
Machine-Checked Proofs of Privacy Against
Malicious Boards for Selene & Co

Constantin Cătălin Drăgan
Surrey Centre for Cyber Security

University of Surrey
Guildford, United Kingdom

c.dragan@surrey.ac.uk

Kristian Gjøsteen
Department of Mathematical Sciences

NTNU
Trondheim, Norway

kristian.gjosteen@ntnu.no

Peter B. Rønne
LORIA, CNRS & Univ Lorraine, France

University of Luxembourg, Esch-sur-Alzette,
Luxembourg

0000-0002-2785-8301

François Dupressoir
Department of Computer Science

University of Bristol
Bristol, United Kingdom
f.dupressoir@bristol.ac.uk

Thomas Haines
School of Computing

Australian National University
Canberra, Australia

thomas.haines@anu.edu.au

Morten Rotvold Solberg
Department of Mathematical Sciences

NTNU
Trondheim, Norway

mosolb@ntnu.no

Ehsan Estaji
Department of Computer Science & SnT

University of Luxembourg
Esch-sur-Alzette, Luxembourg

ehsan.estaji@uni.lu

Peter Y. A. Ryan
Department of Computer Science & SnT

University of Luxembourg
Esch-sur-Alzette, Luxembourg

0000-0002-1677-9034

Abstract—Privacy is a notoriously difficult property to achieve
in complicated systems and especially in electronic voting
schemes. Moreover, electronic voting schemes is a class of systems
that require very high assurance. The literature contains a
number of ballot privacy definitions along with security proofs
for common systems. Some machine-checked security proofs
have also appeared. We define a new ballot privacy notion that
captures a larger class of voting schemes. This notion improves
on the state of the art by taking into account that verification
in many schemes will happen or must happen after the tally has
been published, not before as in previous definitions.

As a case study we give a machine-checked proof of privacy for
Selene, which is a remote electronic voting scheme which offers
an attractive mix of security properties and usability. Prior to
our work, the computational privacy of Selene has never been
formally verified. Finally, we also prove that MiniVoting and
Belenios satisfies our definition.

I. INTRODUCTION

Confidence in the validity of the outcome and privacy
of the votes is supremely important for elections. We build
confidence in elections by using carefully selected methods,
routines and election officers. In particular, extensive use of
various forms of auditing helps build confidence.

For the analysis of a voting mechanism, we need to know
what security means and why the mechanism is secure. The
former requires a so-called security notion, while the latter is
best achieved with a security proof, a mathematical argument
for why the mechanism satisfies the security notion.

It is easy to have an intuitive notion of what security
should mean, but defining privacy for voting mechanisms is
non-trivial, as shown by the many attempts to do so in the

literature. (Bernhard et al. [5] has a good overview of privacy
definitions.)

One problem is that many security notions are highly
specialised for a particular class of voting mechanisms. But
there are a large number of cryptographic voting mechanisms
and they exhibit great variety in their form and shape. Defining
security notions that usefully and uniformly capture a larger
class of voting mechanisms is a good thing in principle, but it
is also an essential task if existing security notions do not cover
the voting mechanism of interest. We need security notions
that capture a larger class of voting mechanisms.

Once we have a security notion, we return to the problem
of creating and auditing a security proof. Machine-checked
proofs is a good way to increase assurance for security
proofs. One system designed for handling security proofs is
EASYCRYPT. A large set of security notions, cryptographic
constructions and corresponding security proofs have been
written in EASYCRYPT, and the system has seen extensive
use. We need machine-checked security proofs for voting
mechanisms.

Selene [19] is a voting mechanism designed to provide
a simple method for verification, while at the same time
mitigating the threat of coercion. The key idea in Selene is that
every voter is assigned a personal tracking number, and when
the election period is over and everyone has cast their vote, the
tracking numbers and the votes are published in plaintext on
a web bulletin board. This gives the voters a direct and easy
to understand way of verifying that their vote was correctly
included in the tally. The key innovation in Selene is how to

give the voter a tracking number so that no single party know
what tracking number was given to the voter (other than the
voter themselves) and the voter can plausibly lie about which
tracker they received. The first property is achieved by mixing
the trackers as part of the setup.

There is a danger of coercion here, namely that a coercer
requires a voter to hand over her tracking number, so that the
coercer himself can verify that the voter fulfilled his demands.
However, the coercer has a limited window of opportunity,
because he needs the coerced voter to hand over her tracker
before the trackers and the votes are published. Otherwise, the
coerced voter could simply find a vote corresponding to the
coercer’s demand, and give the coercer the tracker next to this
vote. This observation is used in Selene to counter the threat
of coercion: the voters first learn their tracking numbers after
the trackers and votes are published on the web bulletin board.

Abstractly, Selene has a different order of operations than
many existing voting mechanisms. Schemes like MiniVot-
ing (which in some sense models a large class of voting
mechanisms including variants of Helios) do voter verification
before tallying. For Selene voter verification must happen after
tallying, since the personal tracking numbers do not appear
until after tallying. This means that Selene does not fit very
well into existing security notions for voting mechanisms. This
is also true for a number of other systems where voters or
their delegates first can (or choose to) verify after tally. The
Selene verification mechanism has also been trialled with a
commercial partner [20]. We need a high-assurance security
proof for Selene.

A. Our Contribution

In this paper, we define the new security notion delay-use
malicious-ballotbox ballot privacy (du–mb–BPRIV) to capture
the security of schemes that delay the use of verification in-
formation to a post-tallying verification step. This is necessary
for tracker based schemes (like Selene [19], Electryo [18]
and sElect [17]), for in-person voting schemes where the
verification is first done later at home, but further it also
applies to e-voting schemes where the verification step is
not made mandatory before tallying, or often happens after
tally, e.g. when verification is delegatable. To construct our
definition, we build upon a recent ballot privacy definition
called mb–BPRIV [12].

We model our new security notion in the proof assis-
tant EASYCRYPT [1] (https://easycrypt.info), and to validate
our security notion, we also model the Labelled-MiniVoting
scheme [9] and Belenios [11] and verify that these schemes
satisfy ballot privacy both under our new definition and under
the original mb–BPRIV. Furthermore, we model the Selene
voting system, and prove that this scheme satisfies ballot
privacy under our new security definition. The EASYCRYPT
code is available at https://github.com/mortensol/du-mb-bpriv.

B. Related Work

Many authors have tried to capture the notion of ballot pri-
vacy using standard cryptographic games. Bernhard et al. [5]

gives a good general overview of such notions. We give an
overview of the history leading up to the recent definition
of mb–BPRIV in Section II-G, directly preceding our new
security notion.

The need for assurance with respect to voting systems
makes cryptographic voting schemes a natural target for for-
malized security proofs, either through symbolic models and
automatic verification or via proof assistants. While symbolic
models have historically yielded good insights into the analysis
of cryptographic protocols, see e.g. [8], [23] for symbolic
analysis of Selene, we prefer a cryptographic analysis.

EASYCRYPT [1] is a proof assistant focused on formal-
izing computational security proofs in the style of Shoup’s
Sequences of Games [22]. EASYCRYPT supports constructive
proofs of concrete security—leaving the complexity analysis
of the constructed reduction to be done by hand. For simplicity
in the rest of this paper, we discuss asymptotic notions. The
formalized proof is concrete.

Cortier et al. use EASYCRYPT to prove that Helios is
BPRIV-secure [9], and that Belenios is BPRIV-secure and
verifiable [10]. Our proof builds upon their framework—we
in fact prove that Labelled MiniVoting and Belenios meet our
new privacy definition, and further formalize their security in
mb–BPRIV.

II. BACKGROUND

In this section, we first introduce some basic cryptographic
models, primitives and algorithms that make up a voting
system, before we move on to describe earlier definitions of
ballot privacy.

A. Random Oracle Model

In our analysis, we model hash functions as random oracles
[2]. That is, to compute the value of a hash function at a point
x, any party can make a call to an oracle O, implementing a
random function from some domain D to some range R. The
oracle O maintains an initially empty table T , and whenever
someone calls O(x) for some x ∈ D, the oracle O checks
if there is an entry (x, y) in T for some y ∈ R. If so,
it returns y; if not, O randomly generates a y′ ∈ R, adds
(x, y′) to T and outputs y′. We will use the Random oracle
model implicitly below when modelling the non-interactive
zero-knowledge proofs that help ensure privacy in e-voting.

B. Public Key Encryption

Public key encryption systems are often used in voting
protocols, to help protect the privacy of the votes, and possibly
other things. In Selene, for instance, both the votes and
the voter’s personal tracking numbers are encrypted using
some form of public key encryption. Formally, a public key
encryption system (PKE) is defined as follows:

Definition 1: A public key encryption scheme (PKE) is a
triple of algorithms E = (kgen, enc, dec); where
kgen is a probabilistic algorithm that takes as input a security

parameter λ and outputs a key pair (pk, sk),

enc is a probabilistic algorithm that on input a public key pk
and a plaintext m outputs a ciphertext c,

dec is a deterministic algorithm that on input a secret key
sk and a ciphertext c outputs either a plaintext m or a
special error symbol ⊥ indicating that something went
wrong.

We require that decryption “undoes” encryption, i.e. for any
key pair (pk, sk) output by kgen, and any plaintext m, we have
that dec(sk, enc(pk,m)) = m.

A labelled public key encryption scheme (LPKE) extends
the notion of a “regular” PKE by adding some additional, non-
malleable data called a label [21]. One important property for
a labelled PKE is that decrypting a ciphertext using a different
label than the one used for encryption, should not reveal
anything about the original plaintext. Formally, a labelled PKE
is defined similarly to how we define a PKE in Definition 1,
but a label ℓ is given as additional input in the encryption and
decryption algorithms.

The security of the schemes we analyze rely on a security
notion for labelled public key encryption called indistin-
guishability under chosen ciphertext attack with one parallel
decryption query (IND–1–CCA) [3]. Informally, this notion
captures that any efficient adversary is unable to distinguish
between encryptions of two messages of the same length, when
given access to a batch decryption oracle that can be called
once.

A similar security notion, namely poly–IND–1–CCA, allows
the adversary to make up to n challenge queries, for some
polynomially bounded integer n. This notion is formalized
in Figure 1, where an adversary B is given access to an
encryption oracle Oenc and a decryption oracle Odec. The
adversary can make n challenge queries to Oenc, who encrypts
one of two plaintexts, depending on the bit β. The adversary
can query Odec at most once, and the oracle then decrypts a list
of ciphertexts. For any ciphertexts created by the encryption
oracle, the decryption oracle returns ⊥.

The advantage of a poly–IND–1–CCA adversary B against
a labelled public key encryption scheme E is defined as

Advpoly–ind1cca
B,E,n (λ) =∣∣∣Pr[Exppoly–ind1cca,0

B,E,n (λ) = 1
]
− Pr

[
Exppoly–ind1cca,1

B,E,n (λ) = 1
]∣∣∣ ,

and we say that the labelled PKE E is n-challenge
poly–IND–1–CCA-secure if the advantage defined above is
negligible in λ for all efficient adversaries B.

As noted in [9], if n = 1, poly–IND–1–CCA security is
essentially reduced to IND–1–CCA security. Indeed, it is pos-
sible to prove, through a hybrid argument, that a labelled PKE
is IND–1–CCA secure if and only if it is poly–IND–1–CCA
secure. This fact was also verified in EASYCRYPT [9], and we
were able to reuse this framework in our formalization of the
ballot privacy of Selene.

C. Commitment Protocols

A commitment protocol allows a prover P to commit to
some value b, and send the commitment to a verifier V.

The verifier can ask the prover to open the commitment at
some later point and verify the output value. Two important
properties of a commitment protocol is that it should be
binding and hiding. The first property informally means that
once P has committed to a value, he should not be able to
open the commitment to another value. The second property
informally means that before the commitment is opened, V
should not be able to determine what was committed to.

More formally, a commitment protocol is defined as follows:
Definition 2 (Commitment protocol): A commitment proto-

col is a triple of algorithms CP = (gen, commit, open), where
gen takes as input a security parameter λ and returns a pair

(upk, usk) of user public and secret keys,
commit takes as input a user public key upk and a value we

want to commit to, and returns a commitment ct and an
opening key d,

open takes as input a commitment and an opening key and
returns the committed value.

Commitments are an important part of the coercion miti-
gation strategy in Selene, where the election officials make
commitments to personal tracking numbers for each voter.
These commitments are opened by the voters at the end
of the election, allowing the voters to verify that their vote
was included in the tally, without being able to hand over
their tracker to a coercer before all votes and trackers are
published. For coercion-resistance, Selene actually employs
trapdoor commitments and the voters have secret trapdoor keys
that allow them to open the commitment to a tracker satisfying
the coercer.

D. Proof Systems

We now describe proof systems which are used in Selene to
ensure that various operations are performed correctly. We say
that a binary relation R is a subset R ⊆ X×W , where X is a
set of statements and W is a set of witnesses. A proof system
for the relationR is a pair of efficient algorithms (P,V), where
P is called the prover and V is called the verifier. The prover
and verifier work on a common input x ∈ X , and the prover
has some additional input w ∈ W . In a non-interactive proof
system, P uses his input to compute a proof Π. He sends the
proof to V, who, on input (x,Π) produces a verification output
in {0, 1}.

A proof system is said to be complete if the prover can
produce a valid proof whenever the statement is true. More
formally, for any (x,w) ∈ R, if Π is a proof output by
P(x,w), then V(x,Π) outputs 1 with probability 1.

A proof system is sound if a prover is unable to convince
a verifier that a false statement is true.

A proof system is zero-knowledge if the proof leaks no
information beyond the fact that the relation holds. More
formally, we demand the existence of an efficient algorithm
Sim, called the simulator, that produces valid-looking proofs
for a statement x ∈ X without access to the witness w.
Formally, we consider a zero-knowledge adversary B in the
following experiments:

Exppoly–ind1cca,β
B,E,n (λ)

1 : encL← []

2 : (pk, sk)← kgen(λ)

3 : β′ ← BOenc,Odec(pk)

4 : return β′

Oenc(ℓ,m0,m1)

1 : c← ⊥
2 : if |encL| < n then

3 : c← enc(pk, ℓ,mβ)

4 : encL← encL+ [(c, ℓ)]

5 : return c

Odec(cL)

1 : mL← []

2 : for (c, ℓ) ∈ cL do

3 : if (c, ℓ) /∈ encL then

4 : mL← mL+ [dec(sk, ℓ, c)]

5 : else mL← mL+ [⊥]
6 : return mL

Fig. 1. Security experiment for poly–IND–1–CCA [9]

Expzk,0B,P,R(λ)

1 : (x,w, state)← B(λ)
2 : Π← ⊥
3 : if (R(x,w)) then

4 : Π← P(x,w)

5 : β′ ← B(state,Π)

6 : return β′

Expzk,1B,Sim,R(λ)

1 : (x,w, state)← B(λ)
2 : Π← ⊥
3 : if (R(x,w)) then

4 : Π← Sim(x)

5 : β′ ← B(state,Π)

6 : return β′

The advantage of the zero-knowledge adversary B over
the proof system (P,V) and simulator Sim is defined as

AdvzkB,P,Sim,R(λ) =∣∣∣Pr[Expzk,0B,P,R(λ) = 1
]
− Pr

[
Expzk,1B,Sim,R(λ) = 1

]∣∣∣ ,
and we say that a proof system is zero-knowledge if, for
any adversary B, there exists a simulator Sim such that the
advantage defined above is negligible.

E. Voting Systems

We define a voting system as being built upon a tuple of
algorithms

V = (Setup,Register,Vote,ValidBoard,Tally,VerifyVote,

VerifyTally,Publish),

where the different algorithms informally work as follows:
Setup(1λ) : Returns a pair (pd, sd) of public and secret

data, typically including a public encryption key and a
secret decryption key, respectively, but this data might
also contain other things.

Register(id, pd, sd) : Takes as input a user identity and some
public and secret data and returns a public credential pc
and a secret credential sc for that user.

Vote(pd, pc, sc, v) : Takes as input some public data, a user’s
public and secret credentials, and a vote, and returns the
user’s public credential, a ciphertext encrypting the vote
and a state that the voter later can use for verification.

ValidBoard(BB, pd) : Checks the validity of the ballot box
BB.

Tally(BB, pd, sd) : Computes the result r of the election,
along with a proof Π of correct tallying.

VerifyVote(id, state,BB, pc, sc) : Run by a voter to check
whether or not her ballot was included in the tally.

VerifyTally((pd, pbb, r),Π): Checks that Π is a valid proof
of correct tally, with respect to the result r and the public
part pbb of the ballot box BB.

Publish(BB) : Returns a public part pbb of the ballot box
BB.

F. Voting Friendly Relations

In the voting systems we analyze in this paper, proof
systems are used to compute and validate proofs of correct
tally. In our analysis and EASYCRYPT formalization, we keep
the relation R abstract, and thus, we need to ensure that
the relation is compatible with the result of the election.
For this, we adopt the notion of voting friendly relations, as
defined by Cortier et al. [9] and generalize it a bit, so that
it also accommodates schemes like Selene. Very informally, a
relationship is voting friendly if for any adversarially chosen
bulletin board it is possible to find a corresponding tally such
that the pair (bulletin board and tally) are in the language.

The relation being compatible with the result of the election
means that if V is a voting system, (pd, sd) is the public and
secret data generated by the Setup algorithm, the result r of the
election corresponds to the tally of the votes obtained by de-
crypting the ciphertexts in the ballot box BB, and if pbb is the
public part of BB, then the relation R((pk, pbb, r), (sk,BB))
holds. In other words, it is possible to prove that r is the correct
result. More formally, a voting friendly relation is defined as
follows:

Definition 3 (Voting friendly relation [9]): Let V be a
voting system and let ΣR be a proof system for some relation
R. We say that R is a voting friendly relation if, for any
efficient adversary B, the following experiment returns 1 with
negligible probability:

ExpvfrB,V,ΣR
(λ)

1 : (pd, sd)← V.Setup
2 : BB← B(pd)
3 : dbb← dec∗(sd,BB)

4 : r ← ρ(dbb)

5 : pbb← V.Publish(BB)
6 : return ¬R((pd, pbb, r), (sd,BB))

In the above experiment, the algorithm dec∗ decrypts the
ballot box BB line by line using the secret data sd, and
returns a list [(a1, v1), . . . , (an, vn)] of votes vi and some
additional information ai, e.g. voter identities as in MiniVoting
or tracking numbers as in Selene. We say that ρ is a counting
function that takes in a list of the form described above, and
returns a result.

G. Early Definitions of Ballot Privacy

In 2015, Bernhard et al. [5] conducted a survey of existing
game-based ballot privacy definitions and found that they were
all unsatisfactory. Some of the definitions were too weak,
declaring protocols that intuitively did not have ballot privacy
to be secure. Some definitions were too strong, making any
voting protocol with even minimal verifiability impossible
to prove private. Finally, some definitions were too limited,
restricting the class of captured voting protocols and privacy
breaches too much.

Based on this survey, Bernhard et al. [5] proposed a new
definition of ballot privacy which was named BPRIV. The
BPRIV definition captures the idea that a voting system should
not leak any information about the votes that are cast, beyond
what can be derived from the result of the election. This is
formalized by having an adversary attempting to distinguish
between two worlds. In one world, the adversary gets to see a
ballot box containing real ballots submitted by honest voters,
as well as any ballots the adversary has submitted on behalf
of dishonest voters. The adversary then gets to see the result
corresponding to these ballots and a proof of correct tally. In
the other world, the adversary gets to see a fake ballot box, but
he still gets to see the result as tallied on the real ballot box. It
is also assumed that there exists a simulator that can simulate
a proof of correct tally corresponding to the real result, but
with respect to the fake ballot box. The adversary also gets to
see this simulated proof.

As the name suggests, ballot privacy BPRIV only captures
the privacy of the ballots and not of the tally. To account for
this Bernhard et al. say that any scheme satisfying BPRIV
should also satisfy a property called strong consistency which
captures the idea that the tally produced by the scheme should
not leak more information than an idealised tally function. The
exact idealised tally function is a parameter of the definition.
We have proved the strong consistency of Selene as part of
our work.

To avoid having to trust the voting server, the strategy in
many voting systems is to encrypt the votes under a key for
which the corresponding decryption key is split into several
parts and distributed among several authorities. However, as
is pointed out in [12], this trust assumption is not properly
captured in the BPRIV definition. In BPRIV, the adversary
plays a game where he can control the votes cast by honest
parties, but he cannot control the resulting ballots once they
are put in the ballot box. This means that BPRIV assumes that
every ballot that is put in the ballot box stays in the ballot box
and is not tampered with in any way.

To address this, Cortier et al. introduced a new defini-
tion, which they called mb–BPRIV [12]. The main idea in
mb–BPRIV is similar to BPRIV: the adversary has to try and
distinguish between two worlds: one where he sees real ballots
and the real result, and one where he sees fake ballots, but still
sees the real result. The difficulty is that an adversary who is
in control of the ballot box is able to remove or tamper with
any ballots submitted by honest voters. Since we perform the

tally on the real ballots in both situations, we need to somehow
determine which of the real ballots to perform the tally on. A
bad choice would make distinguishing trivial for the adversary.

Cortier et al.’s solution is to parameterize their security
definition by a recovery algorithm, an approach we also adopt
in our definition. Informally, the idea is to use the recovery
algorithm on the adversary’s board in the fake world, to
determine how the adversary has tampered with the ballots
on the fake board. We then perform the same transformation
on the real board, and tally the resulting board.

Formally, Cortier et al. define the aforementioned transfor-
mation as a selection function, and recovery algorithm as the
process of finding the transformation.

Definition 4 (Selection function [12]): For integers m,n ≥
1, a selection function for m and n is any mapping

π : {1, . . . , n} → {1, . . . ,m} ∪ ({0, 1}∗ × {0, 1}∗) .

The selection function π represents the how the adversary
constructs a bulletin board BB with n ballots, given a bulletin
board BB1 with m ballots. For i ∈ {1, . . . , n},

– π(i) = j, with j ∈ {1, . . . ,m} means that this is the jth
element in BB1,

– π(i) = (pc, c) means that this element is (pc, c).
The function π associated to π maps a bulletin board BB0 of
length m to a board π(BB0) of length n such that for any
j ∈ {1, . . . , n},

π(BB0)[j] =

{
(pc, c) if π(j) = i and BB0[i] = (id, (pc, c))

(pc, c) if π(j) = (pc, c)

Definition 5 (Recovery algorithm [12]): A recovery algo-
rithm is any algorithm Recover that takes as input two bulletin
boards BB and BB1 and returns a selection function π for
|BB1| and n for some integer n.

We will sometimes abuse notation and write BB′ ←
Recover(BB,BB0,BB1) to denote the process of determin-
ing the transformation from BB1 to BB, and applying this
transformation to BB0, to get the board BB′.

In mb–BPRIV, the tally occurs only if the adversary’s
board is valid, and if none of the voters are unhappy after
they perform some kind of verification. This means that
the verification process needs to occur before the tally, so
mb–BPRIV does not accommodate voting systems like Selene.
Indeed, in Selene, the tally occurs before the verification as a
way of mitigating the threat of coercion. Therefore, there is
still need for a new privacy definition, that both allows for the
voting server (and thus the ballot box) to be dishonest, and that
accommodates voting protocols where the verification phase
happens only after the tally has been computed.

III. NEW SECURITY NOTION

In this section, we present a new definition of ballot
privacy against a malicious ballot box, which we call delay-
use malicious ballotbox ballot privacy (du–mb–BPRIV). This
definition essentially extends the range of applicable voting
schemes to include those where the verification can be delayed,

Expdu–mb–BPRIV,Recover,β
A,V,Sim (λ)

1 : Checked,Happy← ∅
2 : V,PU,U,CU← empty
3 : (pd, sd)← Setup(λ)

4 : for id in I do

5 : (pc, sc)← Register(id),

6 : U[id]← sc,PU[id]← pc

7 : if id ∈ D then CU[id]← U[id]

8 : BB← AOvoteLR(pd,CU,PU,Hcheck)

9 : if Hcheck ̸⊆ V then d←$ {0, 1}; return d

10 : if ValidBoard(BB, pk) = ⊥ then

11 : d←$ {0, 1}; return d

12 : d∗ ← A();
13 : (r∗,Π∗)← AOtallyBB,BB0,BB1 ()

14 : if VerifyTally((pd, pbb, r∗),Π∗) = ⊥ then

15 : d←$ {0, 1}; return d

16 : d← AOverify()

17 : if Hcheck ̸⊆ Checked then

18 : d←$ {0, 1}; return d

19 : if Hcheck ̸⊆ Happy then return d∗

20 : return d

Oboard
1 : return Publish(BBβ)

OvoteLR(id, v0, v1)
1 : if id ∈ H then

2 : (pc, b0, statepre,0, statepost,0)← Vote(pd, pc, v0)

3 : (pc, b1, statepre,1, statepost,1)← Vote(pd, pc, v1)

4 : V[id]← V[id]∥(statepre,β , statepost,0, v0)
5 : BB0 ← BB0∥(id, (pc, b0))
6 : BB1 ← BB1∥(id, (pc, b1))

OtallyBB,BB0,BB1
for β = 0

1 : (r,Π)← Tally(BB, pd, sd)

2 : return (r,Π)

OtallyBB,BB0,BB1
for β = 1

1 : BB′ ← Recover(BB,BB0,BB1)

2 : (r,Π)← Tally(BB′, pd, sd)

3 : Π′ ← Sim(pd,Publish(BB), r)

4 : return (r,Π′)

Overify for id ∈ Hcheck

1 : Checked← Checked ∪ {id}
2 : if VerifyVote(id, statepre, statepost,BB, pc, sc) = ⊤ then

3 : Happy← Happy ∪ {id}
4 : return Happy

Fig. 2. The new security notion for ballot privacy against a dishonest ballot box.

i.e. happening after tallying, and also includes schemes where
a secret key is needed in the verification step. Our new
definition is similar to mb–BPRIV, the most notable difference
being that in our definition, the adversary gets to see the tally
after we check if his board is valid, and then he gets to see
the result of the verification phase. A formal description of the
security game for du–mb–BPRIV is found in Figure 2. The
relation between du–mb–BPRIV and mb–BPRIV is studied in
more detail in Section III-B.

In the following, let I = H∪D be a set of voter identities,
partitioned into a set H of honest voters and a set D of
dishonest voters. Furthermore, let H be partitioned into the set
Hcheck of voters who we assume will perform some verification
check and the set Hcheck of voters who we assume will not
verify.

The security experiment begins with the generation of some
public and secret data pd and sd (which typically includes the
public and secret keys used to encrypt and decrypt the votes).
Then, a number of voters in a set I are registered. In the
registration phase, public and secret credentials pc and sc are
generated for each voter, and stored in finite maps PU and U,
respectively. Furthermore, we store the secret credentials of a
set D of dishonest voters in a finite map CU.

The adversary is now given pd,PU and CU as input. In ad-
dition, he gets access to a vote oracle, that on input (id, v0, v1)
computes two ballots for this user. The first ballot is stored in

a list BB0 and the second ballot is stored in a list BB1. The
vote oracle also records a state, containing any information
the voter later needs to verify that her vote was correctly
cast and counted; we split the state into two components.
The first component (statepre) covers information checked
which is generated before tallying and the second component
(statepost) covers information generated after tallying; this is
necessary due to recovery which ensures that information after
tallying (including the tally) always acts as if β = 0. The
adversary may also call on a publish oracle, allowing him to
see, essentially, BBβ for a secret bit β.

Using this information, the adversary creates a public bul-
letin board BB. If the board is invalid, we output a random
bit. If the board is valid, we allow the adversary to make an
initial guess at the secret bit β, based on the information he
has seen so far. This guess is stored in a variable d∗, possibly
to be returned by the experiment at a later point.

The adversary now gets access to the tally, and is allowed
to add some extra information to the bulletin board, namely
a result r∗ and a proof Π∗ that this result corresponds to the
votes. If this result and proof fails to pass verification, we
output a random bit.

Otherwise, the adversary gets to make a guess d, given
access to a verification oracle Overify. The verification oracle
records the users who have verified in a set called Checked,
and the users who are happy with the verification are recorded

in the set Happy. If anyone who we expect should verify
actually does not verify, we output a random bit. If a voter
is unhappy with the verification process, we output the initial
guess d∗ the adversary made before seeing the tally. Otherwise,
the experiment outputs the guess d that the adversary made
after calling the verify oracle.

When given access to the tally oracle, the adversary can
call this oracle only once, and the behavior of the tally oracle
depends on whether we are in the left world (β = 0) or in
the right world (β = 1). If we are in the left world, the
tally is performed directly on the board BB created by the
adversary. The adversary then gets to see a real result and a
proof of correct tally. In the right world, however, we first
run the recovery algorithm to detect how the adversary has
tampered with the ballots in BB1, to create BB. We then
change the ballots on BB0 accordingly, yielding a new board
BB′, which we tally. The adversary then gets to see the result
r corresponding to BB′ and a simulated proof Π′ of correct
tally, with respect to r and the adversarial board BB.

Definition 6: Let V be a voting system, and let Recover be
a recovery algorithm. We say that V satisfies du–mb–BPRIV
with respect to Recover if there exists an efficient simulator
Sim, such that for any efficient adversary A,

Advdu–mb–bpriv
A,V,Sim (λ) =

∣∣∣∣Pr[Expdu–mb–BPRIV,Recover,0
A,V,Sim (λ) = 1

]
−Pr

[
Expdu–mb–BPRIV,Recover,1

A,V,Sim (λ) = 1
]∣∣∣∣,

is negligible in the security parameter λ, where
Expdu–mb–BPRIV,Recover,β

A,V,Sim is the game defined in Figure
2.

A. Recovery function

The mb–BPRIV definition is well defined for many recovery
functions, but three are suggested in the body of [12]. All
three recovery functions when used with mb–BPRIV are only
satisfied by schemes which prevent the adversary casting
ballots on behalf of the honest voters. (This observation
is not made in [12], but is implicit in the introduction of
a fourth recovery function in Appendix J of [12], where
Helios is analysed.) We introduce a simple new recovery
function (Fig. 3) which we call Recoverdel,reorder’

U which is
essentially identical to Recoverdel,reorder

U in [12], but does not
require ballot authentication. mb–BPRIV with the recovery
functions originally suggested implies the satisfying scheme
is equivalent to some ideal functionalities. Future versions of
du–mb–BPRIV may wish to prove similar results in which a
different recovery function is likely necessary.

B. Comparison of du–mb–BPRIV to mb–BPRIV

In this section we briefly analyse the differences between the
mb–BPRIV definition and our new du–mb–BPRIV definition.
As mentioned above, the main difference is that the verifica-
tion oracle is first available after the tally oracle has been
called. This accommodates schemes where the verification
first happens after tally and allows a secret key to be used

Recoverdel,reorder’
U (BB1,BB)

1 : L← []

2 : for (pc, c) ∈ BB :

3 : if ∃j, id : BB1[j] = (id, (pc, c)) :

4 : L← L ∥ j (if several such j exist, pick the first one)
5 : else :

6 : L← L ∥ (pc, c)
7 : return (λi. L[i])

Fig. 3. The Recoverdel,reorder’
U algorithm.

for the verification process, however, it naturally also applies
to schemes with early verification. We have changed some
parts of the definition to adapt to the delayed use of the
verification, but also to make it optimised and precise enough
for EASYCRYPT.

The main differences are:
• We only have one voter map V but the state stored

depends on secret bit β, see line 4 in the definition of
OvoteLR in Figure 2. However, the state is split into
a part relevant before tally and a post-tally part (only
relating to β = 0 which is the board used for tallying).
This is necessary for the state handling in EASYCRYPT
oracles, and was not necessary in mb–BPRIV since the
stateful verification happened before tallying.

• If the adversary does not output a valid board, the exper-
iment outputs a random guess bit, whereas mb–BPRIV
allows the adversary to output a guess but without tally
access. In both cases this corresponds to real life, where
a board will not be tallied if it is not valid. Outputting
a random bit makes our proofs in EASYCRYPT slightly
easier, and it is actually equivalent to mb–BPRIV unless
the ValidBoard algorithm always outputs ⊥.

• In our definition the experiment also outputs a random
guess bit if the verification of the tally fails via the algo-
rithm VerifyTally. Again, this corresponds to not allowing
any adversarial advantage when the tally fails publicly.
This case was not explicitly considered in mb–BPRIV,
but is natural in our case where the verification step will
not proceed on an invalid tally output.

• In du–mb–BPRIV the verification status of the honest
voters contained in Happy is directly output to the adver-
sary. In mb–BPRIV this is not defined precisely. In both
definitions the appearance of failed verifications inside
the set of checking honest voters Hcheck will in any case
imply that the guess bit has to be determined without
knowing the tally result. This is to punish the adversary
for creating a board with verifications failing which would
cause complaints in real life protocols.

Consider a voting scheme where the verification step does
not depend on a secret key and can be done before the tally.
For such schemes both privacy definitions can be applied to
the scheme. We claim that under reasonable conditions our

definition is stronger. Further, for voting schemes where the
outcome of the individual verifications can be computed by
the adversary using the data from the bulletin board, as e.g.
happens in Helios, we have equivalence of the two definitions.
We now sketch why this is the case.

We show that du–mb–BPRIV privacy implies mb–BPRIV
assuming that ValidBoard does not constantly output ⊥, and
that VerifyTally never fails on an honestly computed tally.
Finally, we also assume that the verification status Happy is not
output to the adversary in mb–BPRIV or that the verification
status can be computed using public data, as e.g. happens in
Helios. To prove the implication we assume that we have an
attack algorithm for mb–BPRIV. We use the vote choices from
the mb–BPRIV algorithm. If the attack algorithm outputs an
invalid board, we change the board that is being output to
a valid board which we have assumed exists. Since the tally
also does not fail we are allowed to output a guess and we
use the one from the attack algorithm and will win with the
same advantage since in this case no verification will be done
in mb–BPRIV. If the attack algorithm outputs a valid board,
we use the same board in the du–mb–BPRIV experiment. In
du–mb–BPRIV line 12 the adversary has to output a guess
bit d∗ which will be used if a verification fails for the honest
verifier set Hcheck. Here we use what will be output from the
mb–BPRIV attack algorithm in case of failed verifications,
which by assumption either does not depend on Happy, which
we do not yet have access to at this stage in the du–mb–BPRIV
experiment, or it can be computed from the public data on
the board. In the experiment du–mb–BPRIV line 13 we now
get the tally before verification (and the tally verifies by
assumption) but we ignore this at first and choose the same
verifying voters as in the attack algorithm. At this point the two
experiments will be equivalent. If the verification fails we are
forced to go back to d∗ but this was from the attack algorithm
and will be equivalently successful. If no verification fails in
Hcheck then we output the guess from the attack algorithm
using the tally result we got earlier as input. The advantage
will be the same as for the mb–BPRIV attack algorithm. This
was the important implication direction since it demonstrates
that our definition is not too weak, i.e. if an early verification
scheme is declared du–mb–BPRIV then it is also mb–BPRIV
private which in turn has ideal functionality implications under
assumptions such as strong consistency [12].

Considering whether mb–BPRIV privacy implies
du–mb–BPRIV, the main problem is that the choice of
verifying voters in du–mb–BPRIV could depend on the tally
output. However, for voting schemes where the outcome of
the honest voters’ individual verification can be computed
by the adversary, we can prove the implication. We thus
assume we have an attack algorithm for du–mb–BPRIV with
non-negligible advantage. In the experiment mb–BPRIV we
use the votes and output the board from this attack algorithm.
If the board is not valid, we simply output a random bit in the
experiment mb–BPRIV, which is equivalent to what happens
in du–mb–BPRIV. If the board is valid, the next step in
mb–BPRIV is to use the verification oracle. Here we simply

let all the required honest voters Hcheck perform verifications.
These will also all have to verify in the attack against
du–mb–BPRIV to get an advantage since the experiment
will otherwise output a random bit. If a verification fails we
will use the output d∗ in the attack algorithm which was
computed without tally access. If none of the verifications
fail, we will get tally access in the experiment mb–BPRIV. If
more voters were chosen to verify in the attack algorithm we
can compute the outcomes by assumption. If we encounter a
failure in the verification here, we again output d∗, otherwise
the output from the attack algorithm. The experiments will
be equivalent at this point.

IV. LABELLED-MINIVOTING AND BELENIOS

The MiniVoting scheme was first introduced by Bernhard
et al. [6] as an abstraction meant to capture several existing
constructions in the literature. It is based on two building
blocks: public key encryption and a zero-knowledge proof
system, and assumes the ballot has the form (id, c), for a
voter’s identity id and for a ciphertext c - that simply encrypts
the voter’s choice (or vote) v.

This scheme was later refined by Cortier et al. [9], resulting
in the Labelled-MiniVoting scheme. Here, the class of captured
voting schemes was broadened by introducing some public
information associated to the users, called labels, and creating
a strong link between a voter identity in a particular election
and its ciphertext - now parameterized by this label via the use
of labelled public key encryption. The labels can be used to
represent generic information about the election (as in the case
of Helios) and/or information pertaining to a voter’s public
persona: pseudonym or public verification key (as in Belenios).
The ballot in Labelled-MiniVoting takes the form (id, ℓ, c)
with id the voter’s identity and (ℓ, c) the label-ciphertext pair
created by the labelled public key encryption scheme.

A predominant feature of the MiniVoting class of schemes
is the enforcement of unique label-ciphertext pairs, via a pro-
cedure called weeding [11]. This step, done by the ValidBoard
algorithm, prevents trivial attacks on privacy, where an adver-
sary can cast copied ciphertexts (and their label) and observe
the changes in the election result.

In Figure 4 we refine Labelled-MiniVoting to align with
the voting notations from previous sections, such that we
treat the public credential pc as the label and consider the
following ballot format (pc, c). The removal of id doesn’t have
a significant impact, as we use the operation Flabel to model
the link between identity and public credential:

pc← Flabel(id).

Typical instantiations for this operator depend on the assump-
tions over the voter’s identity and the degree of separation we
want to capture in the public credential. Here, we consider
the voter’s identity a pseudonym or a public encryption key
and as such we implement Flabel as the identity function
Flabel(x) = x; an approach also taken by Selene. Other
options may consider the real voter’s identity (e.g. email,
name) as input and create a pseudonym or a public credential

Setup(λ)

1 : (pd, sd)← kgen(λ)

2 : return (pd, sd)

Register(id)

1 : pc←$Flabel(id)

2 : return (pc,⊥)

Vote(id, pc, v, pd)

1 : c← enc(pk, pc, v)

2 : return (pc, c)

Tally(BB, sd)

1 : dbb = ∅
2 : for (pc, c) ∈ BB do

3 : dbb← dbb ∪ {(pc, dec(sk, pc, c))}
4 : r ← ρ(dbb)

5 : pbb← Publish(BB)

6 : Π← P((pd, pbb, r), (sk,BB))

7 : return (r,Π)

VerifyTally((pd, pbb, r),Π)

1 : return V((pd, pbb, r),Π)

ValidBoard(BB, pd)

1 : e1 = e2 = true

2 : for (pc, c) in BB

3 : e1 ← e1 ∧ ¬(∃pc′, pc′ ̸= pc ∧ (pc′, c) ∈ BB)

4 : e2 ← e2 ∧ ValidInd(pc, c, pd)

5 : return (e1 ∧ e2)

VerifyVote(id, pc, c,BB)

1 : return (pc, c) ∈ BB

Fig. 4. Algorithms defining the Labelled-MiniVoting scheme for the labelled PKE E = (kgen, enc, dec), and the proof system Σ = (P,V).

(especially if signatures are considered). In all cases, there has
to be an injectivity assumption over Flabel, which is trivially
satisfied by the identity function.

Labelled-MiniVoting is further parameterized by three other
classic operators:
ValidInd(pc, c, pd) : {0, 1}. Checks if the label-ciphertext pair

(pc, c) is well-formed.
ρ((pci, vi)i). This function returns the election result in a

predefined format, e.g. lexicographic order for mixnet
tally or a value for homomorphic tally. This is done by
first deciding which votes to keep using Policy, and then
computing the result over the votes kept by Policy using
Count.
• Policy is fixed to “last vote counts” for a particular

voter, in the modelling of both Labelled-MiniVoting
and Selene.

• Count is left abstract for Labelled-MiniVoting, and
made concrete for Selene.

Publish(BB) : {0, 1}∗. This is an abstraction of the public
bulletin board, and most of the times it is identical to
the ballot box.

Definition 7: Let E be a poly–IND–1–CCA secure labelled
PKE, and Σ = (P,V) be a zero-knowledge proof system.
Given the operators Flabel,ValidInd, ρ,Publish defined as
above, we define the Labelled-MiniVoting scheme

MiniVoting(E,Σ,Flabel,ValidInd, ρ,Publish) =

(Setup,Register,Vote,ValidBoard,

Tally,VerifyVote,VerifyTally,Publish)

as the single-pass voting scheme whose algorithms are pre-
sented in Figure 4, and which we informally present below:
Setup(λ) : (pd, sd). Given the security parameter λ it returns

the output (pd, sd) of the key generation algorithm for
the encryption scheme.

Register(id) : (pc, sc). It applies Flabel over id to build the
public credential pc, and does not consider a secret
credential, i.e. sc← ⊥.

Vote(id, pc, v, pd) : (pd, c). Encrypts a vote v using the pub-
lic credential pc as the label, and outputs the ciphertext

together with the voter’s public credential. The secret
credential sc is omitted from the input just for simplicity
as it is unused.

ValidBoard(BB, pd) : {0, 1}. Returns true if all ballots (pc, c)
are well-formed, according to ValidInd, and that each
ciphertext is always used with the same public credential
(weeding property is respected); and false otherwise.

Tally(BB, sd) : (r,Π). Computes the result r of the election
by applying the counting function ρ over the list of
(pc, v⊥), where v⊥ is the decryption of (pc, c) from the
ballot box. It also provides a proof of correct decryption
Π using the P algorithm of the proof system Σ.

VerifyVote(id, pc, c,BB) : {0, 1}. It checks if its last ballot
(pc, c) is in the ballot box BB. The voter may have a
state with all cast ballots, but the verification is done
with respect to the last vote that was cast.

Verifytally((pd, pbb, r),Π) : {0, 1}}. Run the V algorithm of
the proof-system to check if the tally proof is valid w.r.t
the given statement.

Publish(BB) : Calls the Publish operator over the ballot box
BB.

We prove in EASYCRYPT that MiniVoting satisfies
du–mb–BPRIV under standard cryptographic assumptions for
the encryption scheme E and proof system Σ. We also con-
sider the identity function for Flabel, and “last vote counts”
for Policy. The following theorem corresponds to lemma
du_mb_bpriv in the MiniVotingSecurity_mb.ec file.

Theorem 1: Let V = MiniVoting(E,Σ,Flabel,ValidInd,
ρ,Publish) be defined as in Definition 7. Then, for any
du–mb–BPRIV adversary A, there exists a simulator Sim and
three adversaries B, C and D, such that

Advdu–mb–bpriv
A,V,Sim (λ) ≤ 2 · Pr

[
ExpvfrD,V,Σ(λ) = 1

]
+ AdvzkB,P,Sim,R(λ) + Advpoly–ind1cca

C,E,n (λ).

A. du–mb–BPRIV for Belenios

We have used Labelled-MiniVoting to validate our privacy
definition, and to infer proof strategies and assumptions that
then can be applied to other e-voting systems, e.g. Belenios
[11] and Selene. Belenios can be viewed as an instance of

Labelled-MiniVoting with some concrete decisions for oper-
ators and algorithms. This translates into directly applying
the EASYCRYPT proof developed for MiniVoting to Belenios
without the need to re-do it - as highlighted in Belenios.ec.

We take the labelled encryption scheme E and realize it by
combining the ElGamal encryption scheme EB with a zero-
knowledge proof system ΣB. As the public credential pc is
included in the statement for the proof system ΣB we use
π[pc] to express this fact. Encrypting the vote v under some
public credential pc by E becomes (pc, c) = (pc, (cB, π[pc])),
and decrypting by E returns the decryption of cB by EB only
if the proof π[pc] verifies, and ⊥ otherwise.

This form of the ciphertext also has an impact on the
ValidInd algorithm that now uses π[pc] to decide if a ciphertext
is well-formed.

For the result of the election, we only need to instantiate the
Count operator, as we already consider the last vote policy.
We can model any type of ideal counting function that can be
performed over votes, and instantiate it to lexicographic order
lex-order to model an ideal verifiable shuffle.

In Belenios, the public bulletin board computed by Publish
shows only the last ballot cast by a voter (policy applied over
the public credential) together with a hash of that ballot. With
verification done against the hash compared to the entire ballot.
However, nothing prevents voters from checking their full
ballot against the ballot box (as we have modelled in Labelled-
MiniVoting). Moreover Cortier et al. [10] have modelled in
EASYCRYPT different options of Publish for Belenios and as
one would expect the two approaches are equivalent modulo
hash collisions.

Definition 8: Let E = (EB,ΣB) be a poly–IND–1–CCA
secure labelled PKE, and Σ be a zero-knowledge proof sys-
tem. Given the operators Flabel,ValidInd, ρ,Publish defined
as above, we define Belenios(EB,ΣB,Σ) as

MiniVoting(E,Σ,Flabel,ValidInd, ρ,Publish).

The privacy result for Belenios follows directly by simply
applying Theorem 1 with the concrete values highlighted here.

Theorem 2: Let V = Belenios(EB,ΣB,Σ) be defined as in
Definition 8. Then, for any du–mb–BPRIV adversary A, there
exists a simulator Sim and three adversaries B, C and D, such
that

Advdu–mb–bpriv
A,V,Sim (λ) ≤ 2 · Pr

[
ExpvfrD,V,Σ(λ) = 1

]
+ AdvzkB,P,Sim,R(λ) + Advpoly–ind1cca

C,E,n (λ).

Both Theorem 1 and 2 are proven with respect to the
recovery algorithm described in Section III-A.

B. mb–BPRIV for MiniVoting and Belenios

We also stated the original mb–BPRIV definition [12] in
EASYCRYPT and proved that Theorem 1 and 2 also hold with
respect to this privacy definition. The proof strategy was essen-
tially the same, but the proofs had to be re-worked due to the
differences between the definitions, especially when the ver-
ification happens. This constitutes the first machine-checked

proof of mb–BPRIV. The corresponding EASYCRYPT lemma
mb_bpriv is found in the MiniVotingSecurity_omb.ec

and Belenios_omb.ec files.

V. SELENE

Although Selene offers properties such as verification and
coercion mitigation, we focus—in this paper—on formalizing
its ballot privacy properties. Like Cortier et al. [9], [10], we
abstract away the verifiable shuffles (assuming they are non-
interactive) and the ElGamal + PoK construction (assuming
instead an abstract IND–1–CCA-secure labelled PKE).

More precisely, we replace the verifiable shuffle—which
is used in the tally phase to mix the encrypted votes and
trackers while erasing connections between the votes and the
voters—with a parametric Multiset distribution, which takes
as parameters a list of vote/tracker pairs (vi, tri)i, calculates
all possible permutations of the original list, and defines the
uniform distribution over the result. Sampling in Multiset(ℓ)
captures the semantics of a perfect shuffle on ℓ, with a proof
of correct shuffle computed separately.1 Formalizing proofs
for interactive protocols, such as verifiable shuffles, in EASY-
CRYPT remains a complex task, and is somewhat orthogonal to
our contributions here. In particular, in a setting—like ours—in
which the tallier is honest, the shuffle is indeed indistinguish-
able from our idealization. Prior work [14], [15] has proved
that the interactive variants of the verifiable shuffles suggested
for use with Selene are zero-knowledge proofs which leak no
information; this would suffice to prove equivalence with our
idealisation. However, this has not been machine checked for
the interactive variant due to issues the currently available tools
have with handling random oracles.

Before being cast, the votes in Selene are encrypted using
the ElGamal public key encryption system [13], and a non-
interactive proof of knowledge of the underlying plaintext is
appended to the ciphertext. In our EASYCRYPT formalization,
we abstract away details of the underlying cryptosystem, and
encrypt the votes using an abstract labelled PKE that we
assume is IND–1–CCA secure. The ElGamal with proof of
knowledge construction used in Selene has in fact been proven
to be IND–1–CCA secure [4], [7]. This proof remains out of
reach of machine-checking due to its use of the rewinding
lemma.

In addition, since we focus on privacy in this paper, we
also remove the signatures Selene2 includes on cast ballots
to prevent ballot stuffing. The signatures cannot compromise
privacy: The signing keys are independent of the encryption
of the ballot, the ciphertexts that are signed are public, and
the signatures are anyway stripped before shuffling, so they
cannot be correlated to any plaintext ballot.

These simplifications, taken together, yield the following
model for Selene.

1We note that Multiset itself is not probabilistic polynomial time. We treat
it as an ideal functionality for verifiable shuffles, whose complexity would
normally be probabilistic polynomial time.

2We also have an EasyCrypt proof for Selene with signatures. This is
available with the other proofs at https://github.com/mortensol/du-mb-bpriv.

Setup(1λ) for set I of voters

1 : trL, tpTr,Πc ← []

2 : pTr, pPk, pCo, pOp← empty
3 : (vpk, vsk)← kgenv(1

λ)

4 : (tpk, tsk)← kgent(1
λ)

5 : for i ≤ |I| do
6 : tri ←$Group

7 : tpTr← tpTr∥enct(tpk, tri)
8 : (pTr,Πt)← ReencryptionShuffle(tpTr)

9 : for i ≤ |I| do
10 : id← I[i]
11 : (upk, usk)← gen(1λ)

12 : pPk.[id]← upk

13 : for i ≤ |I| do
14 : id← I[i]
15 : t←$Field

16 : et1←$ enct(tpk, pPk[id]
t)

17 : et2←$ enct(tpk, g
t)

18 : pCo[id]← dect(tsk, et1 · pTr.[id])
19 : Πc ← Pco((pCo, pPk, pTr, tpk), tsk))

20 : pd← (vpk, tpk, tpTr, pTr, pPk, pCo,Πt,Πc)

21 : sd← (pOp, vsk, tsk)

22 : return (pd, sd)

Register(id, pd, sd)

1 : d← pOp.[id]

2 : upk ← pPk.[id]

3 : ct← pCo.[id]

4 : return ((id, upk, ct), d)

Vote(pd, id, pc, sc, v)

1 : ev ← encv(vpk, id, v)

2 : b← (pc, ev)

3 : return b

ValidBoard(BB, pd)

1 : for ((id, upk, ct), ev) in BB :

2 : e1 ← ¬(∃id′, id′ ̸= id

3 : ∧ ((id′, upk, ct), ev) ∈ BB)

4 : e2 ← ValidInd((id, upk, ev), vpk)

5 : e3 ← (PU.[id] = (id, upk, ct))

6 : return (e1 ∧ e2 ∧ e3)

VerifyTally((pk, pbb, r),Π)

1 : return V((pk, pbb, r),Π)

Tally(BB, pd, sd)

1 : rL = []

2 : for i in 1..|BB| do
3 : (vpk, tpk,PTr)← pd

4 : (trL, π, vsk, tsk)← sd

5 : ((id, upk, ct), ev))← BB[i]

6 : v ← decv(vsk, id, ev))

7 : tr← dect(tsk,PTr.[id])

8 : rL[i]← (v, tr)

9 : r ← Multiset(rL)

10 : pbb← Publish(BB)

11 : Π← P((pd, pbb, r), (sd,BB))

12 : return (r,Π)

VerifyVote(id, v, r, pc, sc)

1 : (id, upk, ct)← pc

2 : (usk, d)← sc

3 : tr← open(upk, ct, d)

4 : return (v, tr) ∈ r

Publish(BB)

1 : return BB

Fig. 5. Algorithms defining the Selene[Ev,Et,C,Σ,ValidInd] voting scheme, given an IND–1–CCA secure labelled PKE scheme Ev = (kgenv, encv, decv),
an IND–CPA secure homomorphic encryption scheme Et = (kgent, enct, dect), zero-knowledge proof systems Σta = (Pta,Vta), Σtsh = (Ptsh,Vtsh)
and Σco = (Pco,Vco) for the tally proof, the tracker shuffle proof and the proof that commitments are correctly formed, respectively, a commitment scheme
CP = (gen, commit, open), and the abstract operator ValidInd.

lemma du_mb_bpriv &m : BP.setidents{m} = BP.setH{m} `|` BP.setD{m} =>
(** The du-mb-BPRIV advantage of some adversary A upper bounded by the sum of: **)
`| Pr[DU_MB_BPRIV_L(Selene(Et,Ev,P,Ve,C,CP),A,HRO.ERO,G).main() @ &m: res]
- Pr[DU_MB_BPRIV_R(Selene(Et,Ev,P,Ve,C,CP),A,HRO.ERO,G,S,Recover').main() @ &m: res]|

(** - the advantages of BVFR(G) and BVFR(S) in breaking the Voting Friendly Relation; **)
<= Pr[VFRS(Et,Ev,BVFR(Selene(Et,Ev,P,Ve,C,CP),A,CP),R,HRO.ERO,G).main() @ &m: res]
+ Pr[VFRS(Et,Ev,BVFR(Selene(Et,Ev,P,Ve,C,CP),A,CP),R,HRO.ERO,S).main() @ &m: res]

(** - the ZK advantage of adversary BZK against the underlying NIZK; and **)
+ `| Pr[ZK_L(R(Et,Ev,HRO.ERO),P,BZK(Et,Ev,P,C,Ve,A,CP,HRO.ERO),G).main() @ &m: res]

- Pr[ZK_R(R(Et,Ev,HRO.ERO),S,BZK(Et,Ev,P,C,Ve,A,CP,HRO.ERO)).main() @ &m: res]|
(** - the IND1-CCA advantage of adversary BCCA against the ballot-encryption scheme **)
+ `| Pr[Ind1CCA(Ev,BCCA(Selene(Et,Ev,P,Ve,C,CP),Et,CP,A,S),HRO.ERO,Left).main() @ &m: res]

- Pr[Ind1CCA(Ev,BCCA(Selene(Et,Ev,P,Ve,C,CP),Et,CP,A,S),HRO.ERO,Right).main() @ &m: res]|

Fig. 6. EASYCRYPT lemma establishing that Selene satisfies du–mb–BPRIV. HRO.ERO and G are independent random oracles. S is the ZK simulator.

Definition 9: Let Ev be a poly–IND–1–CCA secure la-
belled PKE, let Et be an IND–CPA secure PKE, let ΣR =
(P,V) be a proof system for a relation R and let CP =
(gen, commit, open) be a commitment protocol. We define
Selene as the voting system built upon the algorithms given
in Figure 5, which we informally describe below.

Setup : Takes as input a security parameter λ and returns a
key pair (vpk, vsk) used to encrypt and decrypt votes, a
key pair (tpk, tsk) used to encrypt and decrypt trackers, a
list tpTr of encrypted trackers, finite maps pTr, pPk, pCo

and pOp from voter identities to encrypted trackers, pub-
lic commitment keys, tracker commitments and openings,
respectively, as well as a proof Πt of correct shuffle of
the trackers and a proof Πc that the tracker commitments
are correctly formed. The public data is

pd = (vpk, tpk, tpTr, pTr, pPk, pCo,Πt,Πc)

and the secret data is

sd = (pOp, vsk, tsk).

Register : Takes as input a voter identity and a pair (pd, sd)
of public and secret data, and returns the voter’s public
commitment key, the commitment to her tracker and an
opening to the commitment.

Publish : Outputs the public part of the ballot box.
Vote : Encrypts a vote v and outputs the ciphertext together

with the voter’s public credential.
VerifyTally : Run the V algorithm of the proof-system to

check if the tally proof is valid.
ValidBoard : For each element in the ballotbox BB, we

perform three checks: every ballot contains a unique voter
identity, every ballot is well-formed, and every public
credential corresponds to the correct identity.

Tally : Decrypts every encrypted vote in the ballot box BB
and the tracker for each voter. Returns the multiset of all
vote/tracker pairs (v, tr).

VerifyVote : To verify, a voter opens her tracker commitment
and checks if her vote v and tracker tr is in the list of
vote/tracker pairs returned by Tally.

The following theorem establishes that Selene satisfies
du–mb–BPRIV.

Theorem 3: Let V = Selene(Ev,Et,ΣR,CP,ValidInd),
where ValidInd(pc, vpk) = ⊤ for c ← encv(vpk, id, v) and
any public encryption key vpk, identity id, public credential
pc and vote v. For any du–mb–BPRIV adversary A, there
exists a simulator Sim and four adversaries B, C,DS and DG,
such that

Advdu–mb–bpriv
A,V,Sim (λ) ≤ Pr

[
ExpvfrDG,V,ΣR

(λ) = 1
]

+ Pr
[
ExpvfrDS ,V,ΣR

(λ) = 1
]

+ AdvzkB,P,Sim,R(λ) + Advpoly–ind1cca
C,Ev,n

(λ).

Theorem 3 corresponds to lemma du_mb_bpriv in
SeleneBpriv.ec. Figure 6 displays the EASYCRYPT for-
mulation of Theorem 3. The lemma itself is inside a section
which quantifies over all core components: Et and Ev denote
the encryption schemes used for the trackers and the votes,
respectively, P and Ve denote the NIZK’s prover and verifier,
C denotes the ValidInd algorithm, CP denotes the commitment
protocol. A is the adversary. The zero-knowledge simulator
S and the random oracles for tracker encryption (HRO.ERO)
and for the NIZK proof system (G) are defined concretely
in the code, but not fully displayed in this paper. The VFR,
zero knowledge and poly–IND–1–CCA security experiments
are denoted by VFRS, ZK_L, ZK_R and Ind1CCA, respectively,
while the respective reductions are denoted by BVFR, BZK and
BCCA. These are also given concrete definitions. Also note
that the Ind1CCA module is parameterized by a left-or-right
module, representing the case where β = 0 and the case where
β = 1, respectively. The du–mb–BPRIV security experiment
is parameterized by a recovery algorithm, and we use the
concrete recovery algorithm described in Section III-A.

We now sketch the proof of Theorem 3. The EASY-
CRYPT formalization of the full proof is found in the file
SeleneBpriv.ec. Unless explicitly stated, all the modules

and lemmas we refer to in the following are also found in this
file.

In our EASYCRYPT formalization, we split the security
experiment Expdu–mb–BPRIV,Recover,β

A,V,Sim into two different games,
one for β = 0 and one for β = 1. The difference be-
tween the two games is, as described earlier, what the tally
algorithm does. These games are modeled in the modules
DU_MB_BPRIV_L and DU_MB_BPRIV_R, respectively, which
are found in the file VotingSecurity_mb.ec.

Starting out from the left side security experiment, the first
step is to replace the tally proof produced by the prover in the
proof system, by a simulated proof produced by the simulator
Sim. This change is modeled in the game G1L. Provided
that the proof system is zero-knowledge, the adversary cannot
distinguish between the original game and the game where we
simulated the proof, except with negligible probability.

We then define a new game, G2L, where we stop decrypting
honestly created ciphertexts, and instead use the ciphertexts
stored in V (as described in Section III). Ciphertexts submitted
by the adversary are decrypted as usual. We also remove
one of the bulletin boards from the vote oracle, so that only
the left-side votes are stored. We prove that G1L and G2L

are equivalent. The equivalence follows from the correctness
property of the encryption scheme used to encrypt the votes,
and the fact that the adversary only gets to see BB0 in the left
side security experiment.

Starting out from the right side security experiment
(DU_MB_BPRIV_R), we first stop decrypting honest cipher-
texts, and prove that the resulting game (G1R) is equivalent
to DU_MB_BPRIV_R. The intuition is the same as for the
equivalence between G1L and G2L.

We then define a game G2R where we stop performing
recovery on the adversarially created ballot box, and simply
perform the tally on the ballot box the adversary outputs. We
prove that G1R and G2R are equivalent. Intuitively, this holds
because the honest votes no longer come from the adversary’s
board, but from V, and the ballots submitted by the adversary
are present both on the adversary’s board BB and on the
recovered board, by definition of our recovery algorithm.

In the final game, G3R, we remove one of the bulletin boards
in the vote oracle. This is similar to what we did in G2L, but
now only the right side votes are stored. We prove that G2R and
G3R are equivalent. This also shows that the final game on the
right side, G3R, is completely equivalent to DU_MB_BPRIV_R.

Finally, we show that the probability in distinguishing be-
tween the games G2L and G3R is equivalent to the probability
of winning the IND–1–CCA game.

VI. CONCLUDING REMARKS AND FUTURE WORK

In this work we presented a refined version of the
mb–BPRIV privacy definition which we call delay-use
malicious-ballotbox ballot privacy (du–mb–BPRIV). Our new
definition allows the modeling of schemes (such as Selene)
where verification occurs after tallying. The security claim is
also more explicit. We formalised our new definition in the
interactive theorem prover EasyCrypt and showed that labelled

MiniVoting, Belenios and Selene all satisfy the definition. We
also proved that MiniVoting and Belenios satisfy the original
mb–BPRIV privacy definition.

While we have encoded Selene correctly in what we firmly
believe is the most appropriate privacy definition in literature,
our work highlights certain defiances in privacy definitions
which future work should address. The defiances are fairly
deep and addressing them is far out of scope for this work.
We will, however, briefly mention two principal defiances of
mb–BPRIV and related definitions. First, the definition, while
handling a malicious bulletin board, assumes honest setup.
Secondly, du–mb–BPRIV and related definitions are highly
calibrated to schemes where the auxiliary data produced by
tally to be used in verification are zero-knowledge proofs. In
particular, schemes like Selene which output trackers to use
for verification are difficult to express in these definitions.

Further, the BPRIV style of definition implies certain re-
strictions. As an example, the adversary can only see the result
and verification from the left side board which constrains the
attacker model. In particular, this means that we cannot detect
privacy attacks relying on inducing candidate-specific errors
for an observed voter while giving the adversary access to
whether the corresponding voter verification fails or not, see
e.g. [16] for such a style of attack. Of course, such attacks can
be ruled out by considering recovery functions preventing any
changes to honestly cast votes as in [12], but it is not the case
in general. An important line of future research is thus to find
alternative definitions capturing both more general and more
transparent attacker models, e.g. by decreasing the generality
of the definition or to consider simulation based security.

ACKNOWLEDGMENT

We thank the anonymous reviewers at IEEE Computer Secu-
rity Foundations Symposium for their helpful comments. This
work was supported by the Luxembourg National Research
Fund (FNR) and the Research Council of Norway (NFR)
for the joint project SURCVS (FNR project ID 11747298,
NFR project ID 275516), and by the FNR project STV
(C18/IS/12685695/IS/STV/Ryan). This work received funding
from the France 2030 program managed by the French Na-
tional Research Agency under grant agreement No. ANR-22-
PECY-0006.

We thank the (rest of the) EASYCRYPT team for the
continued development of the tool and its libraries.

REFERENCES

[1] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz,
Benedikt Schmidt, and Pierre-Yves Strub. EasyCrypt: A Tutorial, pages
146–166. Springer International Publishing, Cham, 2014.

[2] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Dorothy E. Denning,
Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby,
editors, ACM CCS 93, pages 62–73. ACM Press, November 1993.

[3] Mihir Bellare and Amit Sahai. Non-malleable encryption: Equivalence
between two notions, and an indistinguishability-based characterization.
In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages
519–536. Springer, Heidelberg, August 1999.

[4] David Bernhard. Zero-knowledge proofs in theory and practice. PhD
thesis, University of Bristol, 2014.

[5] David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira, and
Bogdan Warinschi. SoK: A comprehensive analysis of game-based ballot
privacy definitions. In 2015 IEEE Symposium on Security and Privacy,
pages 499–516. IEEE Computer Society Press, May 2015.

[6] David Bernhard, Véronique Cortier, Olivier Pereira, Ben Smyth, and
Bogdan Warinschi. Adapting helios for provable ballot privacy. In
Vijay Atluri and Claudia Dı́az, editors, ESORICS 2011, volume 6879 of
LNCS, pages 335–354. Springer, Heidelberg, 2011.

[7] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to
prove yourself: Pitfalls of the Fiat-Shamir heuristic and applications to
Helios. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012,
volume 7658 of LNCS, pages 626–643. Springer, Heidelberg, December
2012.

[8] Alessandro Bruni, Eva Drewsen, and Carsten Schürmann. Towards
a mechanized proof of selene receipt-freeness and vote-privacy. In
International Joint Conference on Electronic Voting, pages 110–126.
Springer, 2017.

[9] Véronique Cortier, Constantin Catalin Dragan, François Dupressoir,
Benedikt Schmidt, Pierre-Yves Strub, and Bogdan Warinschi. Machine-
checked proofs of privacy for electronic voting protocols. In 2017 IEEE
Symposium on Security and Privacy, pages 993–1008. IEEE Computer
Society Press, May 2017.

[10] Véronique Cortier, Constantin Catalin Dragan, François Dupressoir,
and Bogdan Warinschi. Machine-checked proofs for electronic voting:
Privacy and verifiability for belenios. In Steve Chong and Stephanie
Delaune, editors, CSF 2018 Computer Security Foundations Symposium,
pages 298–312. IEEE Computer Society Press, 2018.

[11] Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Iz-
abachène. Election verifiability for helios under weaker trust as-
sumptions. In Miroslaw Kutylowski and Jaideep Vaidya, editors, ES-
ORICS 2014, Part II, volume 8713 of LNCS, pages 327–344. Springer,
Heidelberg, September 2014.

[12] Véronique Cortier, Joseph Lallemand, and Bogdan Warinschi. Fifty
shades of ballot privacy: Privacy against a malicious board. In Limin
Jia and Ralf Küsters, editors, CSF 2020 Computer Security Foundations
Symposium, pages 17–32. IEEE Computer Society Press, 2020.

[13] Taher ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In G. R. Blakley and David Chaum, editors,
CRYPTO’84, volume 196 of LNCS, pages 10–18. Springer, Heidelberg,
August 1984.

[14] Thomas Haines, Rajeev Goré, and Bhavesh Sharma. Did you mix me?
formally verifying verifiable mix nets in electronic voting. In IEEE
Symposium on Security and Privacy, pages 1748–1765. IEEE, 2021.

[15] Thomas Haines, Rajeev Goré, and Mukesh Tiwari. Verified verifiers for
verifying elections. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 685–702.
ACM Press, November 2019.

[16] Steve Kremer and Peter B Rønne. To du or not to du: A security analysis
of du-vote. In 2016 IEEE European Symposium on Security and Privacy
(EuroS&P), pages 473–486. IEEE, 2016.

[17] Ralf Küsters, Johannes Müller, Enrico Scapin, and Tomasz Truderung.
select: A lightweight verifiable remote voting system. In 2016 IEEE
29th Computer Security Foundations Symposium (CSF), pages 341–354.
IEEE, 2016.

[18] Peter B Rønne, Peter YA Ryan, and Marie-Laure Zollinger. Electryo,
in-person voting with transparent voter verifiability and eligibility veri-
fiability. arXiv preprint arXiv:2105.14783, 2021.

[19] Peter Y. A. Ryan, Peter B. Rønne, and Vincenzo Iovino. Selene: Voting
with transparent verifiability and coercion-mitigation. In Jeremy Clark,
Sarah Meiklejohn, Peter Y. A. Ryan, Dan S. Wallach, Michael Brenner,
and Kurt Rohloff, editors, FC 2016 Workshops, volume 9604 of LNCS,
pages 176–192. Springer, Heidelberg, February 2016.

[20] Muntadher Sallal, Steve A. Schneider, Matthew Casey, Con-
stantin Catalin Dragan, François Dupressoir, Luke Riley, Helen Tre-
harne, Joe Wadsworth, and Phil Wright. VMV: augmenting an internet
voting system with selene verifiability. CoRR, abs/1912.00288, 2019.

[21] Victor Shoup. A proposal for an ISO standard for public key encryption.
Cryptology ePrint Archive, Report 2001/112, 2001. https://eprint.iacr.
org/2001/112.

[22] Victor Shoup. Sequences of games: a tool for taming complexity in
security proofs. Cryptology ePrint Archive, Report 2004/332, 2004.
https://eprint.iacr.org/2004/332.

[23] Marie-Laure Zollinger, Peter B Rønne, and Peter YA Ryan. Short paper:
Mechanized proofs of verifiability and privacy in a paper-based e-voting

scheme. In International Conference on Financial Cryptography and
Data Security, pages 310–318. Springer, 2020.

