5174e-01 1.62 1.9891e-01 2.00

1/8 2.1786e-03 2.53 4.2195e-02 1.85 5.1365e-02 1.95

1/16 3.2926e-04 2.73 1.1113e-02 1.92 1.2526e-02 2.04

1/32 4.8185e-05 2.77 2.8689e-03 1.95 3.2818e-03 1.93

Table 7. Spatial convergence rates for the Navier-Stokes velocity and pressure for

the choice k1 = k2 = 2 and ✏1 = ✏2 = 1.

To establish the temporal rates of convergence, we fix a fine mesh and we vary the time step

size. The errors are computed at the final time T = 1. The errors and rates are reported in Tables

9-10. We recover optimal first order convergence rates.
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h ||p2 � p2h||L2(⌦2) Conv. ||rh(p2 � p2h)||L2(⌦2) Conv.

1/2 1.1081e-02 7.5663e-02

1/4 1.6310e-03 2.76 1.7015e-02 2.15

1/8 2.8895e-04 2.50 4.0381e-03 2.08

1/16 6.0262e-05 2.26 9.8285e-04 2.04

1/32 1.3846e-05 2.12 2.4252e-04 2.02

Table 8. Spatial convergence rates for the Darcy pressure for the choice k1 =

k2 = 2 and ✏1 = ✏2 = 1

�t ||u� uh||L2(⌦1) Conv. ||rh(u� uh)||L2(⌦1) Conv. ||p1 � p1h||L2(⌦1) Conv.

1/2 8.0870e-02 1.1961e+00 3.7816e+00

1/4 3.4933e-02 1.21 3.5960e-01 1.73 1.4666e+00 1.37

1/8 1.6292e-02 1.10 1.1048e-01 1.70 6.4018e-01 1.20

1/16 8.0506e-03 1.02 4.3830e-02 1.33 3.1530e-01 1.02

1/32 4.0441e-03 0.99 2.2349e-02 0.97 1.5985e-01 0.98

Table 9. Temporal convergence rates for the Navier-Stokes velocity and pressure.

�t ||p2 � p2h||L2(⌦2) Conv. ||rh(p2 � p2h)||L2(⌦2) Conv.

1/2 4.1680e-03 3.7806e-02

1/4 2.2823e-03 0.87 2.0532e-02 0.88

1/8 1.1844e-03 0.95 1.0637e-02 0.95

1/16 5.9923e-04 0.98 5.4063e-03 0.98

1/32 3.0627e-04 0.97 2.8348e-03 0.93

Table 10. Temporal convergence rates for the Darcy pressure.
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8. Conclusions

We have obtained the numerical analysis of a discontinuous Galerkin method in space combined

with backward Euler in time for solving the time-dependent Navier-Stokes and Darcy equations.

The analysis presented here can be easily adapted for various finite-element discretizations.



CONVERGENCE OF IPDG FOR COUPLED TIME-DEPENDENT NAVIER-STOKES AND DARCY EQUATIONS37

References

[1] D.N. Arnold. An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal.,

19:742–760, 1982.

[2] L. Badea, M. Discacciati, and A. Quarteroni. Numerical analysis of the Navier–Stokes/Darcy coupling. Nu-

merische Mathematik, 115(2):195–227, 2010.

[3] G.S. Beavers and D.D. Joseph. Boundary conditions at a naturally impermeable wall. J. Fluid. Mech, 30:197–207,

1967.
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