
HAL Id: hal-03913553
https://cnrs.hal.science/hal-03913553v2

Submitted on 10 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verifiable Decryption in the Head
Kristian Gjøsteen, Thomas Haines, Johannes Müller, Peter Rønne, Tjerand

Silde

To cite this version:
Kristian Gjøsteen, Thomas Haines, Johannes Müller, Peter Rønne, Tjerand Silde. Verifiable Decryp-
tion in the Head. Australasian Conference on Information Security and Privacy, Nov 2022, Wollon-
gong, Australia. pp.355-374, �10.1007/978-3-031-22301-3_18�. �hal-03913553v2�

https://cnrs.hal.science/hal-03913553v2
https://hal.archives-ouvertes.fr

Verifiable Decryption in the Head

Kristian Gjøsteen1[0000−0001−7317−8625], Thomas Haines1,2, Johannes
Müller3[0000−0003−2134−3099], Peter Rønne3,4[0000−0002−2785−8301], and Tjerand

Silde1[0000−0002−5455−0409]

1 Norwegian University of Science and Technology
{kristian.gjosteen,tjerand.silde}@ntnu.no

2 Australian National University
thomas.haines@anu.edu.au
3 University of Luxembourg
johannes.mueller@uni.lu

4 Université de Lorraine, CNRS, LORIA
peter.roenne@gmail.com

Abstract. In this work we present a new approach to verifiable decryp-
tion which converts a 2-party passively secure distributed decryption pro-
tocol into a 1-party proof of correct decryption. This leads to an efficient
and simple verifiable decryption scheme for lattice-based cryptography,
especially for large sets of ciphertexts; it has small size and lightweight
computations as we reduce the need of zero-knowledge proofs for each
ciphertext. We believe the flexibility of the general technique is interest-
ing and provides attractive trade-offs between complexity and security,
in particular for the interactive variant with smaller soundness.

Finally, the protocol requires only very simple operations, making it easy
to correctly and securely implement in practice. We suggest concrete
parameters for our protocol and give a proof of concept implementation,
showing that it is highly practical.

Keywords: verifiable decryption · distributed decryption · lattice-based
crypto · MPC-in-the-Head · zero-knowledge proof · implementation

1 Introduction

There are many applications where we not only need to decrypt a ciphertext, but
also prove that we have decrypted the ciphertext correctly without revealing the
secret key. This is called verifiable decryption. Examples include mix-nets used
for anonymous communication [42], decryption of ballots in electronic voting [29],
and various uses of verifiable fully homomorphic encryption [35]. In particular,
such applications usually require the decryption of a large number of ciphertexts.

It is well-known how to do verifiable decryption for public-key encryption
schemes based on discrete logarithms (for ElGamal, proving the equality of two
discrete logarithms [19] will do). Except for the recent publication by Lyuba-
shevsky et al. [38] (which provides a rather complicated decryption proof by

combining proofs of linear relations, multiplications and range proofs), no effi-
cient and straight-forward zero-knowledge proofs of correct decryption are known
for lattice-based cryptography or other post-quantum encryption schemes. This
state-of-affairs is unsatisfying, in particular because many applications that re-
quire zero-knowledge proofs of correct decryption should also be secure in the
face of quantum computers which are becoming increasingly more powerful. For
example, the electronic voting system Helios [1] and the Estonian voting pro-
tocol [30] are using classical encryption schemes and decryption proofs with
corresponding quantum threats to the long-term privacy of the voters.

On the contrary, there do exist efficient and straightforward passively secure
lattice-based encryption schemes with distributed decryption. In such a scheme,
the decryption key is shared among several players. Decryption is done in a
distributed fashion by each player creating a decryption share, which can be in-
dividually verified, and a reconstruction algorithm can recover the message from
the decryption shares. Distributed decryption allows more general methods to
recover the message, such as general multi-party computation. There are many
useful and efficient lattice-based threshold cryptosystems and distributed de-
cryption schemes [11,13,16,21,22,24]. In particular, if the security requirements
are relaxed, lattice-based distributed decryption can be very straight-forward.

Our main idea is to use MPC-in-the-head [31] in conjunction with a 2-party
passively secure distributed decryption scheme to construct a very simple veri-
fiable decryption scheme; however, we shall see that there are various technical
challenges. To achieve the desired level of security, we run the 2-party decryption
scheme on the ciphertexts many times locally, and then reveal a random subset
of keys, one for each run, allowing others to verify that it was done correctly.

1.1 Contribution

Our main contribution is a transformation from a 2-party passively secure dis-
tributed decryption scheme to a 1-party verifiable decryption scheme. To achieve
this, we use MPC-in-the-head with the 2-party decryption scheme. The idea is
that the prover runs the 2-party decryption protocol many times and reveals the
resulting decryption shares. The interactive verifier will then, for each run of the
decryption scheme, ask to see one of the two decryption keys and any randomness
involved in creating the corresponding decryption shares. With this information,
it is straight-forward for the verifier to ensure that half of the decryption shares
were generated honestly.

As usual, the idea is that if the prover cheats, the verifier will have probability
(close to) 1/2 of detecting this in each round. If a cheating prover is consistently
successful, we can use rewinding to extract both secret shares. Furthermore, if
the 2-party decryption scheme is passively secure, revealing one share will not
reveal anything about the secret key itself.

There are four remaining obstacles, two easy and two somewhat trickier. The
first easy obstacle is that in a threshold public key encryption scheme or dis-
tributed decryption scheme, the decryption key shares are generated as part of
key generation. We already have a decryption key, but we need to create many

2

independent sharings of that key. For discrete logarithm-based schemes like El-
Gamal, this is usually trivial. For the schemes we consider, it is still not hard, but
it follows that we do not have a fully general reduction from 2-party distributed
decryption to (1-party) verifiable decryption. The second easy obstacle is that
given both secret key shares we want to recover the secret key. We solve this
by extending the notation of a distributed decryption function with a function
which recovers the key from the shares. This is easy to satisfy in practice.

The third obstacle is that the verifier needs to make sure that the revealed
key share is correct. For ordinary threshold decryption schemes, this can often
be avoided, either because the dealer is trusted or replaced by some multi-party
computation. Therefore, we need to use a non-generic solution here. For batched
decryption, the main observation is that we only verify the key once for each
run of the 2-party decryption scheme, not once per ciphertext in the batch. The
number of runs essentially corresponds to the security parameter, which in many
applications will be significantly smaller than the number of ciphertexts.

The final obstacle is related to our security proof. We need to simulate shares
of the decryption key, any auxiliary information related to them, and decryption
shares. Although similar techniques are common in the construction of threshold
public key encryption scheme, the security definitions do not actually require
their presence. Since we need them, our approach is again somewhat non-generic.

On the other hand, since we intend to verify correctness of decryption shares
by revealing decryption key shares and any randomness involved, we can make
do with a passively secure distributed decryption scheme, simplifying our work.

The result is a construction from a somewhat specialized 2-party distributed
decryption scheme to a verifiable decryption scheme. Since the security require-
ments for the distributed decryption scheme are shifted compared to traditional
threshold decryption schemes, this will allow us to use very simple threshold
decryption. This means that it can be very efficient, both with respect to com-
putational time and size of the decryption shares. Even though the decryption
is run many times, the result will still be efficient compared to the alternatives.

Note that in an interactive setting, it may make sense to use a very small
security parameter, making the protocol extremely cheap. For instance, in any
system where detected cheating will have a significant penalty, rational actors
will be deterred by even a small chance of detection. However, when the protocol
is made non-interactive, this clearly does not work.

In the full version we prove in the interactive theorem prover Coq [12] a sim-
plified variant of our transform and an ElGamal toy example. Regrettably, we
are unable to prove the full transform and the lattice example due to limitations
in the interactive theorem prover. Indeed, to our knowledge, no interactive the-
orem prover exists which provides adequate support. Nevertheless, the proof of
the simplified variant increases confidence in the result.

It is worth emphasizing that our protocol is very simple to implement (using
Stern-based zero-knowledge proofs [32, 34] to ensure that key-shares are well-
formed), lowering the bar for deploying our scheme in practice. We note that
lattice-based zero-knowledge proofs in general can be very complicated, involving

3

a combination of proofs of linear relations, proofs of shortness and range proofs,
in addition to Gaussian sampling, rejection sampling and optimizations exploit-
ing partially splitting rings and automorphisms [6, 38]. Correctly and securely
implementing voting systems using primitives based on discrete logarithms is
hard [28], and lattice-based primitives makes it harder. In our protocol we only
need to sample uniformly random or short elements in any ring of our choice,
and use standard cut-and-choose techniques to open committed values, making
it easy to use in practice. Concretely, this means that we are not vulnerable to
side-channel attacks against Gaussian sampling [18] or rejection sampling [25].

Combined with the main contribution, this gives us a verifiable decryption
scheme for a lattice-based public key encryption scheme that is very efficient
when the number of ciphertexts is much larger than the security parameter.
The protocol is fast and simple, and the proof size is small. We give concrete
parameters and a proof of concept implementation of our protocol in Section 6.

1.2 Related Work

Verifiable decryption for ElGamal can be done by proving the equality of two dis-
crete logarithms [19], and can be batched for significantly improved performance
when decrypting many ciphertexts [27,40].

The ”dual” Regev system [39] can be used by making the randomness public.
However, this is not zero-knowledge and opens for so-called ”tagging-attacks” to
de-anonymize users in privacy-preserving applications (e.g., e-voting).

Threshold encryption schemes [23] and distributed decryption schemes are
now well-understood, and many constructions exist [11], in particular those re-
lated to SPDZ [20,22,33]. When only passive security is required, these schemes
can be quite efficient. Threshold decryption with active security implies verifiable
decryption when the verification of decryption shares is a public operation. The
problem is that it is often costly to provide a threshold decryption scheme with
active security. Our approach gives away a decryption key share and randomness
involved, and it is trivial to verify that the key share has been used correctly.

We compare more in detail with recently developed verifiable decryption
protocols [11,15,38,44] in Section 7.

2 Passively Secure 2-party Decryption

A distributed decryption scheme enables a set of players to distribute the decryp-
tion of ciphertexts, in such a way that only authorized subsets of players can do
the decryption. Usually, the decryption key shares are created once during key
generation. As discussed in the introduction, we will generate independent de-
cryption key sharings repeatedly, so we need to define the syntax of our variant
of distributed decryption schemes precisely.

Consider a public key cryptosystem with key generation algorithm KeyGen,
encryption algorithm Enc and decryption algorithm Dec. We extend the notation
with a predicate KeyM for key-matching which takes as input a public and secret

4

key. We require for all matching public and secret keys pk, sk and all messages
m, that Dec(sk,Enc(pk,m)) = m (with overwhelming probability).

A distributed decryption protocol for this public key cryptosystem consists of
four algorithms, a dealer algorithm, a verify algorithm, a player algorithm, and
a reconstruction algorithm. We consider only two parties where both decrypt.

The dealer algorithm (Deal) takes as input a public key and corresponding
secret key and outputs two secret key shares and some auxiliary data aux.

The verify algorithm (Verify) takes as input a public key, auxiliary data, an
index and a secret key share and outputs yes (1) or no (0).

The player algorithm (Play) takes as input a secret key share and a cipher-
text and outputs a decryption share ds.

The reconstruction algorithm (Rec) takes as input a ciphertext and two de-
cryption shares and outputs either ⊥ or a message.

Intuitively, the protocol is correct if Play and Rec collectively recover the
encrypted message and verification accepts when the dealer is honest.

Definition 1 (Correctness). A distributed decryption protocol is correct if for
any key pair (pk, sk) s.t. KeyM(pk, sk) = 1, all c = Enc(pk,m), any (sk0, sk1, aux)
output by Deal(pk, sk), then, for i = 0, 1, Verify(pk, aux, i, ski) = 1, and

Pr [m← Dec(sk, c);Rec(c,Play(sk0, c),Play(sk1, c)) = m] ≥ 1− negl.

For a distributed decryption protocol, we must trust the dealer for privacy,
but not for integrity. The integrity property below says that if both secret shares
given by the dealer are valid (according to the Verify algorithm), then the Play
and Rec will collectively recover the encrypted message.

Definition 2 (Integrity). A distributed decryption protocol has integrity if
there exists an efficient algorithm (named FindKey which takes as input the public
key, the two secret key shares and the auxiliary information, and returns a secret
key) such that for all public keys pk, ciphertexts c = Enc(pk,m), secret key shares
(sk1, sk2), and auxiliary data aux and sk output by FindKey(pk, sk0, sk1, aux) sat-
isfying Verify(pk, aux, i, ski) = 1, for i = 0, 1, we have that

Pr [KeyM(pk, sk) ∧ Rec(c,Play(sk0, c),Play(sk1, c)) = Dec(sk, c)] ≥ 1− negl.

For threshold cryptosystems and distributed decryption, security is typically
defined through the usual security games for public key cryptosystem, allowing
the adversary access to the decryption key shares through decryption share ora-
cles. This security notion is not very convenient for us, so we shall instead rely on
a variant of simulatability, namely we must be able to simulate both decryption
key shares and decryption shares in a consistent fashion.

5

Expddp−sim−0
A (pk, sk)

(i, (c0, ..., cτ), (m0, ...,mτ))← A(pk)
(sk0, sk1, aux)← Deal(pk, sk)

∀j : dsj ← Play(sk1−i, cj)

b = A(aux, ski, (ds0, ..., dsτ))
return b

Expddp−sim−1
A (pk)

(i, (c0, ..., cτ), (m0, ...,mτ))← A(pk)
(ski, aux)← DealSim(pk, i)

∀j : dsj ← PlaySim(pk, ski, cj ,mj)

b = A(aux, ski, (ds0, ..., dsτ))
return b

Fig. 1. The passively secure experiment for distributed decryption protocols.

Definition 3 (Simulatability). Consider a pair of algorithms DealSim and
PlaySim and an adversary A playing the experiments from Figure 1, where A al-
ways outputs c = (c0, ..., cτ),m = (m0, ...,mτ) such that {mj = Dec(sk, cj)}τj=1.
The simulatability advantage of A is

Advddp−sim(A, pk, sk) =

|Pr[Expddp−sim−0
A (pk, sk) = 1]− Pr[Expddp−sim−1

A (pk) = 1]|,

where the probability is taken over the random tapes and (pk, sk) output by
KeyGen. We say that a distributed decryption protocol is (t, ϵ)-simulatable (or
just simulatable) if no t-time algorithm A has advantage greater than ϵ.

We give an ElGamal toy example in the full version to showcase our technique.

3 Verifiable Decryption from Distributed Decryption

We will now construct a (batch) zero-knowledge proof system of correct decryp-
tion from the distributed decryption protocol. The protocol is given in Figure 2.
More precisely, our proof system is a sigma protocol with completeness, special
soundness, and honest verifier-zero knowledge.

For any public key cryptosystem, a public key output by the key generation
algorithm uniquely defines a decryption function that for all messages agrees with
the decryption algorithm for any ciphertext output by the encryption algorithm,
except those that lead to decryption failure.

Recall that for a batched verifiable decryption protocol the statement consists
of a public key, a vector of ciphertexts and a vector of messages, where the
ciphertexts have been output by the encryption algorithm. The statement is in
the language if and only if the messages correspond to the decryption function
applied to the ciphertexts. The secret key (witness) satisfies the relationship with
the statement if it corresponds to the public key and the message vector is the
decryption of the ciphertexts with the secret key.

The protocol works as follows: the prover creates λ sharings of the secret
key by calling the Deal algorithm λ times. For each sharing and each ciphertext,

6

the prover uses the Play algorithm to construct the decryption share. The prover
sends the auxiliary information from Deal and all the shares to the verifier. Then,
the verifier returns a challenge which is a binary vector of length λ. The prover
finally reveals the corresponding parts of the shares as well as any randomness
used in the Play algorithms with this key share. The prover checks that (1) all the
revealed shares verify, (2) the decryption shares are consistent with the revealed
key shares, and (3) the messages correspond to the decryption shares.

ΠZKPCD

Prover((pk, {cj}τj=1, {mj}τj=1); (sk)) Verifier(pk, {cj}τj=1, {mj}τj=1)

k = 1, ..., λ :

(sk0,k, sk1,k, auxk)← Deal(pk, sk)

i = 0, 1:

j = 1, ..., τ :

dsi,j,k ← Play(ski,k, cj ; ρi,k,j)

w ← ({auxk, {ti,j,k}})

w

β←$ {0, 1}λ

β

z ← ({skβ[k],k}k, {ρβ[k],k,j}k,j)

z

k = 1, ..., λ :

Verify(pk, auxk,β[k], skβ[k],k)
?
= 1

j = 1, ..., τ :

Play(skβ[k],k, cj ; ρβ[k],k,j)
?
= dsβ[k],j,k

Rec(cj , ds0,j,k, ds1,j,k)
?
= mj

Fig. 2. Proof of correct decryption. ρi,k,j denotes the random tape used by the Play
algorithm to create the ith share of the jth ciphertext in the kth run of the protocol.

Completeness. Up to the possible negligible error introduced by decryption fail-
ures, completeness follows immediately by construction and the correctness of
the underlying distributed decryption protocol.

Special Soundness. By rewinding, any cheating prover with a significant suc-
cess probability can be used to create two accepting conversations (w,β, z) and

7

(w,β′, z′), with β ̸= β′. From this it follows that β[k] ̸= β′[k] for at least one
k, and the verify algorithm has accepted both secret key shares and every de-
cryption share in this round has been correctly created using the Play algorithm.
Then, since the ciphertexts are encryptions of the first message vector, integrity
implies that FindKey will recover a witness which matches the public key and
for which the messages match the output of the decryption function.

Honest-Verifier Zero-Knowledge. Our simulator works as follows, given the state-
ment (pk, {cj}τj=1, {mj}τj=1) and the challenge β: First, for i = 1, ..., λ, we
let (auxi, skβ[i],i) ← DealSim(pk,β[i]) and, for j = 1, ..., τ , we let dsβ[i],j,i ←
PlaySim(pk, skβ[i],i, ci,mi) and ds1−β[i],j,i ← Play(pk, skβ[i],i, ci). The proof tran-
scripts is then ((pk, {cj}τj=1, {mj}τj=1), (auxi, ds0,j,i, ds1,j,i),β, skβ[i],i). This is com-
putationally indistinguishable from the honest transcripts if the distributed de-
cryption protocol is simulatable.

We give a machine checked proof of our protocol instantiated with ElGamal
in the full version of this paper to provide confidence in our general transform.

4 BGV Encryption

We present a version of the BGV encryption scheme by Brakerski, Gentry and
Vaikuntanathan [17]. See the full version of this paper for background on lattice-
based cryptography. Let p ≪ q be primes, let Rq and Rp be polynomial rings
modulo the primes q or p and XN + 1 for a fixed N , let B∞ ∈ N be a bound
and let κ be the security parameter. The encryption scheme consists of three
algorithms: key generation, encryption and decryption, where

- KeyGen samples an element a←$Rq uniformly at random, samples short
s, e←$Rq such that max(∥s∥∞, ∥e∥∞) ≤ B∞. The algorithm outputs the
public key pk = (a, b) = (a, as+ pe) and the secret key sk = (s, e).

- Enc, on input the public key pk = (a, b) and an element m in Rp, samples
short r, e′, e′′←$Rq such that the norm max(∥r∥∞, ∥e′∥∞, ∥e′′∥∞) ≤ B∞,
and outputs the ciphertext c = (u, v) = (ar + pe′, br + pe′′ +m) in R2

q .
- Dec, on input the secret key sk = (s, e) and a ciphertext c = (u, v), outputs
the message m = (v − su mod q) mod p in Rp.

The decryption algorithm is correct as long as the norm max∥v − su∥∞ = BDec <
⌊q/2⌋. It follows that the BGV encryption scheme is secure against chosen plain-
text attacks if the DKS∞N,q,β problem is hard for some β = β(N, q, p,B∞).

Furthermore, we present the passively secure distributed decryption tech-
nique by Bendlin and Damg̊ard [11] used in the MPC-protocols by Damg̊ard
et al. [20, 22]. When decrypting, we assume that each decryption server Dj , for
1 ≤ j ≤ ξ, has a uniformly random share skj = sj of the secret key sk = (s, e)
such that s = s1+s2+ ...+sξ. Then they partially decrypt in the following way:

- DistDec, on input a secret key-share skj = sj and a ciphertext c = (u, v),
computes mj = sju, sample some large noise Ej ←$E ⊂ Rq such that
∥Ej∥∞ ≤ 2sec(BDec/pξ) for some statistical security parameter sec and up-
per error-bound max∥v − su∥∞ ≤ BDec, then outputs dsj = tj = mj + pEj .

8

We obtain the full decryption of the ciphertext (u, v) as m ≡ (v − t mod q)
mod p, where t = t1 + t2 + ...+ tξ. This will give the correct decryption as long
as the noise max∥v − t∥∞ ≤ (1+2sec)BDec < ⌊q/2⌋ (see [20, Appendix G]). Here,
t will be indistinguishable from random except with probability 2−sec.

5 Zero-Knowledge Protocol of Correct Decryption

5.1 Lattice-Based Distributed Decryption

Setup. We will be working over the ring Rq = Zq[X]/⟨XN + 1⟩ together with a
modulus p≪ q, both prime. These are the public parameters of the protocol, to-
gether with security parameter κ, soundness parameter λ, bound B∞ and max-
imal ciphertext error-bound BDec. We define commitments, their security and
give a concrete instantiation based on lattices in the full version of this paper.
The commitments are both computationally hiding and computationally bind-
ing, in addition to being linearly homomorphic. Finally, let (ΠZKPoS, ΠZKPoSV)
be a non-interactive zero-knowledge protocol for the following relation:

RDKS∞
N,q,1

= {((A,y);x) : Ax = y mod q ∧ ∥x∥∞ = 1}.

Scheme. We present a distributed decryption version of the BGV encryption
scheme [17], where KeyGen, Enc and Dec are defined in Section 4.

The dealer algorithm (Deal) takes as input a public key pk = (a, b) and cor-
responding secret key sk = (s, e), samples uniform s0 and e0 from Rq, and
computes s1 = s−s0 and e1 = e−e0. Then it commits to the values as csi =
Com(si), cei = Com(ei), and computes bi = asi+pei so that b = b0+b1. Finally,
it computes non-interactive zero-knowledge proofs πSi proving that the sums
s0 + s1 and e0 + e1 are short (see details in Section 6). It outputs key shares
sk0 = (s0, e0), sk1 = (s1, e1) and aux = (b0, b1, cs0 , cs1 , ce0 , ce1 , πS0

, πS1
).

The verify algorithm (Verify) takes as input a public key pk = (a, b), an index
i, a secret key share ski = (si, ei), openings dsi and dei , and aux. It outputs

1 if and only if (bi
?
= asi + pei) ∧ (b

?
= b0 + b1) ∧ Open(csi , dsi) ∧

Open(cei , dei) ∧ (ΠZKPoSV(ski, aux, πSi
)), and 0 otherwise.

The player algorithm (Play) takes as input a key share ski = (si, ei), a ci-
phertext c = (u, v), samples bounded Ei and outputs dsj = ti = siu+ pEi.

The reconstruction algorithm (Rec) takes as input a ciphertext c = (u, v),
decryption shares (t0, t1), and outputs m = (v − t0 − t1 mod q) mod p.

5.2 Security

Theorem 1 (Correctness). The distributed decryption scheme in 5.1 is cor-
rect with respect to Definition 1 when max∥v − t∥∞ ≤ (1 + 2sec)BDec < ⌊q/2⌋.

9

Theorem 2 (Integrity). Suppose the protocol ΠZKPoS is (computationally)
sound and that Com is (computationally) binding. Let A0 be an adversary against
integrity of the distributed decryption scheme with advantage ϵ0, and let λ be
the number of rounds in the protocol. Then there exists adversaries A1 and A2

against soundness of ΠZKPoS and binding of Com, respectively, with advantages
ϵ1 and ϵ2, such that ϵ0 ≤ ϵ1+ϵ2+2−λ. The runtime of A1 and A2 are essentially
the same as the runtime of A0.

Proof. We sketch the argument. There are essentially three possible ways to
attack the integrity of the protocol: an attacker that knows the secret decryption
key but correctly guess the challenge in each round is able to decrypt to arbitrary
messages, and otherwise, if the attacker does not know the secret key, needs to
break the underlying schemes. The guessing attack has success probability 2−λ.

For Verify to accept for both i = 0 and i = 1, we need that b = b0 + b1,
b0 = as0 + pe0, b1 = as1 + pe1 and that the zero-knowledge proof of shortness
πS of the sums s0 + s1 and e0 + e1 are accepted. If either of the key shares are
incorrect then Verify accept with probability 0, and if the key shares are correct,
then Rec outputs m except with negligible probability. An attacker can choose
s0, s1, e0 and e1 such that all equations are correct, but the sums are not short.
The soundness of Verify then reduces to the soundness of the zero-knowledge
protocol, and an attacker A0 against this part of the protocol with advantage ϵ0
can be turned into an attacker A1 against ΠZKPoS with the same advantage.

The last option is for the attacker to produce commitments to a true but un-
related statement with respect to the secret key used in the encryption scheme.
This allows the attacker to produce a valid proof of shortness without cheating,
but for an unrelated key. However, Verify only accepts if both the opening of
the commitments are correct and the zero-knowledge proof of shortness verifies.
Hence, and attacker A0 that is able to produce valid openings and proofs with
advantage ϵ0 can be turned into an attacker A2 against Com with the same advan-
tage by rewinding the prover for the zero-knowledge proof of knowledge of short
openings and then extract two different but valid openings to the commitment.

Theorem 3 (Privacy). Suppose the protocol ΠZKPoS is (statistically) honest-
verifier zero-knowledge, that Com is (computationally) hiding and that Enc is
(computationally) CPA secure. Then there exists a simulator for the verifiable
decryption protocol such that for any distinguisher A0 for this simulator with
advantage ϵ0 there exists an adversary A2 against hiding for the commitment
scheme with advantage ϵ2, an adversary A3 against CPA security for the en-
cryption scheme with advantage ϵ3, and a distinguisher A1 for the simulator of
ΠZKPoS with advantage ϵ1, such that ϵ0 ≤ ϵ1 + ϵ2 + ϵ3. The runtime of A1, A2

and A3 are essentially the same as the runtime of A0.

Proof. Let SimShort be a simulator for ΠZKPoS. We present a simulator DealSim
for the Deal-algorithm and a simulator PlaySim for the Play-algorithm in Figure 3.

DealSim: We create the simulator in three steps. We first replace πS by the
simulated proof π∗

S produced by SimShort. An attacker A0 with advantage ϵ0

10

DealSim(pk = (a, b), i)

i = 0, 1: s∗i ←$Rq, e∗i ←$Rq

b∗i = as∗i + pe∗i , b∗1−i = b− b∗i

c∗si ← Com(s∗i), c
∗
s1−i

← Com(s1−i)

c∗ei ← Com(e∗i), c
∗
e1−i

← Com(s1−i)

π∗
S ← SimShort(c

∗
si , c

∗
s1−i

, c∗ei , c
∗
e1−i

)

aux∗ ← (b∗0, b
∗
1, c

∗
s0 , c

∗
s1 , c

∗
e0 , c

∗
e1 , π

∗
S)

return (sk∗i = (s∗i , e
∗
i), aux

∗)

PlaySim(sk1−i = (s1−i, e1−i), c = (u, v), i,m)

E1−i ←$E
t1−i = s1−iu+ pE1−i

t∗i = v −m− t1−i mod p

return (ds∗i = t∗i)

Fig. 3. Simulators DealSim and PlaySim.

against this change can be turned into an attacker A1 against the simulator
SimShort of protocol ΠZKPoS with the same advantage.

Next, we replace the key shares by uniformly random key-shares s∗i and e∗i
that give correctness, that is, the public key-shares b∗0 and b∗1 sum to b, but s∗0
and s∗1 does not need to sum to a short key s∗ and e∗0 and e∗1 does not need to
sum to short noise e∗. This ensures that Verify outputs 1. An attacker A0 with
advantage ϵ0 against this change can then be turned into an attacker A3 against
CPA security of the encryption scheme with the same advantage.

Finally, we replace the commitments to unopened values by commitments to
random values. This way, none of the values in the protocol any longer depends
on the secret key in the protocol, and b∗i are simulated perfectly. An attacker A0

with advantage ϵ0 against this change can then be turned into an attacker A2

against hiding of the commitment scheme with the same advantage.
PlaySim: we start by sampling bounded E1−i from E and computing t1−i =

s1−iu+ pE1−i. Then we find ti such that (v− t0− t1 mod q) mod p = m. This
ensures that Rec outputs the message m when reconstructing the shares. Here,
the values are sampled according to the exact same distribution as in the real
protocol, and the statistical distance is negligible in the security parameter κ.

5.3 Zero-Knowledge Proof of Verifiable Decryption

We present the different phases of our sigma protocol for proving correct decryp-
tion. The protocol is given in Figure 4. The security of the construction follows
directly from the results in Section 3 in combination with Theorem 1, 2 and 3.

Setup. We are given a honestly generated public key pk = (a, b = as+pe), where
max(∥s∥∞, ∥e∥∞) ≤ B∞. The secret key sk = (s, e) is given to the prover. We are
given a set of honestly generated ciphertexts {(uj , vj) = (arj + pe′j , brj + pe′′j +
mj)}τj=1, where max(∥r∥∞, ∥e′∥∞, ∥e′′∥∞) ≤ B∞, and set of messages {mj}τj=1.

Commit phase. For soundness parameter λ, the prover does the following for
k = 1, ..., λ. First, it runs the Deal algorithm on sk and pk to produce sk0,k, sk1,k

11

and auxk. It uses ΠZKPoS to prove that the shares are correctly computed.
Then, for i = 0, 1 and each j = 1, ..., τ , it runs the Play algorithm on each
key-share ski,k and ciphertext cj to produce t0,j,k and t1,j,k. Finally, it sends

w ← ({auxk, {ti,j,k}
1,τ
i=0,j=1}λk=1) to end the commitment phase.

Challenge phase. The verifier independently samples a random binary challenge
vector β of length λ. It sends β to the prover.

Respond phase. The prover sends openings z = ({dsβ[k],k
, deβ[k],k

}), for each of
the commitments to each index k of β, to the verifier.

Verification phase. For each k = 1, ..., λ, the verifier runs the Verify algorithm to
make sure that the openings of sβ[k],k and eβ[k],k are valid, check that all shares
of the public key are computed correctly as bβ[k],k = asβ[k],k+peβ[k],k, verify the
public key b = b0,k + b1,k and ensure that each πSi,k

is valid. Further, for each
j = 1, ..., τ , the verifier runs the Rec algorithm to make sure that all decryption
shares are correct and that all messages are decrypted correctly. It outputs 1 if
all checks hold, and 0 otherwise.

Fiat-Shamir. To make the scheme non-interactive we can use the Fiat-Shamir
transform [26] by hashing the output of the commit phase and use the hash as
challenge, before outputting the response. We note that this can be done similarly
to the optimizations described for estimating the size in the next section. We also
note that the soundness parameter λ initially can be very small in the interactive
case, while it should be (approximately) as large at the security parameter κ in
the non-interactive setting, increasing the size of the proof of decryption.

Hybrid proof. We note that the interaction in the protocol opens for a hybrid
proof: if we wish for a quick result to get confidence in the decrypted ciphertexts
but at the same time can wait longer to be completely certain, we can ask for
two proofs. First, we ask the prover for a proof where λI = 10 or λI = 20, and
sample a random challenge ourselves. If we accept the proof, we ask the prover
to compute a non-interactive proof for the same statement but with λN = 100.
This proof can be received, stored and verified later, knowing already that the
messages most likely are correctly decrypted. The interactive proof also allows
the verifier to arbitrarily increase λI by sending more challenges on the fly, where
we tell the prover when we are done, and he creates the proofs of shortness in
the end. This is particularly useful in real-world applications, e.g., e-voting.

6 Performance

In this section, we shall carefully analyze the performance of our decryption
proof. Along the way, we make several easy optimizations with respect to the
protocol in Fig. 4. In particular, we use a commitment in the first message,
and then send only the values that the verifier cannot recompute himself in the

12

ΠZKPCD

Prover(((a, b), {(uj , vj)}τj=1, {mj}τj=1); (s, e)) Verifier((a, b), {(uj , vj)}τj=1, {mj}τj=1)

k = 1, ..., λ :

Deal :

(s0,k, s1,k)←$ ⟨s⟩
(e0,k, e1,k)←$ ⟨e⟩
i = 0, 1:

(csi,k , dsi,k)← Com(si,k)

(cei,k , dei,k)← Com(ei,k)

bi,k ← asi,k + pei,k

j = 1, ..., τ :

Play :

Ei,j,k ←$E
ti,j,k = siuj + pEi,j,k

πS0,k ← ΠZKPoS(cs0,k , cs1,k); (ds0,k , ds1,k))

πS1,k ← ΠZKPoS(ce0,k , ce1,k); (de0,k , de1,k))

w ← ({bi,k, csi,k , cei,k , πSi,k , {ti,j,k}j}i,k)

w

β←$ {0, 1}λ

β

z ← ({dsβ[k],k
, deβ[k],k

}k)

z

k = 1, ..., λ :

Verify :

Open(csβ[k],k
, dsβ[k],k

)
?
= 1

Open(ceβ[k],k
, deβ[k],k

)
?
= 1

1
?← ΠZKPoSV(cs0,k , cs1,k , πS0,k)

1
?← ΠZKPoSV(ce0,k , ce1,k , πS1,k)

bβ[k],k
?
= asβ[k],k + peβ[k],k

b
?
= b0,k + b1,k

j = 1, ..., τ :

Rec :

pEβ[k],j,k = tβ[k],j,k − ujsβ[k],k

∥pEβ[k],j,k∥∞
?

≤ 2sec−1BDec

vj − t0,j,k − t1,j,k
?≡p mj

Fig. 4. Zero-knowledge proof of correct decryption.

13

second message. Finally, we compute the zero-knowledge proofs of shortness in
the response phase instead of the commit phase, reducing the number of proofs
by a factor of two in each round of the protocol.

6.1 Proof Size

Each element in Rq is of size N log q bits, which might be large, and each element
in Rp is of sizeN log p bits, which will be small. Short elements bounded by B∞ is
of size N logB∞ bits. We let H be a collision resistant hash-function with output
of length 2κ. Note that the soundness parameter λ may be chosen independently
of, and in particular smaller than, the security parameter κ.

Commit phase. To reduce the number of ring elements being sent, we commit to
the output of the commit phase using a hash-function, and send the hash instead.
More concretely, we let w = H({b0,k, b1,k, cs0,k , cs1,k , ce0,k , ce1,k , {ti,j,k}

1,τ
i=0,j=1}λk=1).

Challenge phase. The verifier sends the vector β consisting of λ independently
sampled bits to the prover.

Respond phase. Note that we do not need to send the partial decryptions tβ[k],j,k,
because they can be computed uniquely from uj , sβ[k],k and Eβ[k],j,k, and we can
let a uniform binary seed ρβ[k],k of length 2κ bits can be used to deterministically
generate the randomness used in each round. Next, we also note that bβ[k],k can
be computed directly from sβ[k],k and eβ[k],k, and b1−β[k],k from b and bβ[k],k.

It follows that, for each k = 1, ..., λ, the prover sends sβ[k],k and eβ[k],k,
commitments cs1−β[k],k

and ce1−β[k],k
together with the openings dsβ[k],k

and
deβ[k],k

, and the partial decryptions {t1−β[k],j,k}τj=1. Since the commitments to
the sharings of s and e are used in the zero-knowledge proof of shortness, these
commitment is computed using lattice-based commitments. We observe that
csk = cs1−β[k],k

+Com(sβ[k],k) and cek = ce1−β[k],k
+Com(eβ[k],k), with randomness

zero, are commitments to sβ[k],k + s1−β[k],k and eβ[k],k + e1−β[k],k, which are
short. Then we use the zero-knowledge proof of shortness to prove that we know
openings of csk and cek to get πS0

and πS1
. Denote all proofs of shortness by πS .

Total communication. The total proof size sent by the prover is

2κ+ λN(4 log q + 2κ+ 2 logB∞) + λτN log q + |πS | bits.

Zero-knowledge proof of shortness. There are many options for πS , proving
knowledge of valid openings of the commitments csk and cek . We can use the
Fiat-Shamir with aborts framework [36,37], but this would give us a large sound-
ness slack, that is, we prove knowledge of a vector that might be much larger
than what we started with. This would increase the parameters to be used in
the overall protocol. Other alternatives are the exact proofs using MPC-in-the-
head techniques by Baum and Nof [9] or the range proofs by Attema et al. [6].
However, we note that even though these are efficient, both protocols are very

14

complex and are complicated to implement correctly for use in the real world.
Another approach is to use generic proof systems like Ligero [4] or Aurora [10],
adding more complexity to the overall protocol. We can also use the amortized
proof by Bootle et al. [7] to prove that all λ executions are done correctly at the
same time. This is the most efficient proof system for these relations today.

However, assuming that the soundness parameter λ is much smaller than
the number of ciphertexts τ , the size of the proofs of shortness does not matter
much. To keep the protocol as simple as possible, to make it easier to implement
the protocol and avoid bugs in practice, we choose to use the Stern-based proofs
by Kawachi et al. [32] and Ling et al. [34] in our implementation and estimates.

Concrete parameters. For a concrete instantiation, we use the example param-
eters in Table 1, estimated to κ = 128 bits of long-term security using the
LWE-estimator [3] with the BKZ.qsieve cost-model. Inserting these parameters
into the proof of shortness, then each proof πSi,k

is of size ≈ 87µ KB. This makes
|πS | ≈ 175µλ KB. Furthermore, using the improvements by Beullens [14] we can
shrink the proofs down to 18µλ KB. If we replace πS with the amortized proof
by Bootle et al. [7] we get a proof of total size 520 KB⋆. However, if the number
of ciphertexts τ is very large, we can ignore all other terms and get a proof of
correct decryption πD of size ≈ 14λτ KB. See Table 1 for details. The given
ciphertext modulus q is chosen to be large enough to ensure correct decryption.

Parameter Explanation Constraints Value

N Dimension Power of two 2048
q Ciphertext modulus BDec ≪ q ≡ 1 mod 2N ≈ 255

p Plaintext modulus 2
κ Security parameter Long-term privacy 128
sec Statistical security 40
λ Soundness parameter 10, ..., 128
µ Repetitions of ΠZKPoS µ ≥ λ · ln(2)/ ln(3/2) 17, ..., 218

B∞ Bounds on secrets 1
BDec Decryption bound ∥v − su∥∞ ≤ BDec ≈ 213

Size of πD Timings for πD Size of πS Timings for πS

14λτ KB 4λτ ms 175λµ KB 30λµ ms

Table 1. Notation, explanation, constraints and concrete parameters for the protocol.
We also provide size and timings for decryption proof πD and proofs of shortness πS .

⋆ Setting m = 2048, log q = 55, r = 90, b = 3, τ = 50, k = 2398, l = 5000 and h = 100
for soundness 2−45 and run the protocol twice, see [7, Section 4.1] for details.

15

6.2 Implementation

We wrote a proof of concept implementation of our scheme in C++ using the
NTL-library [43]. The implementation was benchmarked on an Intel Core i5
running at 2.3 GHz with 16 GB RAM. We ran the protocol with λ = 40, τ =
1000, µ = 68. The timings are given in Table 1. The implementation is very
simple, and consists of a total of 400 lines of code. Our source code is available
online ⋆⋆. We note that our implementation does not use the number theoretic
transform for fast multiplication of elements in the ring to reduce complexity. A
rough comparison to NFLlib [2], where they show clear improvements compared
to NTL, indicates that an optimized implementation should provide a speedup
by at least an order of magnitude.

7 Comparison

7.1 Comparison to DistDec (TCC’10)

We sketch an extension of the passively secure distributed decryption protocol
ΠDistDec given by Bendlin and Damg̊ard [11], which is used in SPDZ [20,22]. The
main difference compared to our protocol is that this protocol requires zero-
knowledge proofs to ensure correct computation at each step of the protocol
to achieve active security instead of repeating the decryption procedure several
times. The protocol works roughly as following:

1. Each party Di samples uniform Ei,j such that ∥Ei,j∥∞ ≤ 240BDec/ξp (for 40
bits statistical security) and computes the partial decryptions ti,j = siuj +
pEi,j for each ciphertext cj = (uj , vj).

2. Each party Di publish a zero-knowledge proof πLi,j
of the linear relation for

ti,j , using the lattice-based commitments together with their zero-knowledge
proof of linear relations by Baum et al. [8].

3. Each party Di use the amortized ZKP by Baum et al. [7] for batch-size N to
prove that each Ei,j is bounded by 2secBDec/ξp, given commitments cEi,j

.
4. The verifier checks the relations (vj − t0,j − t1,j mod q) ≡ mj mod p and

that all the zero-knowledge proofs are valid.

Elements tj and commitments cEi,j are N log q and 2N log q bits, respectively.
Each proof of linearity πLi,j

is 6N log(6σ̄) bits. The amortized proof is 540 log(6σ̂)
bits. The total size, for each Di, is

(3N log q + 6N log(6σ̄) + 540 log(6σ̂))τ bits.

Then one party can split the key into ξ = 2 shares, run ΠDistDec on each key-
share locally, and return the outputs from both D1 and D2 together with an
additional proof that the key-splitting was correct. We based the estimate on
the parameters from Table 1, with σ̄ ≈ 216 and σ̂ ≈ 266 (see e.g. Aranha et al. [5]

⋆⋆ https://github.com/tjesi/verifiable-decryption-in-the-head.

16

for details about proofs and sizes). However, the amortized proof is not exact,
which means that we must increase q to q ≈ 278 to ensure correct decryption.
For security κ = 128 we also need to increase N to N = 4096. The proof is
then of size ≈ 363τ KB. We conclude that ΠZKPCD is of equal size as ΠDistDec for
λ = 26 and otherwise larger.

We do not have access to timings for this protocol. However, as the modulus is
much larger, the dimension is twice the size, the zero-knowledge proofs include
Gaussian sampling and rounds of aborts, we expect the protocol to be much
slower than ours despite the large number of repetitions in our construction.

7.2 Comparison to Boschini et al. (PQ Crypto’20)

Boschini et al. [15] presents a zero-knowledge protocol for Ring-SIS and Ring-
LWE. Their protocol can be used to prove knowledge of secrets or plaintexts,
or prove correct decryption given a message and a BGV ciphertext. Concrete
estimates for the latter are not given in the paper, but the number of constraints
is higher for decryption than for the former. For a slightly smaller choice of
parameters, a single proof of plaintext knowledge is of size 87 KB and takes
roughly 3 minutes to compute. We conclude that the proof system by Boschini
et al. will provide decryption proofs of equal size as protocol when λ = 6 and
smaller otherwise. The time it takes to produce such a proof are several orders
of magnitude slower than ours, making the system impossible to use in practice
even for moderate sized sets of ciphertexts.

7.3 Comparison to Lyubashevsky et al. (PKC’21)

A recent publication by Lyubashevsky, Nguyen and Seiler [38] gives a verifiable
decryption protocol for the Kyber encapsulation scheme [41]. Here, the encryp-
tion is over a rank 2 module over a ring of dimension N = 256 and modulus
q = 3329 with secret and noise values bounded by B∞ = 2. The proof of correct
decryption of binary messages of dimension 256 is of size 43.6 KB, which of equal
size as in our protocol for λ = 3. We note that the message space is smaller than
in our protocol, mostly because we are forced to choose larger parameters to
ensure correct decryption, and hence, we can not provide a proof of verifiable
decryption for Kyber in particular. They do not provide timings, but we notice
that the proof system use Gaussian sampling, rejection sampling, partially split-
ting rings and automorphisms – making the protocol very difficult to implement
correctly and securely in practice.

7.4 Comparison to Silde (VOTING’22)

Silde [44] presents a direct verifiable decryption of BGV ciphertexts. The param-
eters are similar to our scheme, and the proof is of size 47 KB per ciphertext.
This the same as in our scheme for λ = 4, ignoring the setup cost, while smaller
for larger λ. The timing of the decryption protocol is 90 ms per ciphertext, which
is equal to our timings for λ = 23 and otherwise up to 6 times faster for λ = 128.

17

Thanks

We thank Carsten Baum and the anonymous reviewers for helpful comments.
This work received funding from the France 2030 program managed by the
French National Research Agency under grant agreement No. ANR-22-PECY-
0006.

References

1. Adida, B.: Helios: Web-based open-audit voting. In: van Oorschot, P.C. (ed.)
USENIX Security 2008. pp. 335–348. USENIX Association (Jul / Aug 2008)

2. Aguilar Melchor, C., Barrier, J., Guelton, S., Guinet, A., Killijian, M.O., Lepoint,
T.: NFLlib: NTT-based fast lattice library. In: Sako, K. (ed.) CT-RSA 2016. LNCS,
vol. 9610, pp. 341–356. Springer, Heidelberg (Feb / Mar 2016)

3. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015)

4. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 2087–2104. ACM Press (Oct / Nov
2017). https://doi.org/10.1145/3133956.3134104

5. Aranha, D.F., Baum, C., Gjøsteen, K., Silde, T.: Verifiable mix-nets and dis-
tributed decryption for voting from lattice-based assumptions. Cryptology ePrint
Archive, Report 2022/422 (2022), https://ia.cr/2022/422

6. Attema, T., Lyubashevsky, V., Seiler, G.: Practical product proofs for lattice com-
mitments. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS,
vol. 12171, pp. 470–499. Springer, Heidelberg (Aug 2020)

7. Baum, C., Bootle, J., Cerulli, A., del Pino, R., Groth, J., Lyubashevsky, V.: Sub-
linear lattice-based zero-knowledge arguments for arithmetic circuits. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 669–699.
Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/978-3-319-96881-0 23

8. Baum, C., Damg̊ard, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient
commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R.
(eds.) SCN 18. LNCS, vol. 11035, pp. 368–385. Springer, Heidelberg (Sep 2018)

9. Baum, C., Nof, A.: Concretely-efficient zero-knowledge arguments for arithmetic
circuits and their application to lattice-based cryptography. In: Kiayias, A.,
Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110,
pp. 495–526. Springer, Heidelberg (May 2020)

10. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: Transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103–128. Springer, Heidelberg
(May 2019). https://doi.org/10.1007/978-3-030-17653-2 4

11. Bendlin, R., Damg̊ard, I.: Threshold decryption and zero-knowledge proofs for
lattice-based cryptosystems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 201–218. Springer, Heidelberg (Feb 2010)

12. Bertot, Y., Castéran, P., Huet, G., Paulin-Mohring, C.: Interactive theorem proving
and program development : Coq’Art : the calculus of inductive constructions. Texts
in theoretical computer science, Springer (2004)

13. Bettaieb, S., Schrek, J.: Improved lattice-based threshold ring signature scheme.
In: Gaborit, P. (ed.) Post-Quantum Cryptography - 5th International Workshop,
PQCrypto 2013. pp. 34–51. Springer, Heidelberg (Jun 2013)

18

14. Beullens, W.: Sigma protocols for MQ, PKP and SIS, and Fishy signature schemes.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107,
pp. 183–211. Springer, Heidelberg (May 2020)

15. Boschini, C., Camenisch, J., Ovsiankin, M., Spooner, N.: Efficient post-quantum
SNARKs for RSIS and RLWE and their applications to privacy. In: Ding, J.,
Tillich, J.P. (eds.) Post-Quantum Cryptography - 11th International Conference,
PQCrypto 2020. pp. 247–267. Springer, Heidelberg (2020)

16. Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices without
FHE. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol.
11477, pp. 3–33. Springer, Heidelberg (May 2019)

17. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic en-
cryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012. pp. 309–325.
ACM (Jan 2012). https://doi.org/10.1145/2090236.2090262

18. Bruinderink, L.G., Hülsing, A., Lange, T., Yarom, Y.: Flush, gauss, and reload
- A cache attack on the BLISS lattice-based signature scheme. In: Gierlichs, B.,
Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 323–345. Springer, Hei-
delberg (Aug 2016). https://doi.org/10.1007/978-3-662-53140-2 16

19. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: CRYPTO. Lecture
Notes in Computer Science, vol. 740, pp. 89–105. Springer (1992)

20. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (Sep 2013)

21. Damg̊ard, I., Orlandi, C., Takahashi, A., Tibouchi, M.: Two-round n-out-of-n
and multi-signatures and trapdoor commitment from lattices. In: Garay, J. (ed.)
PKC 2021, Part I. LNCS, vol. 12710, pp. 99–130. Springer, Heidelberg (May 2021)

22. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (Aug 2012)

23. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO’89. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (Aug 1990)

24. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its appli-
cations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816,
pp. 93–122. Springer, Heidelberg (Aug 2016)

25. Espitau, T., Fouque, P.A., Gérard, B., Tibouchi, M.: Side-channel attacks on BLISS
lattice-based signatures: Exploiting branch tracing against strongSwan and elec-
tromagnetic emanations in microcontrollers. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 1857–1874. ACM Press (Oct / Nov
2017). https://doi.org/10.1145/3133956.3134028

26. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp. 186–
194. Springer, Heidelberg (Aug 1987). https://doi.org/10.1007/3-540-47721-7 12

27. Gordon, D.M.: A Survey of Fast Exponentiation Methods. J. Algorithms 27(1),
129–146 (1998), https://doi.org/10.1006/jagm.1997.0913

28. Haines, T., Lewis, S.J., Pereira, O., Teague, V.: How not to prove your election
outcome. In: 2020 IEEE Symposium on Security and Privacy. pp. 644–660. IEEE
Computer Society Press (May 2020). https://doi.org/10.1109/SP40000.2020.00048

29. Haines, T., Müller, J.: SoK: Techniques for verifiable mix nets. In: Jia, L., Küsters,
R. (eds.) CSF 2020 Computer Security Foundations Symposium. pp. 49–64. IEEE
Computer Society Press (2020). https://doi.org/10.1109/CSF49147.2020.00012

19

30. Heiberg, S., Willemson, J.: Verifiable internet voting in Estonia. In: 6th Interna-
tional Conference on Electronic Voting: Verifying the Vote, EVOTE 2014 (2014)

31. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC. pp.
21–30. ACM Press (Jun 2007). https://doi.org/10.1145/1250790.1250794

32. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes
based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASI-
ACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (Dec 2008)

33. Keller, M., Pastro, V., Rotaru, D.: Overdrive: Making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822,
pp. 158–189. Springer, Heidelberg (Apr / May 2018)

34. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (Feb / Mar
2013). https://doi.org/10.1007/978-3-642-36362-7 8

35. Luo, F., Wang, K.: Verifiable decryption for fully homomorphic encryption. In:
Chen, L., Manulis, M., Schneider, S. (eds.) ISC 2018. LNCS, vol. 11060, pp. 347–
365. Springer, Heidelberg (Sep 2018)

36. Lyubashevsky, V.: Fiat-Shamir with aborts: Applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (Dec 2009)

37. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Jo-
hansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (Apr 2012). https://doi.org/10.1007/978-3-642-29011-4 43

38. Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Shorter lattice-based zero-knowledge
proofs via one-time commitments. In: Garay, J. (ed.) PKC 2021, Part I. LNCS,
vol. 12710, pp. 215–241. Springer, Heidelberg (May 2021)

39. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 35–
54. Springer, Heidelberg (May 2013). https://doi.org/10.1007/978-3-642-38348-9 3

40. Peng, K., Boyd, C., Dawson, E.: Batch zero-knowledge proof and verification and
its applications. ACM Trans. Inf. Syst. Secur. 10(2), 6 (2007)

41. Schwabe, P., Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyuba-
shevsky, V., Schanck, J.M., Seiler, G., Stehlé, D.: CRYSTALS-KYBER. Tech.
rep., National Institute of Standards and Technology (2020), available at
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

42. Shirazi, F., Simeonovski, M., Asghar, M.R., Backes, M., Diaz, C.: A survey on
routing in anonymous communication protocols. ACM Comput. Surv. 51(3) (Jun
2018). https://doi.org/10.1145/3182658, https://doi.org/10.1145/3182658

43. Shoup, V.: Ntl: A library for doing number theory (2021),
https://libntl.org/index.html

44. Silde, T.: Verifiable Decryption for BGV. Workshop on Advances in Secure Elec-
tronic Voting (2022), https://ia.cr/2021/1693

20

