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Introduction

There are many applications where we not only need to decrypt a ciphertext, but also prove that we have decrypted the ciphertext correctly without revealing the secret key. This is called verifiable decryption. Examples include mix-nets used for anonymous communication [START_REF] Shirazi | A survey on routing in anonymous communication protocols[END_REF], decryption of ballots in electronic voting [START_REF] Haines | SoK: Techniques for verifiable mix nets[END_REF], and various uses of verifiable fully homomorphic encryption [START_REF] Luo | Verifiable decryption for fully homomorphic encryption[END_REF]. In particular, such applications usually require the decryption of a large number of ciphertexts.

It is well-known how to do verifiable decryption for public-key encryption schemes based on discrete logarithms (for ElGamal, proving the equality of two discrete logarithms [START_REF] Chaum | Wallet databases with observers[END_REF] will do). Except for the recent publication by Lyubashevsky et al. [START_REF] Lyubashevsky | Shorter lattice-based zero-knowledge proofs via one-time commitments[END_REF] (which provides a rather complicated decryption proof by combining proofs of linear relations, multiplications and range proofs), no efficient and straight-forward zero-knowledge proofs of correct decryption are known for lattice-based cryptography or other post-quantum encryption schemes. This state-of-affairs is unsatisfying, in particular because many applications that require zero-knowledge proofs of correct decryption should also be secure in the face of quantum computers which are becoming increasingly more powerful. For example, the electronic voting system Helios [START_REF] Adida | Helios: Web-based open-audit voting[END_REF] and the Estonian voting protocol [START_REF] Heiberg | Verifiable internet voting in Estonia[END_REF] are using classical encryption schemes and decryption proofs with corresponding quantum threats to the long-term privacy of the voters.

On the contrary, there do exist efficient and straightforward passively secure lattice-based encryption schemes with distributed decryption. In such a scheme, the decryption key is shared among several players. Decryption is done in a distributed fashion by each player creating a decryption share, which can be individually verified, and a reconstruction algorithm can recover the message from the decryption shares. Distributed decryption allows more general methods to recover the message, such as general multi-party computation. There are many useful and efficient lattice-based threshold cryptosystems and distributed decryption schemes [START_REF] Bendlin | Threshold decryption and zero-knowledge proofs for lattice-based cryptosystems[END_REF][START_REF] Bettaieb | Improved lattice-based threshold ring signature scheme[END_REF][START_REF] Boyle | Homomorphic secret sharing from lattices without FHE[END_REF][START_REF] Damgård | Two-round n-out-of-n and multi-signatures and trapdoor commitment from lattices[END_REF][START_REF] Damgård | Multiparty computation from somewhat homomorphic encryption[END_REF][START_REF] Dodis | Spooky encryption and its applications[END_REF]. In particular, if the security requirements are relaxed, lattice-based distributed decryption can be very straight-forward.

Our main idea is to use MPC-in-the-head [START_REF] Ishai | Zero-knowledge from secure multiparty computation[END_REF] in conjunction with a 2-party passively secure distributed decryption scheme to construct a very simple verifiable decryption scheme; however, we shall see that there are various technical challenges. To achieve the desired level of security, we run the 2-party decryption scheme on the ciphertexts many times locally, and then reveal a random subset of keys, one for each run, allowing others to verify that it was done correctly.

Contribution

Our main contribution is a transformation from a 2-party passively secure distributed decryption scheme to a 1-party verifiable decryption scheme. To achieve this, we use MPC-in-the-head with the 2-party decryption scheme. The idea is that the prover runs the 2-party decryption protocol many times and reveals the resulting decryption shares. The interactive verifier will then, for each run of the decryption scheme, ask to see one of the two decryption keys and any randomness involved in creating the corresponding decryption shares. With this information, it is straight-forward for the verifier to ensure that half of the decryption shares were generated honestly.

As usual, the idea is that if the prover cheats, the verifier will have probability (close to) 1/2 of detecting this in each round. If a cheating prover is consistently successful, we can use rewinding to extract both secret shares. Furthermore, if the 2-party decryption scheme is passively secure, revealing one share will not reveal anything about the secret key itself.

There are four remaining obstacles, two easy and two somewhat trickier. The first easy obstacle is that in a threshold public key encryption scheme or distributed decryption scheme, the decryption key shares are generated as part of key generation. We already have a decryption key, but we need to create many independent sharings of that key. For discrete logarithm-based schemes like El-Gamal, this is usually trivial. For the schemes we consider, it is still not hard, but it follows that we do not have a fully general reduction from 2-party distributed decryption to (1-party) verifiable decryption. The second easy obstacle is that given both secret key shares we want to recover the secret key. We solve this by extending the notation of a distributed decryption function with a function which recovers the key from the shares. This is easy to satisfy in practice.

The third obstacle is that the verifier needs to make sure that the revealed key share is correct. For ordinary threshold decryption schemes, this can often be avoided, either because the dealer is trusted or replaced by some multi-party computation. Therefore, we need to use a non-generic solution here. For batched decryption, the main observation is that we only verify the key once for each run of the 2-party decryption scheme, not once per ciphertext in the batch. The number of runs essentially corresponds to the security parameter, which in many applications will be significantly smaller than the number of ciphertexts.

The final obstacle is related to our security proof. We need to simulate shares of the decryption key, any auxiliary information related to them, and decryption shares. Although similar techniques are common in the construction of threshold public key encryption scheme, the security definitions do not actually require their presence. Since we need them, our approach is again somewhat non-generic.

On the other hand, since we intend to verify correctness of decryption shares by revealing decryption key shares and any randomness involved, we can make do with a passively secure distributed decryption scheme, simplifying our work.

The result is a construction from a somewhat specialized 2-party distributed decryption scheme to a verifiable decryption scheme. Since the security requirements for the distributed decryption scheme are shifted compared to traditional threshold decryption schemes, this will allow us to use very simple threshold decryption. This means that it can be very efficient, both with respect to computational time and size of the decryption shares. Even though the decryption is run many times, the result will still be efficient compared to the alternatives.

Note that in an interactive setting, it may make sense to use a very small security parameter, making the protocol extremely cheap. For instance, in any system where detected cheating will have a significant penalty, rational actors will be deterred by even a small chance of detection. However, when the protocol is made non-interactive, this clearly does not work.

In the full version we prove in the interactive theorem prover Coq [START_REF] Bertot | Interactive theorem proving and program development : Coq'Art : the calculus of inductive constructions[END_REF] a simplified variant of our transform and an ElGamal toy example. Regrettably, we are unable to prove the full transform and the lattice example due to limitations in the interactive theorem prover. Indeed, to our knowledge, no interactive theorem prover exists which provides adequate support. Nevertheless, the proof of the simplified variant increases confidence in the result.

It is worth emphasizing that our protocol is very simple to implement (using Stern-based zero-knowledge proofs [START_REF] Kawachi | Concurrently secure identification schemes based on the worst-case hardness of lattice problems[END_REF][START_REF] Ling | Improved zero-knowledge proofs of knowledge for the ISIS problem, and applications[END_REF] to ensure that key-shares are wellformed), lowering the bar for deploying our scheme in practice. We note that lattice-based zero-knowledge proofs in general can be very complicated, involving a combination of proofs of linear relations, proofs of shortness and range proofs, in addition to Gaussian sampling, rejection sampling and optimizations exploiting partially splitting rings and automorphisms [START_REF] Attema | Practical product proofs for lattice commitments[END_REF][START_REF] Lyubashevsky | Shorter lattice-based zero-knowledge proofs via one-time commitments[END_REF]. Correctly and securely implementing voting systems using primitives based on discrete logarithms is hard [START_REF] Haines | How not to prove your election outcome[END_REF], and lattice-based primitives makes it harder. In our protocol we only need to sample uniformly random or short elements in any ring of our choice, and use standard cut-and-choose techniques to open committed values, making it easy to use in practice. Concretely, this means that we are not vulnerable to side-channel attacks against Gaussian sampling [START_REF] Bruinderink | Flush, gauss, and reload -A cache attack on the BLISS lattice-based signature scheme[END_REF] or rejection sampling [START_REF] Espitau | Side-channel attacks on BLISS lattice-based signatures: Exploiting branch tracing against strongSwan and electromagnetic emanations in microcontrollers[END_REF].

Combined with the main contribution, this gives us a verifiable decryption scheme for a lattice-based public key encryption scheme that is very efficient when the number of ciphertexts is much larger than the security parameter. The protocol is fast and simple, and the proof size is small. We give concrete parameters and a proof of concept implementation of our protocol in Section 6.

Related Work

Verifiable decryption for ElGamal can be done by proving the equality of two discrete logarithms [START_REF] Chaum | Wallet databases with observers[END_REF], and can be batched for significantly improved performance when decrypting many ciphertexts [START_REF] Gordon | A Survey of Fast Exponentiation Methods[END_REF]40].

The "dual" Regev system [START_REF] Lyubashevsky | A toolkit for ring-LWE cryptography[END_REF] can be used by making the randomness public. However, this is not zero-knowledge and opens for so-called "tagging-attacks" to de-anonymize users in privacy-preserving applications (e.g., e-voting).

Threshold encryption schemes [START_REF] Desmedt | Threshold cryptosystems[END_REF] and distributed decryption schemes are now well-understood, and many constructions exist [START_REF] Bendlin | Threshold decryption and zero-knowledge proofs for lattice-based cryptosystems[END_REF], in particular those related to SPDZ [START_REF] Damgård | Practical covertly secure MPC for dishonest majority -or: Breaking the SPDZ limits[END_REF][START_REF] Damgård | Multiparty computation from somewhat homomorphic encryption[END_REF][START_REF] Keller | Overdrive: Making SPDZ great again[END_REF]. When only passive security is required, these schemes can be quite efficient. Threshold decryption with active security implies verifiable decryption when the verification of decryption shares is a public operation. The problem is that it is often costly to provide a threshold decryption scheme with active security. Our approach gives away a decryption key share and randomness involved, and it is trivial to verify that the key share has been used correctly.

We compare more in detail with recently developed verifiable decryption protocols [START_REF] Bendlin | Threshold decryption and zero-knowledge proofs for lattice-based cryptosystems[END_REF][START_REF] Boschini | Efficient post-quantum SNARKs for RSIS and RLWE and their applications to privacy[END_REF][START_REF] Lyubashevsky | Shorter lattice-based zero-knowledge proofs via one-time commitments[END_REF][START_REF] Silde | Verifiable Decryption for BGV[END_REF] in Section 7.

Passively Secure 2-party Decryption

A distributed decryption scheme enables a set of players to distribute the decryption of ciphertexts, in such a way that only authorized subsets of players can do the decryption. Usually, the decryption key shares are created once during key generation. As discussed in the introduction, we will generate independent decryption key sharings repeatedly, so we need to define the syntax of our variant of distributed decryption schemes precisely.

Consider a public key cryptosystem with key generation algorithm KeyGen, encryption algorithm Enc and decryption algorithm Dec. We extend the notation with a predicate KeyM for key-matching which takes as input a public and secret key. We require for all matching public and secret keys pk, sk and all messages m, that Dec(sk, Enc(pk, m)) = m (with overwhelming probability).

A distributed decryption protocol for this public key cryptosystem consists of four algorithms, a dealer algorithm, a verify algorithm, a player algorithm, and a reconstruction algorithm. We consider only two parties where both decrypt.

The dealer algorithm (Deal) takes as input a public key and corresponding secret key and outputs two secret key shares and some auxiliary data aux. The verify algorithm (Verify) takes as input a public key, auxiliary data, an index and a secret key share and outputs yes (1) or no (0). The player algorithm (Play) takes as input a secret key share and a ciphertext and outputs a decryption share ds. The reconstruction algorithm (Rec) takes as input a ciphertext and two decryption shares and outputs either ⊥ or a message.

Intuitively, the protocol is correct if Play and Rec collectively recover the encrypted message and verification accepts when the dealer is honest.

Definition 1 (Correctness).

A distributed decryption protocol is correct if for any key pair (pk, sk) s.t. KeyM(pk, sk) = 1, all c = Enc(pk, m), any (sk 0 , sk 1 , aux) output by Deal(pk, sk), then, for i = 0, 1, Verify(pk, aux, i, sk i ) = 1, and

Pr [ m ← Dec(sk, c); Rec(c, Play(sk 0 , c), Play(sk 1 , c)) = m ] ≥ 1 -negl.
For a distributed decryption protocol, we must trust the dealer for privacy, but not for integrity. The integrity property below says that if both secret shares given by the dealer are valid (according to the Verify algorithm), then the Play and Rec will collectively recover the encrypted message.

Definition 2 (Integrity).

A distributed decryption protocol has integrity if there exists an efficient algorithm (named FindKey which takes as input the public key, the two secret key shares and the auxiliary information, and returns a secret key) such that for all public keys pk, ciphertexts c = Enc(pk, m), secret key shares (sk 1 , sk 2 ), and auxiliary data aux and sk output by FindKey(pk, sk 0 , sk 1 , aux) satisfying Verify(pk, aux, i, sk i ) = 1, for i = 0, 1, we have that

Pr [ KeyM(pk, sk) ∧ Rec(c, Play(sk 0 , c), Play(sk 1 , c)) = Dec(sk, c) ] ≥ 1 -negl.
For threshold cryptosystems and distributed decryption, security is typically defined through the usual security games for public key cryptosystem, allowing the adversary access to the decryption key shares through decryption share oracles. This security notion is not very convenient for us, so we shall instead rely on a variant of simulatability, namely we must be able to simulate both decryption key shares and decryption shares in a consistent fashion. 

Exp ddp-sim-0 A (pk, sk) (i, (c 0 , ..., c τ ), (m 0 , ..., m τ )) ← A(pk) (sk 0 , sk 1 , aux) ← Deal(pk, sk) ∀j : ds j ← Play(sk 1-i , c j ) b = A(aux, sk i , (ds 0 , ..., ds τ )) return b Exp ddp-sim-1 A (pk) (i, (c 0 , ..., c τ ), (m 0 , ..., m τ )) ← A(pk) (sk i , aux) ← DealSim(pk, i) ∀j : ds j ← PlaySim(pk, sk i , c j , m j ) b = A(aux, sk i , (ds 0 , ..., ds τ )) return b
., c τ ), m = (m 0 , ..., m τ ) such that {m j = Dec(sk, c j )} τ j=1 . The simulatability advantage of A is Adv ddp-sim (A, pk, sk) = |Pr[Exp ddp-sim-0 A (pk, sk) = 1] -Pr[Exp ddp-sim-1 A (pk) = 1]|,
where the probability is taken over the random tapes and (pk, sk) output by KeyGen. We say that a distributed decryption protocol is (t, ϵ)-simulatable (or just simulatable) if no t-time algorithm A has advantage greater than ϵ.

We give an ElGamal toy example in the full version to showcase our technique.

Verifiable Decryption from Distributed Decryption

We will now construct a (batch) zero-knowledge proof system of correct decryption from the distributed decryption protocol. The protocol is given in Figure 2. More precisely, our proof system is a sigma protocol with completeness, special soundness, and honest verifier-zero knowledge.

For any public key cryptosystem, a public key output by the key generation algorithm uniquely defines a decryption function that for all messages agrees with the decryption algorithm for any ciphertext output by the encryption algorithm, except those that lead to decryption failure.

Recall that for a batched verifiable decryption protocol the statement consists of a public key, a vector of ciphertexts and a vector of messages, where the ciphertexts have been output by the encryption algorithm. The statement is in the language if and only if the messages correspond to the decryption function applied to the ciphertexts. The secret key (witness) satisfies the relationship with the statement if it corresponds to the public key and the message vector is the decryption of the ciphertexts with the secret key.

The protocol works as follows: the prover creates λ sharings of the secret key by calling the Deal algorithm λ times. For each sharing and each ciphertext, the prover uses the Play algorithm to construct the decryption share. The prover sends the auxiliary information from Deal and all the shares to the verifier. Then, the verifier returns a challenge which is a binary vector of length λ. The prover finally reveals the corresponding parts of the shares as well as any randomness used in the Play algorithms with this key share. The prover checks that (1) all the revealed shares verify, (2) the decryption shares are consistent with the revealed key shares, and (3) the messages correspond to the decryption shares. Completeness. Up to the possible negligible error introduced by decryption failures, completeness follows immediately by construction and the correctness of the underlying distributed decryption protocol. Special Soundness. By rewinding, any cheating prover with a significant success probability can be used to create two accepting conversations (w, β, z) and (w, β ′ , z ′ ), with β ̸ = β ′ . From this it follows that β[k] ̸ = β ′ [k] for at least one k, and the verify algorithm has accepted both secret key shares and every decryption share in this round has been correctly created using the Play algorithm. Then, since the ciphertexts are encryptions of the first message vector, integrity implies that FindKey will recover a witness which matches the public key and for which the messages match the output of the decryption function.

ΠZKPCD Prover((pk, {cj} τ j=1 , {mj} τ j=1 ); (sk)) Verifier(pk, {cj} τ j=1 , {mj} τ j=1 ) k = 1, ..., λ : (sk 0,k , sk 1,k , aux k ) ← Deal(pk, sk) i = 0, 1 : j = 1, ..., τ : ds i,j,k ← Play(sk i,k , cj; ρ i,k,j ) w ← ({aux k , {t i,j,k }}) w β ←$ {0, 1} λ β z ← ({sk β[k],k } k , {ρ β[k],k,j } k,j ) z k = 1, ..., λ : Verify(pk, aux k , β[k], sk β[k],k ) ? = 1 j = 1, ..., τ : Play(sk β[k],k , cj; ρ β[k],k,j ) ? = ds β[k],j,k Rec(cj, ds 0,j,k , ds 1,j,k ) ? = mj
Honest-Verifier Zero-Knowledge. Our simulator works as follows, given the statement (pk, {c j } τ j=1 , {m j } τ j=1 ) and the challenge β: First, for i = 1, ..., λ, we let (aux i , sk

β[i],i ) ← DealSim(pk, β[i]
) and, for j = 1, ..., τ , we let ds

β[i],j,i ← PlaySim(pk, sk β[i],i , c i , m i ) and ds 1-β[i],j,i ← Play(pk, sk β[i],i , c i ). The proof tran- scripts is then ((pk, {c j } τ j=1 , {m j } τ j=1 ), (aux i , ds 0,j,i , ds 1,j,i ), β, sk β[i],i
). This is computationally indistinguishable from the honest transcripts if the distributed decryption protocol is simulatable.

We give a machine checked proof of our protocol instantiated with ElGamal in the full version of this paper to provide confidence in our general transform.

BGV Encryption

We present a version of the BGV encryption scheme by Brakerski, Gentry and Vaikuntanathan [START_REF] Brakerski | Leveled) fully homomorphic encryption without bootstrapping[END_REF]. See the full version of this paper for background on latticebased cryptography. Let p ≪ q be primes, let R q and R p be polynomial rings modulo the primes q or p and X N + 1 for a fixed N , let B ∞ ∈ N be a bound and let κ be the security parameter. The encryption scheme consists of three algorithms: key generation, encryption and decryption, where -KeyGen samples an element a ←$ R q uniformly at random, samples short s, e ←$ R q such that max(∥s∥ ∞ , ∥e∥ ∞ ) ≤ B ∞ . The algorithm outputs the public key pk = (a, b) = (a, as + pe) and the secret key sk = (s, e). -Enc, on input the public key pk = (a, b) and an element m in R p , samples short r, e ′ , e ′′ ←$ R q such that the norm max(∥r∥

∞ , ∥e ′ ∥ ∞ , ∥e ′′ ∥ ∞ ) ≤ B ∞ ,
and outputs the ciphertext c = (u, v) = (ar + pe ′ , br + pe ′′ + m) in R 2 q . -Dec, on input the secret key sk = (s, e) and a ciphertext c = (u, v), outputs the message m = (v -su mod q) mod p in R p .

The decryption algorithm is correct as long as the norm max∥v -su∥ ∞ = B Dec < ⌊q/2⌋. It follows that the BGV encryption scheme is secure against chosen plaintext attacks if the DKS ∞ N,q,β problem is hard for some β = β(N, q, p, B ∞ ). Furthermore, we present the passively secure distributed decryption technique by Bendlin and Damgård [START_REF] Bendlin | Threshold decryption and zero-knowledge proofs for lattice-based cryptosystems[END_REF] used in the MPC-protocols by Damgård et al. [START_REF] Damgård | Practical covertly secure MPC for dishonest majority -or: Breaking the SPDZ limits[END_REF][START_REF] Damgård | Multiparty computation from somewhat homomorphic encryption[END_REF]. When decrypting, we assume that each decryption server D j , for 1 ≤ j ≤ ξ, has a uniformly random share sk j = s j of the secret key sk = (s, e) such that s = s 1 + s 2 + ... + s ξ . Then they partially decrypt in the following way:

-DistDec, on input a secret key-share sk j = s j and a ciphertext c = (u, v), computes m j = s j u, sample some large noise E j ←$ E ⊂ R q such that ∥E j ∥ ∞ ≤ 2 sec (B Dec /pξ) for some statistical security parameter sec and upper error-bound max∥v -su∥ ∞ ≤ B Dec , then outputs ds j = t j = m j + pE j .

We obtain the full decryption of the ciphertext (u, v) as m ≡ (v -t mod q) mod p, where t = t 1 + t 2 + ... + t ξ . This will give the correct decryption as long as the noise max∥v -t∥ ∞ ≤ (1+2 sec )B Dec < ⌊q/2⌋ (see [START_REF] Damgård | Practical covertly secure MPC for dishonest majority -or: Breaking the SPDZ limits[END_REF]Appendix G]). Here, t will be indistinguishable from random except with probability 2 -sec .

5 Zero-Knowledge Protocol of Correct Decryption

Lattice-Based Distributed Decryption

Setup. We will be working over the ring R q = Z q [X]/⟨X N + 1⟩ together with a modulus p ≪ q, both prime. These are the public parameters of the protocol, together with security parameter κ, soundness parameter λ, bound B ∞ and maximal ciphertext error-bound B Dec . We define commitments, their security and give a concrete instantiation based on lattices in the full version of this paper.

The commitments are both computationally hiding and computationally binding, in addition to being linearly homomorphic. Finally, let (Π ZKPoS , Π ZKPoSV ) be a non-interactive zero-knowledge protocol for the following relation:

R DKS ∞ N,q,1 = {((A, y); x) : Ax = y mod q ∧ ∥x∥ ∞ = 1}.
Scheme. We present a distributed decryption version of the BGV encryption scheme [START_REF] Brakerski | Leveled) fully homomorphic encryption without bootstrapping[END_REF], where KeyGen, Enc and Dec are defined in Section 4.

The dealer algorithm (Deal) takes as input a public key pk = (a, b) and corresponding secret key sk = (s, e), samples uniform s 0 and e 0 from R q , and computes s 1 = s -s 0 and e 1 = e -e 0 . Then it commits to the values as c si = Com(s i ), c ei = Com(e i ), and computes b i = as i +pe i so that b = b 0 +b 1 . Finally, it computes non-interactive zero-knowledge proofs π Si proving that the sums s 0 + s 1 and e 0 + e 1 are short (see details in Section 6). It outputs key shares sk 0 = (s 0 , e 0 ), sk 1 = (s 1 , e 1 ) and aux = (b 0 , b 1 , c s0 , c s1 , c e0 , c e1 , π S0 , π S1 ). The verify algorithm (Verify) takes as input a public key pk = (a, b), an index i, a secret key share sk i = (s i , e i ), openings d si and d ei , and aux. It outputs

1 if and only if (b i ? = as i + pe i ) ∧ (b ? = b 0 + b 1 ) ∧ Open(c si , d si ) ∧ Open(c ei , d ei ) ∧ (Π ZKPoSV (sk i , aux, π Si ))
, and 0 otherwise. The player algorithm (Play) takes as input a key share sk i = (s i , e i ), a ciphertext c = (u, v), samples bounded E i and outputs ds j = t i = s i u + pE i . The reconstruction algorithm (Rec) takes as input a ciphertext c = (u, v), decryption shares (t 0 , t 1 ), and outputs m = (v -t 0 -t 1 mod q) mod p.

Security

Theorem 1 (Correctness). The distributed decryption scheme in 5.1 is correct with respect to Definition 1 when max∥v -t∥ ∞ ≤ (1 + 2 sec )B Dec < ⌊q/2⌋.

Theorem 2 (Integrity). Suppose the protocol Π ZKPoS is (computationally) sound and that Com is (computationally) binding. Let A 0 be an adversary against integrity of the distributed decryption scheme with advantage ϵ 0 , and let λ be the number of rounds in the protocol. Then there exists adversaries A 1 and A 2 against soundness of Π ZKPoS and binding of Com, respectively, with advantages ϵ 1 and ϵ 2 , such that ϵ 0 ≤ ϵ 1 +ϵ 2 +2 -λ . The runtime of A 1 and A 2 are essentially the same as the runtime of A 0 .

Proof. We sketch the argument. There are essentially three possible ways to attack the integrity of the protocol: an attacker that knows the secret decryption key but correctly guess the challenge in each round is able to decrypt to arbitrary messages, and otherwise, if the attacker does not know the secret key, needs to break the underlying schemes. The guessing attack has success probability 2 -λ . For Verify to accept for both i = 0 and i = 1, we need that b = b 0 + b 1 , b 0 = as 0 + pe 0 , b 1 = as 1 + pe 1 and that the zero-knowledge proof of shortness π S of the sums s 0 + s 1 and e 0 + e 1 are accepted. If either of the key shares are incorrect then Verify accept with probability 0, and if the key shares are correct, then Rec outputs m except with negligible probability. An attacker can choose s 0 , s 1 , e 0 and e 1 such that all equations are correct, but the sums are not short. The soundness of Verify then reduces to the soundness of the zero-knowledge protocol, and an attacker A 0 against this part of the protocol with advantage ϵ 0 can be turned into an attacker A 1 against Π ZKPoS with the same advantage.

The last option is for the attacker to produce commitments to a true but unrelated statement with respect to the secret key used in the encryption scheme. This allows the attacker to produce a valid proof of shortness without cheating, but for an unrelated key. However, Verify only accepts if both the opening of the commitments are correct and the zero-knowledge proof of shortness verifies. Hence, and attacker A 0 that is able to produce valid openings and proofs with advantage ϵ 0 can be turned into an attacker A 2 against Com with the same advantage by rewinding the prover for the zero-knowledge proof of knowledge of short openings and then extract two different but valid openings to the commitment. Theorem 3 (Privacy). Suppose the protocol Π ZKPoS is (statistically) honestverifier zero-knowledge, that Com is (computationally) hiding and that Enc is (computationally) CPA secure. Then there exists a simulator for the verifiable decryption protocol such that for any distinguisher A 0 for this simulator with advantage ϵ 0 there exists an adversary A 2 against hiding for the commitment scheme with advantage ϵ 2 , an adversary A 3 against CPA security for the encryption scheme with advantage ϵ 3 , and a distinguisher A 1 for the simulator of Π ZKPoS with advantage ϵ 1 , such that ϵ 0 ≤ ϵ 1 + ϵ 2 + ϵ 3 . The runtime of A 1 , A 2 and A 3 are essentially the same as the runtime of A 0 .

Proof. Let Sim Short be a simulator for Π ZKPoS . We present a simulator DealSim for the Deal-algorithm and a simulator PlaySim for the Play-algorithm in Figure 3.

DealSim: We create the simulator in three steps. We first replace π S by the simulated proof π * S produced by Sim Short . An attacker A 0 with advantage ϵ 0

DealSim(pk = (a, b), i) i = 0, 1 : s * i ←$ Rq, e * i ←$ Rq b * i = as * i + pe * i , b * 1-i = b -b * i c * s i ← Com(s * i ), c * s 1-i ← Com(s1-i) c * e i ← Com(e * i ), c * e 1-i ← Com(s1-i) π * S ← SimShort(c * s i , c * s 1-i , c * e i , c * e 1-i ) aux * ← (b * 0 , b * 1 , c * s 0 , c * s 1 , c * e 0 , c * e 1 , π * S ) return (sk * i = (s * i , e * i ), aux * ) PlaySim(sk 1-i = (s1-i, e1-i), c = (u, v), i, m) E1-i ←$ E t1-i = s1-iu + pE1-i t * i = v -m -t1-i mod p return (ds * i = t * i )
Fig. 3. Simulators DealSim and PlaySim.

against this change can be turned into an attacker A 1 against the simulator Sim Short of protocol Π ZKPoS with the same advantage. Next, we replace the key shares by uniformly random key-shares s * i and e * i that give correctness, that is, the public key-shares b * 0 and b * 1 sum to b, but s * 0 and s * 1 does not need to sum to a short key s * and e * 0 and e * 1 does not need to sum to short noise e * . This ensures that Verify outputs 1. An attacker A 0 with advantage ϵ 0 against this change can then be turned into an attacker A 3 against CPA security of the encryption scheme with the same advantage.

Finally, we replace the commitments to unopened values by commitments to random values. This way, none of the values in the protocol any longer depends on the secret key in the protocol, and b * i are simulated perfectly. An attacker A 0 with advantage ϵ 0 against this change can then be turned into an attacker A 2 against hiding of the commitment scheme with the same advantage.

PlaySim: we start by sampling bounded E 1-i from E and computing t 1-i = s 1-i u + pE 1-i . Then we find t i such that (v -t 0 -t 1 mod q) mod p = m. This ensures that Rec outputs the message m when reconstructing the shares. Here, the values are sampled according to the exact same distribution as in the real protocol, and the statistical distance is negligible in the security parameter κ.

Zero-Knowledge Proof of Verifiable Decryption

We present the different phases of our sigma protocol for proving correct decryption. The protocol is given in Figure 4. The security of the construction follows directly from the results in Section 3 in combination with Theorem 1, 2 and 3.

Setup. We are given a honestly generated public key pk = (a, b = as+pe), where max(∥s∥ ∞ , ∥e∥ ∞ ) ≤ B ∞ . The secret key sk = (s, e) is given to the prover. We are given a set of honestly generated ciphertexts {(u j , v j ) = (ar j + pe ′ j , br j + pe ′′ j + m j )} τ j=1 , where max(∥r∥ ∞ , ∥e ′ ∥ ∞ , ∥e ′′ ∥ ∞ ) ≤ B ∞ , and set of messages {m j } τ j=1 .

Commit phase. For soundness parameter λ, the prover does the following for k = 1, ..., λ. First, it runs the Deal algorithm on sk and pk to produce sk 0,k , sk 1,k and aux k . It uses Π ZKPoS to prove that the shares are correctly computed. Then, for i = 0, 1 and each j = 1, ..., τ , it runs the Play algorithm on each key-share sk i,k and ciphertext c j to produce t 0,j,k and t 1,j,k . Finally, it sends w ← ({aux k , {t i,j,k } 1,τ i=0,j=1 } λ k=1 ) to end the commitment phase.

Challenge phase. The verifier independently samples a random binary challenge vector β of length λ. It sends β to the prover.

Respond phase. The prover sends openings z = ({d ,k and ensure that each π S i,k is valid. Further, for each j = 1, ..., τ , the verifier runs the Rec algorithm to make sure that all decryption shares are correct and that all messages are decrypted correctly. It outputs 1 if all checks hold, and 0 otherwise.

s β[k],k , d e β[k],k }),
Fiat-Shamir. To make the scheme non-interactive we can use the Fiat-Shamir transform [START_REF] Fiat | How to prove yourself: Practical solutions to identification and signature problems[END_REF] by hashing the output of the commit phase and use the hash as challenge, before outputting the response. We note that this can be done similarly to the optimizations described for estimating the size in the next section. We also note that the soundness parameter λ initially can be very small in the interactive case, while it should be (approximately) as large at the security parameter κ in the non-interactive setting, increasing the size of the proof of decryption.

Hybrid proof. We note that the interaction in the protocol opens for a hybrid proof: if we wish for a quick result to get confidence in the decrypted ciphertexts but at the same time can wait longer to be completely certain, we can ask for two proofs. First, we ask the prover for a proof where λ I = 10 or λ I = 20, and sample a random challenge ourselves. If we accept the proof, we ask the prover to compute a non-interactive proof for the same statement but with λ N = 100. This proof can be received, stored and verified later, knowing already that the messages most likely are correctly decrypted. The interactive proof also allows the verifier to arbitrarily increase λ I by sending more challenges on the fly, where we tell the prover when we are done, and he creates the proofs of shortness in the end. This is particularly useful in real-world applications, e.g., e-voting.

Performance

In this section, we shall carefully analyze the performance of our decryption proof. Along the way, we make several easy optimizations with respect to the protocol in Fig. 4. In particular, we use a commitment in the first message, and then send only the values that the verifier cannot recompute himself in the second message. Finally, we compute the zero-knowledge proofs of shortness in the response phase instead of the commit phase, reducing the number of proofs by a factor of two in each round of the protocol.

ΠZKPCD Prover(((a, b), {(uj, vj)} τ j=1 , {mj} τ j=1 ); (s, e)) Verifier((a, b), {(uj, vj)} τ j=1 , {mj} τ j=1 ) k = 1, ..., λ : Deal : (s0,k, s1,k) ←$ ⟨s⟩ (e0,k, e1,k) ←$ ⟨e⟩ i = 0, 1 : (cs i,k , ds i,k ) ← Com(si,k) (ce i,k , de i,k ) ← Com(ei,k) bi,k ← asi,k + pei,k j = 1, ..., τ : Play : Ei,j,k ←$ E ti,j,k = siuj + pEi,j,k πS 0,k ← ΠZKPoS(cs 0,k , cs 1,k ); (ds 0,k , ds 1,k )) πS 1,k ← ΠZKPoS(ce 0,k , ce 1,k ); (de 0,k , de 1,k )) w ← ({bi,k, cs i,k , ce i,k , πS i,k , {ti,j,k}j}i,k) w β ←$ {0, 1} λ β z ← ({ds β[k],k , de β[k],k }k) z k = 1, ..., λ : Verify : Open(cs β[k],k , ds β[k],k ) ? = 1 Open(ce β[k],k , de β[k],k ) ? = 1 1 ? ← ΠZKPoSV(cs 0,k , cs 1,k , πS 0,k ) 1 ? ← ΠZKPoSV(ce 0,k , ce 1,k , πS 1,k ) b β[k],k ? = as β[k],k + pe β[k],k b ? = b0,k + b1,k j = 1, ..., τ : Rec : pE β[k],j,k = t β[k],j,k -ujs β[k],k ∥pE β[k],j,k ∥∞ ? ≤ 2 sec-1 BDec vj -t0,j,k -t1,j,k ? ≡p mj

Proof Size

Each element in R q is of size N log q bits, which might be large, and each element in R p is of size N log p bits, which will be small. Short elements bounded by B ∞ is of size N log B ∞ bits. We let H be a collision resistant hash-function with output of length 2κ. Note that the soundness parameter λ may be chosen independently of, and in particular smaller than, the security parameter κ.

Commit phase. To reduce the number of ring elements being sent, we commit to the output of the commit phase using a hash-function, and send the hash instead. More concretely, we let w = H({b 0,k , b 1,k , c s 0,k , c s 1,k , c e 0,k , c e 1,k , {t i,j,k } 1,τ i=0,j=1 } λ k=1 ).

Challenge phase. The verifier sends the vector β consisting of λ independently sampled bits to the prover.

Respond phase. Note that we do not need to send the partial decryptions t β[k],j,k , because they can be computed uniquely from u j , s Total communication. The total proof size sent by the prover is 2κ + λN (4 log q + 2κ + 2 log B ∞ ) + λτ N log q + |π S | bits.

Zero-knowledge proof of shortness. There are many options for π S , proving knowledge of valid openings of the commitments c s k and c e k . We can use the Fiat-Shamir with aborts framework [START_REF] Lyubashevsky | Fiat-Shamir with aborts: Applications to lattice and factoringbased signatures[END_REF][START_REF] Lyubashevsky | Lattice signatures without trapdoors[END_REF], but this would give us a large soundness slack, that is, we prove knowledge of a vector that might be much larger than what we started with. This would increase the parameters to be used in the overall protocol. Other alternatives are the exact proofs using MPC-in-thehead techniques by Baum and Nof [START_REF] Baum | Concretely-efficient zero-knowledge arguments for arithmetic circuits and their application to lattice-based cryptography[END_REF] or the range proofs by Attema et al. [START_REF] Attema | Practical product proofs for lattice commitments[END_REF]. However, we note that even though these are efficient, both protocols are very complex and are complicated to implement correctly for use in the real world. Another approach is to use generic proof systems like Ligero [START_REF] Ames | Ligero: Lightweight sublinear arguments without a trusted setup[END_REF] or Aurora [START_REF] Ben-Sasson | Aurora: Transparent succinct arguments for R1CS[END_REF], adding more complexity to the overall protocol. We can also use the amortized proof by Bootle et al. [START_REF] Baum | Sublinear lattice-based zero-knowledge arguments for arithmetic circuits[END_REF] to prove that all λ executions are done correctly at the same time. This is the most efficient proof system for these relations today.

However, assuming that the soundness parameter λ is much smaller than the number of ciphertexts τ , the size of the proofs of shortness does not matter much. To keep the protocol as simple as possible, to make it easier to implement the protocol and avoid bugs in practice, we choose to use the Stern-based proofs by Kawachi et al. [START_REF] Kawachi | Concurrently secure identification schemes based on the worst-case hardness of lattice problems[END_REF] and Ling et al. [START_REF] Ling | Improved zero-knowledge proofs of knowledge for the ISIS problem, and applications[END_REF] in our implementation and estimates.

Concrete parameters. For a concrete instantiation, we use the example parameters in Table 1, estimated to κ = 128 bits of long-term security using the LWE-estimator [START_REF] Albrecht | On the concrete hardness of learning with errors[END_REF] with the BKZ.qsieve cost-model. Inserting these parameters into the proof of shortness, then each proof π S i,k is of size ≈ 87µ KB. This makes |π S | ≈ 175µλ KB. Furthermore, using the improvements by Beullens [START_REF] Beullens | Sigma protocols for MQ, PKP and SIS, and Fishy signature schemes[END_REF] we can shrink the proofs down to 18µλ KB. If we replace π S with the amortized proof by Bootle et al. [START_REF] Baum | Sublinear lattice-based zero-knowledge arguments for arithmetic circuits[END_REF] we get a proof of total size 520 KB ⋆ . However, if the number of ciphertexts τ is very large, we can ignore all other terms and get a proof of correct decryption π D of size ≈ 14λτ KB. See Table 1 for details. The given ciphertext modulus q is chosen to be large enough to ensure correct decryption. 1. Notation, explanation, constraints and concrete parameters for the protocol. We also provide size and timings for decryption proof πD and proofs of shortness πS.

⋆ Setting m = 2048, log q = 55, r = 90, b = 3, τ = 50, k = 2398, l = 5000 and h = 100 for soundness 2 -45 and run the protocol twice, see [7, Section 4.1] for details.

Implementation

We wrote a proof of concept implementation of our scheme in C++ using the NTL-library [START_REF] Shoup | Ntl: A library for doing number theory[END_REF]. The implementation was benchmarked on an Intel Core i5 running at 2.3 GHz with 16 GB RAM. We ran the protocol with λ = 40, τ = 1000, µ = 68. The timings are given in Table 1. The implementation is very simple, and consists of a total of 400 lines of code. Our source code is available online ⋆⋆ . We note that our implementation does not use the number theoretic transform for fast multiplication of elements in the ring to reduce complexity. A rough comparison to NFLlib [START_REF] Aguilar Melchor | NFLlib: NTT-based fast lattice library[END_REF], where they show clear improvements compared to NTL, indicates that an optimized implementation should provide a speedup by at least an order of magnitude.

Comparison

7.1 Comparison to DistDec (TCC '10) sketch an extension of the passively secure distributed decryption protocol Π DistDec given by Bendlin and Damgård [START_REF] Bendlin | Threshold decryption and zero-knowledge proofs for lattice-based cryptosystems[END_REF], which is used in SPDZ [START_REF] Damgård | Practical covertly secure MPC for dishonest majority -or: Breaking the SPDZ limits[END_REF][START_REF] Damgård | Multiparty computation from somewhat homomorphic encryption[END_REF]. The main difference compared to our protocol is that this protocol requires zeroknowledge proofs to ensure correct computation at each step of the protocol to achieve active security instead of repeating the decryption procedure several times. The protocol works roughly as following: 1. Each party D i samples uniform E i,j such that ∥E i,j ∥ ∞ ≤ 2 40 B Dec /ξp (for 40 bits statistical security) and computes the partial decryptions t i,j = s i u j + pE i,j for each ciphertext c j = (u j , v j ). 2. Each party D i publish a zero-knowledge proof π Li,j of the linear relation for t i,j , using the lattice-based commitments together with their zero-knowledge proof of linear relations by Baum et al.

[8]. 3. Each party D i use the amortized ZKP by Baum et al. [START_REF] Baum | Sublinear lattice-based zero-knowledge arguments for arithmetic circuits[END_REF] for batch-size N to prove that each E i,j is bounded by 2 sec B Dec /ξp, given commitments c Ei,j . 4. The verifier checks the relations (v j -t 0,j -t 1,j mod q) ≡ m j mod p and that all the zero-knowledge proofs are valid.

Elements t j and commitments c Ei,j are N log q and 2N log q bits, respectively. Each proof of linearity π Li,j is 6N log(6σ) bits. The amortized proof is 540 log(6σ) bits. The total size, for each D i , is (3N log q + 6N log(6σ) + 540 log(6σ))τ bits.

Then one party can split the key into ξ = 2 shares, run Π DistDec on each keyshare locally, and return the outputs from both D 1 and D 2 together with an additional proof that the key-splitting was correct. We based the estimate on the parameters from Table 1, with σ ≈ 2 16 and σ ≈ 2 66 (see e.g. Aranha et al. [START_REF] Aranha | Verifiable mix-nets and distributed decryption for voting from lattice-based assumptions[END_REF] for details about proofs and sizes). However, the amortized proof is not exact, which means that we must increase q to q ≈ 2 78 to ensure correct decryption.

For security κ = 128 we also need to increase N to N = 4096. The proof is then of size ≈ 363τ KB. We conclude that Π ZKPCD is of equal size as Π DistDec for λ = 26 and otherwise larger. We do not have access to timings for this protocol. However, as the modulus is much larger, the dimension is twice the size, the zero-knowledge proofs include Gaussian sampling and rounds of aborts, we expect the protocol to be much slower than ours despite the large number of repetitions in our construction. Boschini et al. [START_REF] Boschini | Efficient post-quantum SNARKs for RSIS and RLWE and their applications to privacy[END_REF] presents a zero-knowledge protocol for Ring-SIS and Ring-LWE. Their protocol can be used to prove knowledge of secrets or plaintexts, or prove correct decryption given a message and a BGV ciphertext. Concrete estimates for the latter are not given in the paper, but the number of constraints is higher for decryption than for the former. For a slightly smaller choice of parameters, a single proof of plaintext knowledge is of size 87 KB and takes roughly 3 minutes to compute. We conclude that the proof system by Boschini et al. will provide decryption proofs of equal size as protocol when λ = 6 and smaller otherwise. The time it takes to produce such a proof are several orders of magnitude slower than ours, making the system impossible to use in practice even for moderate sized sets of ciphertexts.

Comparison to Lyubashevsky et al. (PKC'21)

A recent publication by Lyubashevsky, Nguyen and Seiler [START_REF] Lyubashevsky | Shorter lattice-based zero-knowledge proofs via one-time commitments[END_REF] gives a verifiable decryption protocol for the Kyber encapsulation scheme [START_REF] Schwabe | CRYSTALS-KYBER[END_REF]. Here, the encryption is over a rank 2 module over a ring of dimension N = 256 and modulus q = 3329 with secret and noise values bounded by B ∞ = 2. The proof of correct decryption of binary messages of dimension 256 is of size 43.6 KB, which of equal size as in our protocol for λ = 3. We note that the message space is smaller than in our protocol, mostly because we are forced to choose larger parameters to ensure correct decryption, and hence, we can not provide a proof of verifiable decryption for Kyber in particular. They do not provide timings, but we notice that the proof system use Gaussian sampling, rejection sampling, partially splitting rings and automorphisms -making the protocol very difficult to implement correctly and securely in practice.

Comparison to Silde (VOTING'22)

Silde [START_REF] Silde | Verifiable Decryption for BGV[END_REF] presents a direct verifiable decryption of BGV ciphertexts. The parameters are similar to our scheme, and the proof is of size 47 KB per ciphertext. This the same as in our scheme for λ = 4, ignoring the setup cost, while smaller for larger λ. The timing of the decryption protocol is 90 ms per ciphertext, which is equal to our timings for λ = 23 and otherwise up to 6 times faster for λ = 128.

Fig. 1 .

 1 Fig. 1. The passively secure experiment for distributed decryption protocols.

Fig. 2 .

 2 Fig. 2. Proof of correct decryption. ρ i,k,j denotes the random tape used by the Play algorithm to create the ith share of the jth ciphertext in the kth run of the protocol.

  for each of the commitments to each index k of β, to the verifier. Verification phase. For each k = 1, ..., λ, the verifier runs the Verify algorithm to make sure that the openings of s β[k],k and e β[k],k are valid, check that all shares of the public key are computed correctly as b β[k],k = as β[k],k + pe β[k],k , verify the public key b = b 0,k + b 1

Fig. 4 .

 4 Fig. 4. Zero-knowledge proof of correct decryption.

  β[k],k and E β[k],j,k , and we can let a uniform binary seed ρ β[k],k of length 2κ bits can be used to deterministically generate the randomness used in each round. Next, we also note that b β[k],k can be computed directly from s β[k],k and e β[k],k , and b 1-β[k],k from b and b β[k],k . It follows that, for each k = 1, ..., λ, the prover sends s β[k],k and e β[k],k , commitments c s 1-β[k],k and c e 1-β[k],k together with the openings d s β[k],k and d e β[k],k , and the partial decryptions {t 1-β[k],j,k } τ j=1. Since the commitments to the sharings of s and e are used in the zero-knowledge proof of shortness, these commitment is computed using lattice-based commitments. We observe thatc s k = c s 1-β[k],k + Com(s β[k],k ) and c e k = c e 1-β[k],k + Com(e β[k],k ),with randomness zero, are commitments to s β[k],k + s 1-β[k],k and e β[k],k + e 1-β[k],k , which are short. Then we use the zero-knowledge proof of shortness to prove that we know openings of c s k and c e k to get π S0 and π S1 . Denote all proofs of shortness by π S .

7. 2

 2 Comparison to Boschini et al. (PQ Crypto'20)

Table

  

	Parameter Explanation	Constraints	Value
	N	Dimension	Power of two	2048
	q	Ciphertext modulus B Dec ≪ q ≡ 1 mod 2N	≈ 2 55
	p	Plaintext modulus		2
	κ	Security parameter	Long-term privacy	128
	sec	Statistical security		40
	λ	Soundness parameter		10, ..., 128
	µ	Repetitions of Π ZKPoS µ ≥ λ • ln(2)/ ln(3/2)	17, ..., 218
	B ∞	Bounds on secrets		1
	B Dec	Decryption bound	∥v -su∥ ∞ ≤ B Dec	≈ 2 13
	Size of π D Timings for π D	Size of π S	Timings for π S
	14λτ KB 4λτ ms	175λµ KB	30λµ ms
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