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Abstract

We propose a numerical model allowing to calculate the relative variations of isotopic ratios involved in a mass-independent isotopic
fractionation (MIF) effect. This model is derived from classical trajectory simulation performed to reproduce the reactions yielding
the isotopomers of ozone. In the ozone simulation, we did not introduce quantum mechanical selection rules for trajectories or the
potential surface, but we separated instead exchange and non-exchange collisions, in order to introduce the fundamental quantum
mechanical requirement according to which, for indistinguishable isotopes, the two possible reaction channels (elastic scattering or
particle exchange) have to be superposed. The MIF effect is related to the molecular symmetry of the complex by the result that a
different fraction of isotopically asymmetric complexes is stabilized than for symmetric ones.

The model is applied on the results obtained experimentally for Mg and Ti isotopes in plasma. In plasma, Mg and Ti radicals
resulting from the molecular dissociation of chlorides react with their parent molecules. In presence of hydrocarbons, isotope
exchange rates are greatly enhanced when the intermediate activated complexes are adsorbed at the surface of the carbonaceous
grains growing in the plasma. If a chemical reaction with the grain stabilizes the complex faster than its dissociation, MIF effects
are observed. In such a chemical situation, the isotopic fractionation greatly exceed the usual theoretical predictions. Several
characteristics of the MIF isotopic patterns are reproduced by the model.
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Highlights

In a plasma, the selection of isotopes by specific chemical
reactions does not obey any more the differences of zero point
energy between reactants and products.

Introduction

In chemical or isotopic exchange reactions, the partitioning
of isotopes always obeys a mass dependent isotopic fractiona-
tion law (here referred to as MDF) [1, 2, 3, 4]. For two samples
1 and 2, and two isotopes X and Y , the isotopic fractionation
factor αx−y is expressed as:

αx−y =
(X/Y)1

(X/Y)2
(1)

The sample 2 stands for the initial composition of the reac-
tants and the sample 1 for the products of the reaction studied.
Commonly, αx−y is related to the difference in the zero-point en-
ergy of the vibrational motion of the different molecular species
of the two samples. Taking the example of the three oxygen
isotopes, the fractionation factors α17−16 and α18−16 are found
to follow for nearly all terrestrial systems (rocks, liquid water,
ice etc) a simple relation,
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α17−16 = α
β
18−16 (2)

with a exponent β ≈ 0.52. The third decimal of β varies
for equilibrium exchange or for kinetic fractionation but β can
always be approximated by a function of the difference in iso-
tope masses [3]. Expressing the isotopic fractionation in rela-
tive variations (as δ units: δmO = (αm−16 − 1) × 1000), one ob-
tains for oxygen that a variation in δ18O is approximately twice
that in δ17O (see appendix Appendix A).

Contrary to this, solar-system objects (such as the first min-
erals condensed from the proto-solar gas, the planets and the
Sun) exhibit δ18O ≈ δ17O [2, 5, 6]. The discovery of an oxygen
isotopic effect in ozone with a similar trend (δ18O ≈ δ17O) has
opened the question of unusual isotopic fractionation processes
[7, 8, 9, 10, 11].

This new isotopic effect observed in ozone is commonly re-
ferred to as Mass Independent Fractionation (MIF). Let us no-
tice immediately that this MIF effect in ozone is distinct from
other mass-independent effects (not referred here to as MIF)
caused by the nuclear magnetic moments of the reactants (MIE
i.e. Magnetic Isotope Effect) [12, 13] or by differences in nu-
clear volumes (NVE i.e. Nuclear Volume Effect) [14].

Since the discovery of MIF in ozone, the details of the ef-
fect have been documented by numerous laboratory experi-
ments [15, 16, 17, 18, 19, 20] and its physical origin has been
the subject of extensive numerical computations. Classical-
trajectory molecular dynamics simulations within an ab-initio
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calculated potential surface seem not be sufficient to reproduce
the MIF effect in ozone, even when taking into account some
purely quantum-mechanical elements (selection of initial rota-
tional states, projection on vibrational states, shift of the poten-
tial surface according to ZPEs etc). The observed relation [18]
between ∆ZPE (the difference in ZPE between the fragments
xO–yO and yO–zO for a molecule xO–yO–zO) and the relative
rate coefficients has rather confirmed the MDF between the dif-
ferent isotopomers of ozone and was well accounted for by the-
oretical treatments [22, 23].

Eq. (2) was modified [22] by an empirical fit (the η factor)
to reproduce a property of the MIF effect discovered experi-
mentally by Janssen et al. [18]. This empirical fit being valid
for almost all the isotopomers of ozone (such as 17O16O16O,
18O16O16O, 17O17O16O, etc.), αx−y, is written in a general form
with a mass-dependent term αMD

x−y and a mass-independent term
η, identical for all isotope pairs:

αx−y = αMD
x−y × η (3)

Taking the example of ozone, if the MDF effect is negligible
(i.e. αMD

x−y = 1), αMD
17−16 = αMD

18−16 = 1 giving α17−16 = α18−16 = η

and δ18O = δ17O.
In front of this observation, the origin of η has been searched

for numerically around the quantum properties of symmetri-
cal 3-atom complexes (for example 18O16O16O compared to
16O16O16O). Among the most thorough studies on this subject
see Refs. [21, 22, 23, 24, 25, 26] who studied the collisional
energy transfer and the ro-vibrational energy distribution in re-
actions forming ozone. Absorption cross section or ozone pho-
tolysis were also investigated theoretically [27, 28]. Rao et al.
[29] compared the thermal exchange rate constant with that in-
volving indistinguishable isotopes. Yuen et al. [30] studied the
role of the vibrational resonances in isotope exchange reactions.
Teplukhin et al. [31, 32] computed the scattering resonance life-
times of the recombination reaction forming ozone and found
numerically several MIF effects.

This result [31, 32] gave weight to the interpretation pro-
posed from a classical mechanical approach [33, 34] according
to which the lifetimes of the O3 complexes should be treated
differently if these complexes were formed by collisions involv-
ing distinguishable or indistinguishable isotopes.

In the present paper, based on the previous simulations on
ozone, we show that the relative variations between isotope ra-
tios can be obtained with two free parameters κ and PI standing
for the relative contributions of the reactions involving either
dist- or indistinguishable isotopes (that is κ and PI lying be-
tween 0 and 1).

1. Reaction formalism

1.1. Complexes AMB

We consider the following reaction (cf. Fig. 1):
We neglect isotope masses and assume

(i) a 2-isotope system (isotopes A and B) forming possible
complexes X − M − Y with M being neither A nor B,

Figure 1: Schematic reaction (with A and B for isotopes and MA and MB for
molecular isotopomers) illustrating the fact that only a fraction of the activated
complex [AMB∗] yields the stable molecule AMB.

(ii) an infinite reservoir of atoms and molecules and

(iii) a continuous reaction flow with two exit channels (com-
plex formation with condensation or re-dissociation).

We obtain (see appendix Appendix B for demonstration) an
isotope fractionation of the condensate with respect to the reser-
voir as:

αA−B = η =
xA(1 − κ

PI
) + κ

PI

xB(1 − κ
PI

) + κ
PI

(4)

with one parameter, constituted of two components κ and PI

(with values between zero and one) and with the relative abun-
dances of the isotopes A and B noted xA and xB (xA + xB = 1 for
a 2 isotope chemical element). Note that, contrary to αMD

x−y the
present definition of η depends on the relative abundance (the
molar fractions) of the isotopes in the reservoir and is thus not
the same for all the chemical elements. This is accounted by
the fact that η is the reaction rate ratio and not anymore the rate
constant ratio.

Exactly the same relation is obtained for any pair of two iso-
topes for an element with more than 2 isotopes and complexes
X − M − Y (see appendix Appendix B.1).

The mass balance between the Channel 1 and 2 is obtained by
replacing in equation 4 the two parameters κ and PI – analogous
to condensation probabilities – by their complement, i.e. 1 − κ
and 1 − PI . The fractionation of Channel 2 becomes then:

αA−B(channel 2) =
xA(κ − PI) + 1 − κ
xB(κ − PI) + 1 − κ

(5)

This expression is not any more parametric in κ/PI , and allows
thus to fix the two parameters individually. We will come back
to this in the next section.

Equation 4 has the following consequences: if a complex is
stabilized by a chemicial reaction faster than its dissociation,
MIF effects should be observed. Contrary to the MDF, the
magnitude of the isotope effect is not anymore limited by the
partition functions of the reactants and η could exceed αx−y by
several orders of magnitude (in δ units). This effect, originally
predicted in Ref. [9], has likely been observed in plasma where
radicals resulting from molecular dissociation react with their
parent molecule before being deposited as grains on the walls
of the reaction vessel. The chemical reaction with the grain
takes place at the surface of the grain where the local high con-
centration of complexes favors the isotopic exchange.

The magnitude of the MIF effect can be predicted if the two
parameters κ and PI can be calculated. From experimental data
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we obtain the inverse path: as we observe a mass-independent
fractionation, we can extract the ratio of the two parameters κ
and PI from the data. If Channel 2 can also be analyzed, κ and
PI can be determined individually.

2. Applications

2.1. Ozone
In our previous approach [34], the lifetime of the formation

and dissociation reactions O + O2 → O + O2 involving dis-
tinguishable isotopes was calculated independently from those
involving indistinguishable isotopes. The calculated lifetime
ratio (1.183) was then deduced without the need to specify PI ,
as this quantity cancelled out in this approach (cf. Appendix
Appendix E for the details of the numerical computations).

Considering now a steady-state flow-reactor approach in-
stead of pure gas-phase chemistry, we do not extract η directly
from lifetime ratios, but from rate constants or concurrent sta-
bilisation processes with condensation probabilities κ and PI .

In order to derive for ozone a relation similar to equation 4,
two modifications apply: the central atom of the complex is as
well of the (multi-isotope) element considered and the abun-
dances of 17O (380 ppm) and 18O (2000 ppm) are negligible
relative to 16O (0.9976 ≈ 1).

The first modification alters eq. 4 to eq. B.12, see appendix.
Neglecting 17O and 18O, the MIF factor η becomes (eq. C.1)

η ≈
2
3
κ

PI
+

1
3

(6)

As η becomes identical for 17O and 18O, we see from equa-
tion A.2 that the slope in the 3-isotope diagram becomes very
close to one.

The 6 isotopomers of 16O17O18O result from 6 possible re-
actions taking place only between distinguishable isotopes. In
a scrambled situation, the 6 isotopomers of 16O17O18O give on
average a calculated α =1.182 when taking into account the
MDF (i.e. the ∆ZPE). Therefore, for this specific isotopomer,
the lifetime ratio is equal to α (see Ref. [34]). This equality
between α and the lifetime ratio results from the fact that the
combination of the 6 αMD factors for the 6 isotopomers give an
overall αMD=1.

The maximum measured isotopic fractionation for
16O17O18O was observed for ozone produced by an elec-
tric discharge in O2 (η = 1.203) [35], while photolysis yields
somewhat lower η values [36] (down to 1.181). Taking 1.19 as
an average value, we obtain in our present formalism an η of
2/3 × 1.19 + 1/3 = 1.127. Note that in our previous articles
we defined differently, η = α(XYZ) (see Appendix Appendix
D). Using our values at the point where the lifetime ratio
equals 1.183 (i.e. XR = 0.095, (XNR = 0.905), PR = 0.720,
PNR = 0.237 giving κ=0.283), we can extract PI with the above
determined η of 1.127 as

PI =
2κ

3 η − 1

and find a numerical value for PI = 0.238.

This result can be interpreted as follows: 28% and 24% of
the complex yielding ozone and formed by collision between
dist- and indistinguishable isotopes, respectively, are stabilized
as ozone. Note however, that these complexes represent only
a minute fraction of the complexes not stabilized as ozone via
their encounter with a third body.

If not absolute numbers, one may advance that slightly more
complex formed by reactions between distinguishable isotopes
(i.e. asymmetrical molecules) are stabilized than those formed
between indistinguishable isotopes (i.e symmetrical ones), in a
ratio of 7:6.

2.2. Magnesium and Titanium isotopes in chemical plasma
mixture of chlorides and hydrocarbons

We have for simple multi-isotope systems A−M − B a slope
of

S =
δA

δB
=

xA − xC

xB − xC
(7)

in a 3-isotope plot with common isotope C (see Appendix Ap-
pendix B.1 for demonstration).

This formula is now compared with available data for Mg
and Ti isotopes (cf. Appendix Appendix F) whose abundances
are not negligible relative to their isotopes 24Mg and 48Ti used
to normalize their ratios (25,26Mg/24Mg and 46,47,49,50Ti/48Ti).
We have reported Mg and Ti MIF variations in grains con-
densed from plasma [37, 38] for two different chemical settings:
MgCl2/Pentanol and TiCl4/Pentane for Mg and Ti isotopes, re-
spectively. Data are reported in Figures 2 and 3.

In Figure 2, the calculated slopes S are compared to the data.
Both correlations are markedly different from those expected
by the MDF theory. The agreement between observed and cal-
culated S is satisfactory. Note that as long as the MDF con-
tribution is negligible, the slope of the correlation does not de-
pend upon the type of chemical reaction involved in the MIF
effect. This situation is similar to the MDF theory for which the
chemical nature of the isotopically exchanged species has no
influence (within ±0.1h) on the slope of the MDF correlation.

However, if MDF and MIF variations are commensurable,
the slope and the zero-intercept of the linear correlation depend
also on the MDF/MIF ratio. This question is not examined here.

We wish to underline that our present approach fulfills the
exact mass balance between the two Channels 1 and 2. In other
words, the dissociation via the Channel 2 could be calculated by
replacing the P values by 1−P. In the case of ozone, where the
MIF effect was first observed, we only count collision probabil-
ities and the events leading to a stable product of the Channel 1.
Channel 2 is inaccessible experimentally, as it is impossible to
find in the gas the same molecules of the redissociated complex
(O3* → O + O2). Only ozone molecules and a sample of the
whole volume can be analyzed.

The situation is different in experiments where grains are
condensed from plasma: spatial isotopic variations were ob-
served in the same grain such as the overall isotopic composi-
tion of the bulk grain is restored and does not show the MIF
effect (two examples are given in Tables F.2 and F.3). In other
terms, the mass balance is satisfied at the scale of the bulk
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Figure 2: The variations of the magnesium and titanium isotopic composi-
tions of grains condensed in plasma are reported in the 3 isotope diagram:
δ25Mg = f (δ26Mg) and δ50Ti = f (δ46Ti) with δ expressed in h. In the
figure, the present theoretical predictions for MIF without MDF contribu-
tion (solid line; δ26Mg = 1.05 × δ25Mg and δ50Ti = 1.04 × δ46Ti calcu-
lated with, for Mg: x24 = 0.7899, x25 = 0.100, x26 = 0.101 and for Ti:
x46 = 0.080, x48 = 0.738, x50 = 0.053) are compared with the MDF varia-
tions (dashed line). Data are reported as black dots. The measured variations
yield δ25Mg = 1.009 (±0.032)× δ26Mg− 8.3(±4.1) (maximum likelihood; 2-σ
error) and δ50Ti = 1.192(±0.086) × δ46Ti + 42.7(±12.9) (maximum likelihood;
2-σ error), in close agreement with the observed correlations. For clarity, error
bars are not reported on the figure.

Figure 3: The isotopic patterns are defined as δmTi and δmMg = f (m) with m
being the isotope mass. Positive and negative values stand for the maximum
and minimum δmMg and δmTi values found in the variations measured in the
same grain for which the mass balance is satisfied i.e. δmMg and δmTi ≈ 0h.
Data are shown as dashed lines and black dots. The theoretical patterns (solid
lines, open symbol) are calculated for Mg with with x24 = 0.7899, x25 = 0.100,
x26 = 0.1101, PI = 0.20 and κ = 0.55 and for Ti with x46= 0.080, x47 = 0.073,
x48 = 0.738, x49 = 0.055, x50 = 0.053, PI = 0.08 and κ = 0.33.

grain. These spatial variations span the whole range between
minimum and maximum values. For Ti, we have shown that
intermediate values can be accounted for by a mixing between
two different chemical compounds carrying these minimum and
maximum values [39].

We suppose that the minimum and maximum values result
from the condensation of two different chemical components
produced via the two Channels 1 and 2. If correct, the distribu-
tion pattern defined by the 8 independent isotopic compositions
δ46,47,49,50Ti(Min) and δ46,47,49,50Ti(Max), reported in Figure 3
should be reproduced with the very same two parameters PI

and κ.
Taking the molar fractions xm and the observed αx−y or δx

data, we may extract from eq. 4 values for PI and κ as free
parameters, and we find PI = 0.08 ± 0.01 and κ = 0.33 ± 0.03.
Plugging these again into eq. 4, we can recalculate the isotope
fractionation.

The result is shown in Figure 3, where the good agreement

between the original data and the reproduction suggests that the
mass balance between the two channels is indeed fulfilled.

As expected by the mass balance, if we took all trajectories
in the ozone simulations, without the application of a minimum
lifetime (i.e. τmin=0 in equation B.2), we would have obtained
PR = PNR= PI = 1 without any isotope effect. The same is
observed for the bulk values in the Mg and Ti experiments.

3. Conclusion

Up to now, numerical efforts to include in models the indis-
tinguishability through different numbering of states, ZPE, res-
onances and other ingredients of RRKM theory were not suf-
ficient to result in a significant isotope fractionation. In these
theoretical considerations the fundamental superposition of like
and unlike particles is missing, which leads in our quite crude
model naturally to the observed fractionation.

Other reactions documented in the literature can be used to
test this model [40, 41]. As mentioned in the Introduction, be-
side laboratory experiments, numerous mass independent iso-
topic effects have been observed in meteoritic minerals which
are regarded as the first solids condensed during the forma-
tion of the solar system. For instance, the solar system vari-
ations in oxygen isotopes are interpreted as a self shielding
effect [42, 43, 44] i.e. an isotopically selective photodissoci-
ation of CO. However, chemical MIF effects similar to those
found in ozone are also invoked to interpret these variations
[7, 9, 10, 40, 41, 20]. Although this self shielding model re-
mains a viable possibility to produce MIF effects, the present
theory represents an alternative interpretation that can be tested
in the laboratory by condensation experiments in plasma.
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Appendix A. α and δ notations

In eq. 1 we defined an observable fractionation comparing
two samples, and one traces δ = (α−1)×1000 in a three-isotope
plot. If a purely mass-dependent fractionation were present, i.e.
αi j = α

β
ik, we may write αi j = (1 + δi j) = (1 + δik)β ≈ 1 + β δik,

which leads to a linear relation with slope β. We underline the
triviality that if samples 1 and 2 are identical, the fractionation
is exactly one, or zero in δ units.

The introduction of the η factor needs two types of samples
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– sample 2 standing for the initial composition of the reactants
and sample 1 for the products of the reaction studied. In this
way we can still write

α1;2
18−16 =

1

α2;1
18−16

=
1

α1;2
16−18

= α2;1
16−18

α1;1
18−16 = α1;2

16−16 = 1 (A.1)

From eqs. 2 and 3 we may write for 3 isotopes with αMD
A−C =

1 + ε and αMD
B−C =

(
αMD

A−C

)β
:

δA

δB
=

αMD
A−C η − 1

αMD
B−C η − 1

=
αMD

A−C η − 1

(αMD
A−C)β η − 1

≈
(η − 1) + ε η

(η − 1) + β ε η

≈

(
1 +

ε η

η − 1

) (
1 −

βεη

η − 1

)
= 1 +

(1 − β) ε η
η − 1

− β

(
ε η

η − 1

)2

(A.2)

which allows to estimate the deviation from one in the 3-isotope
plot.

With an η of 1.2, and ε = 0.010 (i.e. 10h) we have a approx-
imate slope of δ18O/δ18O approx1 + 0.029 − 0.002 = 1.027.

Appendix B. The equation of the MIF effect

We start from the ozone formation reaction which is consid-
ered as a three-body reaction with two exit channels, illustrated
in Figure 1. The reaction is simplified in the sense that we con-
sider 2 isotopes, A and B, and a third body M being neither A
nor B.

[AMB∗] designates the activated complex resulting from the
atom-molecule collisions A–MB (or B–MA). In the following,
we do not consider the difference in mass between A and B. In
other terms we neglect the mass-dependent isotopic fractiona-
tion (that is αMD = 1).

We also neglect the possible quantum-mechanical effects like
rotational or vibrational selection rules,[21, 22] linked to the
symmetry of the complexes [AMA∗] or [BMB∗].

For introducing the quantum-mechanical principle of indis-
tinguishability, we add a supplementary ingredient: we extract
the statistical fraction of exchange (R) and non-exchange (NR)
collisions (R and NR are also referred to as Reactive and Non-
Reactive) as XR and XNR = 1 − XR. XR is calculated from the
respective distribution functions of the lifetimes of the complex,
fR(τ) and fNR(τ), integrated numerically over all τ:

XR =

∫ ∞
0 fR(τ) dτ∫ ∞

0 [ fR(τ) + fNR(τ)] dτ
(B.1)

We then select trajectories with a lifetime longer than a de-
fined minimal value τmin and ascribe the corresponding fraction

P of these trajectories to events that possibly form the stable
AMB i.e. to Channel 1 (see Figure 1):

PR(τmin) =

∫ ∞
τmin

fR(τ) dτ∫ ∞
0 fR(τ) dτ

PNR(τmin) =

∫ ∞
τmin

fNR(τ) dτ∫ ∞
0 fNR(τ) dτ

(B.2)

PR and PNR are somewhere between 0 and 1, but do not sum to
one. The relative fractions of trajectories for the two kinds of
collision events forming three-atom complexes with a measur-
able lifetime are given by XRPR and XNRPNR. The sum of both
terms is necessarily smaller than one.

The product XNRPNR corresponds to:

XNRPNR(τmin) =

∫ ∞
τmin

fNR(τ) dτ∫ ∞
0 [ fNR(τ) + fR(τ) ]dτ

(B.3)

In other words, the term XNRPNR stands for the fraction of the
non reactive collisions stabilized as AMB relative to the total
number of possible collisions forming the complex; and simi-
larly for XRPR.

As we cannot proceed similarly for collisions involving in-
distinguishable isotopes (such as A+AM and B+MB forming
the stable AMA and BMB products), we use a common value
PI, yet unknown. The products AMA and BMB formed via the
Channel 1 are in the relative quantity:

(XR + XNR)︸       ︷︷       ︸
=1

×PI = PI (B.4)

Let us apply these considerations to a flow-reactor with an
infinite gas reservoir atoms A and B, and molecules MA, MB,
with the isotopic relative abundances noted xA and xB, with xA+

xB = 1. We count all the possible collisions A+MA, A+MB,
B+MA, B+MB leading to the species AMB, AMA and BMB.

For simplicity, we assume that the intermediate complex has
a statistical composition (i.e. is not fractionated relative to the
gas reservoir), which means that complexes are distributed as
x2

A for [AMA∗], x2
B for [BMB∗] and 2xAxB for [AMB∗].

The reactions A+MB and B+MA produce 2xAxB[XRPR +

XNRPNR] molecules of the type AMB with a lifetime longer
than τmin, which carry as many atoms A as B. For the two
molecules AMA and BMB we obtain: 2x2

API atoms A; and sim-
ilarly for B.

Depositing these molecules as stable AMA, AMB and BMB,
we have then a relative fraction x′A = 2x2

API + 2xAxB(XRPR +

XNRPNR) of A atoms deposited in AMB and AMA, and x′B =

2x2
BPI + 2xAxB(XRPR + XNRPNR) of B atoms deposited in AMB

and BMB.
Introducing κ = XRPR + XNRPNR and using xA = 1 − xB, we

may simplify

2x2
API +2xAxB(XRPR +XNRPNR) = 2xA [xA(PI − κ) + κ] (B.5)

The isotopic composition A/B for the Channel 1 is then:

x′A
x′B

=
xA

xB
×

xA(PI − κ) + κ

xB(PI − κ) + κ
(B.6)
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which is always different from xA/xB but for the two situations:
xA = xB and PI = κ.

With respect to the reservoir we obtain thus a fractionation

αA−B =
xA(PI − κ) + κ

xB(PI − κ) + κ
(B.7)

This fractionation does not depend on masses, but on initial
relative concentrations of the different isotopes.

Appendix B.1. MIF beyond complexes AMB
The previous reasoning can be extended to larger multi-

isotope systems, for which we distinguish two cases: (i) at least
3 isotopes and (ii) M may be as well one or several atoms of the
element under study.

Appendix B.2. More than 2 isotopes
Consider the isotopes A, B, C etc. . . with xA + xB + xC + . . . =

1, and molecules AMB etc where M is not one of the studied
isotopes.

We have:

x′A = 2x2
API + 2xA(xB + xC + . . .︸          ︷︷          ︸

1−xA

)(XRPR + XNRPNR)

= 2xA (xA(PI − κ) + κ) . (B.8)

In δ units this gives

δA = (αA−B − 1) × 1000 =

(
xA(PI − κ) + κ

xB(PI − κ) + κ

)
× 1000 (B.9)

and the slope in the 3-isotope plot becomes

δA

δC
=

xA − xB

xC − xB
(B.10)

Appendix B.3. M contains one or more atoms of the element
under study

Consider a 2-isotope system, where M contains A and/or B
and n > 0 in A − (X)n − A and A − (X)n − B.

molecule abundance number of A atoms
A − (X)n − B 2xAxB 1 + n xA

A − (X)n − A x2
A 2 + n xA

B − (X)n − B x2
B n xA

Table B.1: Distribution of A atoms for a molecule with n inner atoms of the
same element.

If we multiply symmetric molecules with PI , and the asym-
metric ones with κ and form the ratio αA−B, we obtain

αA−B =
PI(xA(2 + n xA) + n x2

B + 2xBκ(1 + n xA)

PI(xB(2 + n xB) + n x2
A + 2xAκ(1 + n xB)

=
(2κ + n PI) + 2(n − 1)(κ − PI)xA − 2n(κ − PI)x2

A

(2κ + n PI) + 2(n − 1)(κ − PI)xB − 2n(κ − PI)x2
B

This expression has as limit for xA → 0

αA−B →
2

2 + n
κ

PI
+

n
2 + n

For 2-isotope and 3-atom molecules (i.e. n = 1) we obtain

αA−B =
(2κ + PI) − 2(κ − PI)x2

A

(2κ + PI) − 2(κ − PI)x2
B

(B.11)

with the same limit. Expressed in δ units we arrive at

δA = (αA−B−1)×1000 =

 (2κ + PI) − 2(κ − PI)x2
A

(2κ + PI) − 2(κ − PI)x2
B

− 1
×1000

Appendix B.4. Both of the previous

For more than 2 isotopes A−(X)n−A, A−(X)n−B, A−(X)n−C
etc. XA + xB + xC + . . . = 1 still holds.

Thus we have to add to table B.1 a line with B−(X)n−C with
abundance 2xBxC and n xA atoms of kind A. We arrive for atoms

A at n xA

PI

∑
i

x2
i

 + κ

1 −∑
i

x2
i

 + 2PI x2
A + 2κxA(1 − xA)

and thus

αA−B =
n

[
PI

(∑
i x2

i

)
+ κ

(
1 −

∑
i x2

i

)]
+ 2PI xA + 2κ(1 − xA)

n
[
PI

(∑
i x2

i

)
+ κ

(
1 −

∑
i x2

i

)]
+ 2PI xB + 2κ(1 − xB)

(B.12)
again with the limit xB → 1 of

αA−B →
n PI + 2κ

n PI + 2PI
=

2
2 + n

κ

PI
+

n
2 + n

(B.13)

For a 3-isotope and 3-atom molecule we have:

αA−B =

[
PI

(
x2

A + x2
B + x2

C

)
+ κ

(
1 − x2

A − x2
B − x2

C

)]
+ 2PI xA + 2κ(1 − xA)[

PI

(
x2

A + x2
B + x2

C

)
+ κ

(
1 − x2

A − x2
B − x2

C

)]
+ 2PI xB + 2κ(1 − xB)

(B.14)

which gives in δ units

δA = (αA−B − 1) × 1000 =

(
T + 2PI xA + 2κ(1 − xA)
(T + 2PI xB + 2κ(1 − xB)

− 1
)
× 1000 (B.15)

with T =
[
PI

(
x2

A + x2
B + x2

C

)
+ κ

(
1 − x2

A − x2
B − x2

C

)]
.

In the 3-isotope plot of oxygen we find again a slope of

δ17

δ18
=

x17 − x16

x18 − x16
(B.16)
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Appendix C. Relation between η and and the lifetime calculated for ozone

Equation 4 is modified to:

α17−16 =

[
PI

(
x2

16 + x2
17 + x2

18

)
+ κ

(
1 − x2

16 − x2
17 − x2

18

)]
+ 2PI x17 + 2κ(1 − x17)[

PI

(
x2

16 + x2
17 + x2

18

)
+ κ

(
1 − x2

16 − x2
17 − x2

18

)]
+ 2PI x16 + 2κ(1 − x16)

(C.1)

This gives for 16O≈ 1:

η ≈
2
3
κ

PI
+

1
3

(C.2)

Appendix D. Relation between αx−y and α(XYZ)

In the literature, two α-notations are used, one for atoms as
in eq. 1, and one for molecules as

α(XYZ) =
[XYZ]/[16 − 16 − 16]sample

[XYZ]/[16 − 16 − 16]standard
(D.1)

The statistical abundance of ozone molecules XYZ is given as
6xX xY xZ , all of distinguishable type, and therefore to be multi-
plied with κ. Molecules 16 − 16 − 16 are of indistinguishable
type, and have to be multiplied with PI in our model. As the
factor of 6 and molar fraction cancel out in eq. D.1 we are left
with

α(XYZ) =
κ

PI
(D.2)

for the ensemble XYZ, YZX and ZXY . If two atoms are iden-
tical, we may have XXY (distinguishable) and XYX (indistin-
guishable), which yields as sum

α(XXY) =
2
3
κ

PI
+

1
3

(D.3)

If all three atoms are identical, we have only situations which
are indistinguishable, and, as a consequence,

α(XXX) = 1 (D.4)

These relations are similar to the limiting cases of αX−Y , but
cannot be mapped in a simple way, as in αX−Y all cases of XXX,
YYY , XYX, YXY , XXY , YYX and XYZ are regrouped.

Appendix E. Trajectory calculations for ozone

Atom-molecule collisions have been carried out within a
classical molecular-dynamics simulation using the potential
surface of Bitterova, Schinke et al. Initial conditions (impact
parameter, rotational quantum number of the O2 molecule, ini-
tial orientation, kinetic energy of the incoming atom) have been
chosen from Boltzmann statistics at fixed temperature.

A delicate point is the determination of a lifetime of a 3-
atom complex. One may define a geometrical criterion when

to speak of a complex, and when to speak of atom+molecule,
and measure the time spent in either situation. This adds tech-
nical parameters to the simulations which may be more or less
motivated.

We opted for another criterion to distinguish a complex from
an elastic scattering situation of an atom and a molecule with-
out any transfer of internal energy. From the kinetic energy
of the incoming atom, masses and the scattering angle we can
estimate the necessary time-of-flight through a sphere around
the target assuming a purely elastic scattering. If the measured
time is longer or if an exchange took place, then an intermedi-
ate complex had been formed. The lifetime of the complex is
the measured flight time minus the time assuming purely elastic
scattering.

An ensemble of 3 × 106 trajectories was used for the simula-
tions of one system (temperature, isotope combinations).

Appendix F. Mg and Ti data used to construct the Figures

δ26Mg ±2σ δ25Mg ±2σ
-83.3 2.3 -92.5 2.2
-68.3 6.8 -79.4 7.3
-99.8 7.9 -112.5 8.4

-142.9 10.0 -175.3 10.7
-150.7 10.1 -162.6 10.7
-167.7 11.2 -198.7 12.0
-160.5 10.6 -166.5 11.2
-181.1 12.1 -195.9 12.9
-184.2 12.2 -194.4 12.9

(*) 21.0 2.0 13.3 2.1
(*) -131.6 7.0 -122.5 6.7
(*) -203.6 9.4 -207.0 8.9
(*) -202.6 12.2 -214.8 11.5
(*) -321.7 18.8 -320.2 17.8
(*) 398.9 27.1 401.3 25.7
(*) 903.9 39.1 893.5 37.0
(*) 823.6 59.2 828.2 56.2
Bulk -16.0 1.9 -13.0 1.8

Table F.2: Magnesium isotopic compositions measured in different grains con-
densed from a plasma composed of MgCl2/Pentanol mixtures[37]. The (*)
stands for variations observed in a single grain. The average isotopic compo-
sition of (*) is noted as “bulk”. Note that 3 outliers of the Mg data have been
removed from the published [37] Tables.
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δ46Ti ±2σ δ47Ti ±2σ δ48Ti δ49Ti ±2σ δ50Ti ±2σ
-206.7 36.8 -225.0 38.4 0 -224.1 45.0 -220.8 45.6
283.5 32.5 393.4 32.3 0 360.5 38.0 431.5 37.6
-152.7 24.8 -139.6 25.2 0 -94.7 28.8 -98.9 29.3
254.5 47.3 233.1 49.5 0 306.2 56.1 358.0 55.9
242.0 24.5 261.6 24.7 0 291.9 28.5 347.2 28.4
78.0 9.8 94.9 10.3 0 133.2 11.6 124.7 12.0
52.1 35.0 68.9 36.4 0 94.1 41.9 137.5 41.8
109.9 33.7 108.5 35.4 0 174.0 40.0 182.2 40.5

(*) -192.1 95.4 -213.6 140.8 0 -220.6 98.5 -249.9 102.8
(*) -144.0 28.0 -156.7 49.7 0 -156.2 33.4 -147.0 39.7
(*) 111.2 17.3 133.1 12.3 0 136.0 13.9 167.9 14.9
(*) 244.5 51.9 344.8 31.1 0 324.5 35.6 366.8 50.0
(*) 1241.0 143 1284.4 154 0 1180.5 176 1204.3 180
Bulk 33.2 4.9 61.1 4.7 0 62.9 4.6 92.4 4.6

Table F.3: Titanium isotopic composition measured in different grains con-
densed from a plasma composed of TiCl4/Pentane mixture.[38] As before (*)
stands for variations observed in a single grain. The average isotopic compo-
sitions of (*) is noted as “bulk”. Underlined values served for determining PI
and κ.
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