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Abstract 
Objective Distributed microstimulations at the cortical surface can efficiently deliver feedback 
to a subject during the manipulation of a prosthesis through a brain-machine interface. Such 
feedback can convey vast amounts of information to the prosthesis user and may be key to 
obtain an accurate control and embodiment of the prosthesis. However, so far little is known of 
the physiological constraints on the decoding of such patterns. Here, we aimed to test a rotary 
optogenetic feedback that was designed to encode efficiently the 360° movements of the robotic 
actuators used in prosthetics. We sought to assess its use by mice that controlled a prosthesis 
joint through a closed-loop brain-machine interface. 
 
Approach We tested the ability of mice to optimize the trajectory of a virtual prosthesis joint in 
order to solve a rewarded reaching task. They could control the speed of the joint by modulating 
the activity of individual neurons in the primary motor cortex. During the task, the patterned 
optogenetic stimulation projected on the primary somatosensory cortex continuously delivered 
information to the mouse about the position of the joint. 
 
Main results We showed that mice are able to exploit the continuous, rotating cortical feedback 
in the active behaving context of the task. Mice achieved better control than in the absence of 
feedback by detecting reward opportunities more often, and also by moving the joint faster 
towards the rewarded angular zone, and by maintaining it longer in the rewarded zone. Control 
based on joint acceleration instead of speed did not lead to learning.  
 
Significance These findings suggest that in the context of a closed-loop brain-machine interface, 
distributed cortical feedback with optimized shapes and topology can be exploited to control 
movement. Our study has direct applications on the closed-loop control of rotary joints that are 
frequently encountered in robotic prostheses. 
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1. Introduction 
Invasive motor brain-machine interfaces (BMIs) focus on establishing a stable translation from 
brain neuronal activity into motor commands (Carmena et al., 2003; Chapin et al., 1999). Most 
implementations rely on visual feedback to guide the prosthesis during the task. In particular, 
they lack somatosensory feedback like touch and proprioception. This feedback is however 
critical for movement accuracy, as shown by studies in humans in which local peripheral 
anesthesia blocking afferent tactile sensation reduced dexterity and impaired fine motor control 
of the hand (Johansson and Westling, 1984; Monzée et al., 2003). 
 
Implementing somatosensory-like feedback from a prosthesis back to the subject requires first 
to fit the prosthesis with touch and proprioceptive-like sensors, and then to relay this 
information to the central nervous system. In invasive closed-loop brain-machine interfaces, 
feedback stimulation generally target the primary somatosensory cortex, where neuronal 
activation is integrated as touch inputs in the awake behaving rodent (O’Connor et al., 2013; 
Sachidhanandam et al., 2013) as well as in humans (Flesher et al., 2021, 2016). 
 
Strategies to provide behaviorally-relevant input using such cortical stimulation often rely on 
the intensity or frequency modulation of a stimulation targeting one spatially limited region of 
interest, which limits the amount of information that can be delivered (O’Doherty et al., 2011; 
Prsa et al., 2017). However, recent technical progress has made distributed neuronal activations 
possible, by using sophisticated multichannel electrical microstimulations (Dadarlat et al., 
2015; Fernández et al., 2021; Flesher et al., 2021; Weiss et al., 2019) or by harnessing 
spatiotemporally patterned optogenetic stimulation of the cortex (Abbasi et al., 2018; Ceballo 
et al., 2019; Goueytes et al., 2019; Lassagne et al., 2022). Such distributed neuronal activation 
at the surface of the cortex can convey multiple information streams in parallel (Hartmann et 
al., 2016), such as those arising from the multiple touch-like sensors that are available in modern 
bidirectional prostheses (D’Anna et al., 2019). Further, feedback spread across a large cortical 
area can be more robust and provides an opportunity to mimic physiological, distributed 
peripheral inputs by generating spatiotemporal patterns of activation that embrace the well-
known topography of primary sensory areas, including the primary somatosensory cortex 
(Abbasi et al., 2018; Flesher et al., 2021, 2016), the primary visual cortex (Chen et al., 2020; 
Dobelle et al., 1976) and the auditory cortex (Ceballo et al., 2019). 
 
This emerging capability to integrate distributed cortical feedback in a brain-machine interface 
raises multiple questions. One is that most robotic prostheses are fitted with rotary actuators 
that each drive one degree of freedom. The instantaneous angular position of these actuators is 
a critical information that should be channeled back to the subject. But such circular information 
cannot be conveyed unambiguously by modulating the activity in a single spot of the cortex. In 
earlier work (Lassagne et al., 2022) we explored the use of a spatially distributed, continuous 
spatio-temporal pattern of photoactivation to convey this information in the form of a rotating 
bar projected on the surface of the somatosensory cortex of awake behaving mice. However, 
this previous study was a purely passive sensory task, while during physiological behavior, 
sensory integration cannot be dissociated from active motor control (Poulet and Petersen, 2008). 
 
Here, based on a recently developed closed-loop brain-machine interface (Goueytes et al., 
2019) we asked if this feedback could be efficiently exploited by the mice beyond sensory 
processing, by helping to control the angular position of a simulated prosthesis. We found that 
the mice were able not only to detect the location of the Rewarded zone, but also to alter the 
dynamics of the rotary joint. Notably, they learned to increase the speed of the movement 
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towards the Rewarded zone while preserving the amount of time spent in it. This was not 
observed in trials where the feedback photostimulation was not activated.  
 
 
 
 
 
 
 
 
 

 
 
Figure 1 Closed-loop control of a virtual prosthesis with patterned optogenetic somatosensory feedback 
(a) Schematic representation of the closed-loop setup, including a snapshot of the prosthesis simulation 
in V-REP. The most proximal joint of the prosthesis is controlled by neuronal activity recorded in M1. 
The angular position of the joint is fed back to the mouse through spatio-temporally patterned 
photoactivation of S1.  
(b) The motor space explored by the prosthesis during the task was divided in distinct functional zones. 
Licks occurring when the prosthesis was in the Rewarded zone triggered water rewards. Licks occurring 
when the prosthesis was in the No lick zone aborted the trial. The Start position of the prosthesis was 
always located at 0°.   
(c) Shape of the photostimulation pattern projected on the cortex. 
(d) Location of the targeted cortical surface with respect to the barrels of the whisker primary 
somatosensory cortex. The photostimulation bar rotates in synchrony with the proximal joint in 
prosthesis space in (b). The Start position of the photostimulation corresponded to the most posterior 
position of the stimuli in brain coordinates.   
(e) Example trajectory of the rotating prosthesis, and associated licks (black dots) and rewards (green 
dots), during the 20 s of one uninterrupted trial. 
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2. Methods 
We developed a neuroprosthetic bidirectional brain-machine interface in mice by combining 
electrophysiological recordings in M1 with patterned optogenetic stimulations in S1, using 
mice expressing channelrhodopsin in excitatory cortical neurons (see Methods, (Goueytes et 
al., 2019)). Mice had to control a single rotary joint of an off-the-shelf prosthesis (Jaco 2, 
Kinova Robotics) that was simulated using the V-REP software (Rohmer et al., 2013). The 
mice were trained to perform an exploratory sensorimotor task in this 360° angular space 
without boundaries, using as the sole feedback a dynamic patterned photostimulation projected 
on the surface of the barrel cortex (figure 1(a)). 
 

2.1 Surgical preparation  

We report data from 13 Emx1-Cre;Ai27 mice (both male and female) expressing 
channelrhodopsin in excitatory neurons across the cortex (Madisen et al., 2012). All animals 
were implanted via two successive surgeries under Isoflurane anesthesia (1-4% Isoflurane 
mixed in 100% air), combined with local Lidocaïne analgesia (< 7mg/kg) and anti-
inflammatory drug Meloxicam (1-8 mg/kg). During the first surgery, the cranial skin was 
resected, the skull was exposed, and after careful removal of residual soft tissue and complete 
air drying, a 5 mm diameter craniotomy was drilled over the “barrel” whisker area of primary 
somatosensory cortex (S1, - 1.5 mm P, -3.3 mm L relative to Bregma). At the same time, we 
labelled the position of the whisker area of the primary motor cortex (M1, +1.5mm P,-0.6mm 
L relative to Bregma). 

A 5 mm diameter glass window was then positioned in direct contact with the dura mater, and 
sealed with cyanoacrylate glue (Loctite “Super Glue Power Gel”) to the skull, thereby resulting 
in a chronic, stable optical access to the barrel cortex. The remaining exposed skull was coated 
with a layer of liquid cyanoacrylate glue. A head-fixation bar was also glued on the skull, 
contralateral to the optical window side. Low reflection, black dental cement (Ortho Jet, Lang 
dental, USA) was applied on the skull to protect it and anchor the bar and the window. After a 
week of recovery, we mapped the barrel cortex through the optical window using intrinsic 
imaging (Lassagne et al., 2022). In particular, we identified the location of the barrel 
corresponding to the C2 whisker. In a second surgery, using a similar preparation as the first 
one, we went back to the previously identified location of whisker M1; we drilled and opened 
the skull, removed the dura mater locally, and implanted in a chronic fashion (Okun et al., 2016) 
an extracellular recording electrode (32 channel silicon probe, A1x32Poly35mm25s 177A32, 
Neuronexus, USA). We descended the tip 800 µm below the surface of the cortex, thereby 
targeting neurons from Layer 5 of M1. 

 

2.2 Neuronal electrophysiological recordings 

After electrode implantation, we monitored electrophysiological signals daily to control the 
stability of recording. After about one week, we started to acquire neuronal recordings. We 
manually isolated large amplitude units based on waveform shape and cluster separation 
(Blackrock microsystems, USA). All neuronal signals were sampled at 30 kHz and the records 
were stored. A detailed description of the quality of the signals and of their stability across 
sessions is available in (Abbasi et al., 2019), where the very same methods were used. Given 
the duration of the experiments described here, we estimated that a single neuron picked 
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arbitrarily at the start of the training may not be recorded stably across the whole training period. 
This was the motivation behind the choice of training a set of 6-8 master neurons during the 
experiment, so that the recording of a subset of these neurons would always be stable while 
training continued. 

 

2.3 Prosthetic simulation 

A commercial Jaco2 (Kinova robotics) prosthesis was simulated using the robotic simulation 
software V-REP (Rohmer et al., 2013). This simulation was based on a CAD model provided 
by the manufacturer, and cross-validated during the loan of a physical Jaco2 unit.  

To connect the virtual robotic arm to our brain-machine interface (figure 1(a)), we developed a 
custom V-REP plugin. Thanks to this software bridge, the speed and direction commands for 
the proximal joint of the virtual prosthesis was updated approximately every 12 ms, based on 
the neuronal activity readout. In return, the current angular position of the joint was fed back to 
the brain-machine interface and was used to update the angular position of the optogenetic S1 
stimulation (Goueytes et al., 2019). 

We measured an end-to-end latency of the combined BMI software and robotic arm system of 
36 ms (standard deviation 4 ms). 

 

2.4 Control algorithm 

At the beginning of the first training session, among the neurons that were manually spike 
sorted, two arbitrary groups of 3 to 4 Master neurons were selected using an automatic 
algorithm that minimized the difference in population firing rate between the two groups.  

For 7 mice, speed control of the joint was implemented by linearly translating the population 
firing rate of each group into a speed command. To compute the speed command in one group, 
the activity of all neurons in that group was summed together and sampled every 10 ms, 
followed by convolution with a 100 ms box kernel. The speed command resulting from the first 
(resp. second) group was assigned to the clockwise (resp. counterclockwise) direction. The 
difference between the two speeds was directly relayed as a speed command to the proximal 
joint of the V-REP model of the prosthesis, leading it to rotate in its 360° circular space (figure 
1(b)), without any limit to the extent of the circular rotations. Note that in speed control mode, 
the Kinova arm acceleration was set to a maximum of approximately 150°/s2. 

To calibrate the linear relationship between the smoothed group firing rate and the 
corresponding speed command, we computed the average activity of the two groups in a 5 
minutes “baseline” waiting period at the beginning of each training session, and the firing rate 
of each group was divided by this baseline value. This normalization ensured that the velocity 
distribution was centered around 0°/s for each session, despite day-to-day variability in 
individual firing rates. Finally, we scaled the resulting speed by a constant selected during the 
first session, defined so that the average absolute baseline joint speed would be ~30°/s. The 
resulting distributions of angular speeds in the first and last sessions are shown in figure 5(c).  
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In the last part of our study, we switched from speed to acceleration control on a separate group 
of 6 mice. We applied the exact same computation of neuronal activity, but the final conversion 
was into an acceleration command rather than a speed command. We adjusted the linear factor 
in the conversion so that the observed distributions of position and speed would be as close as 
possible to those observed in the speed control condition (figure 5(b,c)). 

 

2.5 Optogenetic stimulation patterns 

We designed optogenetic feedback patterns that took the form of a 700 μm long and 150 μm 
wide bar centered on the C2 barrel (figure 1(c,d)), based on the results of the intrinsic imaging 
session). The photostimulation was generated with a Digital Light Processing module (DLP, 
Vialux V-7001, Germany) containing a 1024 x 768 pixels Texas Instruments micro-mirror chip 
coupled with a high-power 462 nm blue LED. During training, the rotation of the bar over the 
somatosensory cortex followed at short latency the position of the arm. The C2 barrel was 
excluded from the stimulation in order to avoid its overstimulation. We have previously 
provided a full description of the illumination optics and validation experiments (Abbasi et al., 
2018). 

 

2.6 Task and behavioral training 

Once the mice were implanted with the electrodes and the BMI appeared functional, they were 
water regulated in order to enable operant conditioning based on water reward (figure 1(a)). 
Their weight was monitored and maintained at 80% of their baseline (measured prior to the 
start of the water deprivation) by supplementing water if needed. Simultaneous to the start of 
the water regulation, the mice were habituated to head-fixation and trained to obtain rewards 
by licking a reward port placed in front of them (1-2 sessions). After habituation, training was 
performed on a daily basis without interruption for the whole duration of the training.  

Each training session corresponded to approximately 10 min of online spike sorting, 5 min of 
baseline recording, 40 min of behavioral training and 5 min of post-training recording, for a 
total of one hour per day. The sessions were divided into trials lasting at most 20 s. At the 
beginning of each trial the rotary joint position was initiated at 0°. The mice could freely 
displace the joint across a circular space in both directions by modulating the activity of the 
neurons in the two Master groups (figure 1(b)). The mice were rewarded only if they licked 
while the joint was located in a 30° zone centered on the 180° position. 

In order to discourage strategies based on continuous licking independently from the joint 
position, we aborted any trial where licks occurred while the arm was in a 180° zone around 
the starting position (the “No lick zone”). This was followed by a 2 s timeout. The intertrial 
interval lasted for a minimum of 5 s and a maximum of 7 s in case of a timeout following a lick 
in the No lick zone. To maintain interest in the task over the full session, we averted long series 
of rewards by interrupting trials after more than 4 s continuously in the Rewarded zone. The 
optogenetic feedback was turned on at the onset of each trial, and switched off at its offset. An 
example trial is shown in figure 1(e). 
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Figure 2 Feedback enables increased task performance after training.  
(a) Temporal sequence of spatial zones explored by the prosthesis during the first 20 trials of the first 
session (left) and of the last session (right) for which the joint reached at least once the Neutral zone. 
Pink: No lick zone, in which licks interrupt the trial. Green: Rewarded zone. White: Neutral zone. Gray: 
the trial has already stopped. Black dots: licks. Green dots: rewarded licks. Note that licks take place in 
bursts, defined as lick sequences during which inter-lick interval is at most 1 s. 
(b) Reward frequency averaged across each session, plotted for the first three and the last three training 
sessions of each mouse. Blue: Optogenetic feedback (7 mice, 21 sessions). Black: Control, no feedback 
(subset of 4 mice, 12 sessions).  
(c) Same as b, for the proportion of rewarded trials, calculated as the percentage of trials where at least 
one lick was rewarded. Trials where the joint never went past the “No lick” zone were excluded.  
All statistical comparisons are obtained from Mann-Whitney tests. *: p< 0.05 **: p< 0.01. ***: p<0.001.  
 
 
 
In order to specifically test the contribution of the feedback to the mouse behavior, in 4 animals 
we included 20% of trials interleaved randomly where no optogenetic feedback was provided. 

Training was interrupted when the number of neurons recorded in M1 became too low for the 
task requirement (less than 6), or when optical access to S1 through the glass window was 
degraded (opaque, blurry window). 

 

3. Results 

We trained 7 mice to obtain rewards by manipulating the speed of a virtual rotating joint through 
the control of the neuronal activity of motor cortex neurons. Mice received feedback about the 
angular position of the joint by optogenetic stimulation in the somatosensory cortex (see 
Methods, figure 1). As a control, in 4 of the 7 mice no optogenetic feedback was available 
during 20% of trials. Mice were trained daily for at least 17 consecutive sessions (average 17.8 
sessions). Training was interrupted when recording quality degraded or technical difficulties 
arose with the recordings. The last training session was systematically excluded from further 
analysis.     

3.1 Mice learn to improve their performance in the feedback condition 
Across training, the mice learned to increase the number of rewards they collected in the 
feedback condition. This can be observed on the example of figure 2(a) showing the motor 
exploration and licking behavior during the first 20 trials of the first and last session for one 
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mouse. At the population level, the reward frequency was significantly larger in the last three 
training sessions compared to the first three sessions, when feedback was available (figure 2(b), 
left, Mann-Whitney p < 0.001). The mice performance in trials with feedback was also 
significantly higher than in trials when no feedback was provided (last three sessions, Mann-
Whitney p < 0.01, figure 2(b)). 
The role of optogenetic feedback in enabling learning was also clear when computing the 
proportion of trials that were rewarded. Trials where optogenetic feedback was available were 
increasingly rewarded with training (Mann-Whitney p < 0.001, last three vs. first three sessions, 
only trials crossing the No lick border were included), and were significantly more rewarded 
than no-feedback trials during the last sessions (Mann-Whitney p < 0.01, figure 2(c)).  
 
3.2 Mice learn to detect and anticipate entry in the Rewarded zone 
To better characterize the mice ability to track the joint position and lick appropriately, we first 
measured the proportion of rewarded trials among those where the joint entered the Rewarded 
zone. We found that the proportion increased significantly with training (Mann-Whitney p < 
0.01), but only if optogenetic feedback was available to the mice (figure 3(a)). In addition, the 
mice managed to obtain rewards significantly faster upon entry in the Rewarded zone (figure 
3(b)) and collected rewards at a significantly higher frequency once inside the Rewarded zone 
(figure 3(c)), again only in the presence of feedback. Overall, these results suggest that the mice 
did manage to exploit the optogenetic feedback to track the joint position and obtain rewards. 
To better understand how the mice took advantage of the spatial organization of the optogenetic 
feedback, we focused on the licking patterns that occurred around the entry in the Rewarded 
zone, and analyzed the corresponding spatial position of the joint. We noticed that in the 
feedback condition, the onset of licking bursts took place for increasingly early angles after the 
transition between the No lick and the Neutral zones (example first and last sessions for one 
mouse in figure 3(d)). This shift was visible across the population on the histogram of the mean 
angular position of the first lick after trial onset. It took place only when the optogenetic 
feedback was available (figure 3(e,f)). This anticipation of licking towards the border of the No 
lick zone did not result in an increase in premature licks in the No lick zone. Instead, there was 
a significant reduction in aborted trials during learning (on average from 76% down to 64% of 
all initiated trials, Mann-Whitney p < 0.05). 
 
We hypothesized that this anticipation strategy may be driven by the mice tendency to perform 
long bouts of repeated licks (“bursts”, where the interval between licks was of less than 300 
ms) rather than individual licks. Indeed, generating a long lick burst before entering the 
Rewarded zone may be an efficient way to ensure that multiple licks land inside the Rewarded 
zone. Consistent with this hypothesis, we found that the mice generated increasingly long bursts 
of licks when in a trial they exited for the first time the no-lick zone (going on average up from 
6.7 to 13.4 licks per burst, first three vs. last three sessions, Mann-Whitney p < 0.001). These 
first bursts in the trials were increasingly long enough to include licks that occurred while the 
robotic joint was located in the Rewarded zone, and therefore the proportion of trials where the 
first burst included rewarded licks increased on average from 6 to 15% during training (Mann-
Whitney p < 0.01). 
 
Overall, the mice learned that they could start licking as soon as the prosthesis joint entered the 
Neutral zone, and they took full advantage of this to initiate long bursts of licking that enabled 
them to collect multiple rewards. 
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Figure 3 Feedback enables accurate spatial anticipation and detection of the Rewarded zone. 
(a) Percentage of rewarded trials among those where the joint reached the Rewarded zone. Blue: 
Optogenetic feedback (7 mice, 21 sessions). Black: Control, no feedback (subset of 4 mice, 12 sessions). 
(b) Mean delay from entry in the Rewarded zone to the first rewarded lick. 
(c) Mean licking frequency when the joint was inside the Rewarded zone. 
(d) Distribution of the angular position of the first lick of each trial in one mouse, during the first and 
the last training session, with the optogenetic feedback activated. In these graphs, angular positions 
larger than 180° were mirrored to represent all data within a 0-180° rather than 0-360° range, given the 
left-right symmetry of our circular space. Color code as in Figure 1. Trials that were interrupted by a 
first lick in the No lick zone are excluded. 
(e) Population distribution of the angular position of the first lick (see case study in d). Light background: 
standard error of the mean (SEM) computed over all sessions of each group. 
(f) Average angular position of the first lick for each session, computed from the same dataset as in (e). 
 
 
3.2 Mice learn to accelerate movements of the prosthesis to the Rewarded zone, and 
stabilize it using feedback. 
So far, our analysis showed that during this task, the continuous, rotative bar-like optogenetic 
feedback provided sufficient information for the mice to increase their reward rate with training, 
by generating timely licking bursts. These findings show that guidance of licking based on the 
decoding of a mesoscopic cortical feedback can be successful during an active, motor brain-
machine interface task, as during a purely passive detection task (Lassagne et al., 2022). Beyond 
the contribution of feedback processing to performance, we next asked if the mice were able to 
actively modulate the rotation of the joint towards the Rewarded zone. To quantify motor 
control, we first focused on the beginning of the trial, before the first entry in the Rewarded 
zone. We found that the mice learned to spend less time in the Neutral zone as they moved the 
joint towards the Rewarded zone (case studies in figure 4(a)). This reduction was significant 
only when feedback was available (figure 4(b)). 
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Figure 4 Mice move the rotary joint faster to the Rewarded zone with training, and can stabilize better 
in the rewarded zone with feedback. 
(a) Two example trials from the same mouse, in the first versus the last training session. 
(b) Duration spent in the Neutral zone before entering for the first time in the Rewarded zone, in the first 
three versus the last three training sessions. Each point is a different mouse/session, same dataset and 
conventions as in Figures 2 and 3. 
(c) Average instantaneous angular speed of the rotary joint between trial onset and the first entry in the 
Rewarded zone. 
(d) Percentage of time spent in the Rewarded zone over the first five seconds of the trials (bins: 0.5 s). 
Left: Feedback sessions. Right: No-feedback sessions. Dashed lines: trials from the first 3 sessions. 
Continuous lines: trials from the last 3 sessions.  
(e) Percentage of time spent in the Rewarded zone in the feedback versus the no-feedback condition 
after training, over the first 10 s of the trials. Blue: feedback. Black: no feedback. **: Mann-Whitney p 
< 0.01. 
(f) Percentage of trials where, after entering the Neutral zone and then the Rewarded zone, the robot 
joint overshot and reached the No lick zone on the other side of the circular space. 
 
 
 
 
This faster movement towards the Rewarded zone stemmed from an increased average 
instantaneous angular speed of the joint before entry in the Rewarded zone (computed over 
50 ms bins, figure 4(c)). These changes in joint movements after learning resulted in longer 
time spent in the Rewarded zone in the first seconds of the trials, regardless of the availability 
of feedback (figure 4(d)). However, the presence of feedback did impact the rotary joint motor 
control later in the trials. When we looked at the time course up to 10 seconds in the trial, we 
noticed that the percentage of time in the Rewarded zone increased and then after 5 s, it 
stabilized above 10% in the feedback condition, whereas it dropped back below 5% in the no-
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feedback condition (figure 4(e)). Note however that this difference was only significant in one 
500 ms interval, 8 s after onset (Mann-Whitney p < 0.01). 
 
We hypothesized that in the feedback trials, the mice were able to exploit the photostimulation 
to stabilize the joint in or close to the Rewarded zone, and thus increase the percentage of time 
spent there. By contrast, in the absence of feedback the mice could not adjust the trajectory of 
the joint as well, possibly not decelerating early enough because of the lack of feedback. To 
test this hypothesis, we measured the proportion of trials where, after entering the Neutral zone 
from one side of the circular space, the rotary joint would go on, overshoot the Rewarded and 
Neutral zones, and exit the Neutral zone on the other side. We found that both with and without 
feedback, the proportion of overshoot trials increased significantly after training. This was 
probably due to the faster joint movements, which led to many trajectories leaving the 
Rewarded zone fast. However, we found that this proportion was significantly smaller when 
the feedback photostimulation was available (figure 4(f)), so that the mouse managed more 
often to stabilize the joint in the Rewarded zone or in the Neutral zone. 
 
 

Figure 5 Mice fail to control of the prosthesis movements using an acceleration-based joint controller. 
(a) Example trajectory of the prosthesis in the angular space, in a mouse trained with a controller that 
translated M1 firing rates into acceleration, instead of the speed of the rotary joint. 
(b) Distributions of the angular position of the rotary prosthesis joint in mice trained with the 
acceleration-based joint controller (purple, 6 mice) versus the speed-based controller (blue, 7 mice). 
Dashed lines: first 3 sessions. Continuous lines: last 3 sessions. The session start position is always 0°. 
Distributions are averaged across sessions/mice. Light background: standard error of the mean. 
(c) Distributions of the angular speed of the rotary joint. 
(d) Percentage of trials where the joint entered the Rewarded zone for which the mouse obtained a 
reward, computed across each session/mouse, for the first three versus last three training sessions.  
(e) Average angular position of the first lick of rewarded bursts.  
(f) Average instantaneous angular speed of the rotary joint between trial onset and the first entry in the 
Rewarded zone. 
(g) Percentage of time spent in the Rewarded zone over the first ten seconds of the acceleration trials 
(bins: 0.5 s). Dashed lines: trials from the first 3 sessions. Continuous lines: trials from the last 3 sessions.  
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Overall, these observations suggest that mice learned to control the rotary joint movement. 
Better control was achieved with optogenetic feedback of the joint angular position, by allowing 
trajectory adjustments during the trial. 
 
    
3.3 Motor control of the rotary joint depends on the controlled variable.  
The fact that the mice learned to move the rotary joint faster, and moreover that they could 
adjust dynamically their motor control of the joint while the trials with feedback were ongoing, 
indicated that a motor control algorithm based on an angular speed command was successful. 
This prompted us to ask whether other motor control algorithms could be used. We 
hypothesized that controlling the angular acceleration of a rotary joint may be more 
straightforward, because it is directly related to muscle torque and thus possibly to neural 
activity. To test this, we trained 6 additional mice in the same closed-loop setting, but with an 
acceleration neural controller (example trajectory in figure 5(a)). Like in the speed condition, 
control of the rotary joint was achieved by the modulation of the firing rate of two antagonist 
groups of 3 to 4 neurons each (see Methods).  
 
The average distributions of the position and speed of the rotary joint in the two control 
algorithm conditions were in the same ranges (figure 5(b,c)). Importantly, during the first 
training sessions, reward opportunities were as frequent in the two conditions. Mice spent 5.7% 
of the total time in the Rewarded zone in the speed control, versus 5.0% of the time in the 
acceleration control condition (not significantly different, Mann-Whitney p > 0.05). In addition, 
on average the joint moved with comparable speed through the circular space (47°/s vs 34°/s, 
not significantly different, Mann-Whitney p > 0.05). These results suggest that the 
photostimulation patterns conveying information about the joint angular position activated the 
cortex in similar ways. 
 
The 6 mice that were trained with the acceleration controller did not manage to receive more 
rewards after training compared to the first session, when averaging over the whole sessions 
(data not shown). However, the mice did learn to lick for reward more often when the prosthesis 
trajectory reached the Rewarded zone, compared to the first session (figure 5(d)). Also, like in 
the speed-controller condition, the mice anticipated the entry of the prosthesis into the 
Rewarded zone, and started licking before it happened (figure 5(e)). These results suggest that 
these mice learned to exploit the feedback information to lick at appropriate times. However, 
we failed to find any sign of active motor control or of motor learning. In particular, none of 
the changes in joint dynamics that we observed in the speed control condition were present in 
the acceleration control condition. For example, the average speed of the controller (figure 5(f)), 
the delay to enter the Rewarded zone, and the time spent in the Rewarded zone (figure 5(g)) 
were not modified through learning with the acceleration controller. We conclude from these 
data that the mice were unable to control the prosthesis movements through the acceleration-
based controller, while they could still benefit from the feedback about its angular position. 
 
 
4. Discussion 
Using a closed-loop brain-machine interface controlling a prosthesis simulation in the mouse 
model, we have shown that a mesoscopic scale feedback with a circular topography and rotating 
dynamics can be exploited to optimize the motor control of a robotic prosthesis joint. 
Specifically, the mice learned to improve the rotation of the joint and the detection of the target 
to be reached in order to obtain more rewards. To our knowledge, this is the first demonstration 
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of a motor BMI that includes a distributed, dynamical cortical feedback that reflects the 
mechanical constraints of a robotic arm. 
 
Previous work has focused on designing BMI feedback that closely matches the spatiotemporal 
cortical dynamics triggered by peripheral stimulations (Abbasi et al., 2018; Flesher et al., 2021, 
2016; O’Connor et al., 2013). In line with this strategy, we recently demonstrated that spatially 
distributed feedback that follows the underlying topographical structure of the cortex better 
supports learning and control of a brain-machine interface (Abbasi et al., 2019). 
 
However, the structure of robotic actuators is markedly different from that of a biological arm. 
In particular, most prosthetic arms consist of a combination of motorized rotary joints connected 
by rigid links (Brack and Amalu, 2021), far from the multiple pairs of antagonistic muscles of 
physiological arms. Here, we hypothesized that designing a feedback structure based on the 
basic structural features of current prostheses may be key to their efficient and accurate control. 
We therefore designed a distributed feedback pattern that obeys the integrative rules of spatial 
and temporal contiguity that we uncovered (Abbasi et al., 2019), but that introduced a novel, 
circular topographical representation of the angular position of a robotic joint.  
 
We previously tested this rotating bar photostimulation design in a purely passive detection task 
(Lassagne et al., 2022). Mice learned to detect the location of a Rewarded zone of the circular 
cortical space, and to anticipate entry in this zone. We found that the mice were successful at 
this open-loop detection task when the photostimulation was projected on a topographically 
organized cortical area. In the present work, we tested the ability of the mice to exploit such 
feedback in the setting of the active, closed-loop control of a prosthesis. We found that, 
consistent with the previous sensory-only task, the mice learned to anticipate and lick within a 
Rewarded zone. In addition, in our closed-loop task, they could take advantage of the feedback 
to accelerate the prosthesis movements, while maintaining a sufficient frequency of visits in the 
Rewarded zone. 
 
Interestingly, we found that throughout training, the mice learned to initiate their licking bursts 
increasingly early, and ultimately as soon as the photostimulation entered the Neutral zone, 
where licks were not rewarded but did not interrupt the trials (figure 3). It was also mainly in 
the Neutral zone that the mice increased the speed of the rotary joint as it headed towards the 
Rewarded zone. In combination, these findings suggest that the mice motivation to obtain 
rewards was high enough to initiate licking as soon as possible (without canceling the trial), but 
that maintaining uninterrupted licking bursts was costly enough to lead the mice to increase the 
speed of the joint as it headed towards the Rewarded zone. 
 
Overall, the two changes in motor strategy during learning with the speed-based motor control 
were an increased speed of the rotary joint at the beginning of the trials, followed by later 
adjustments to preserve the time spent in the Rewarded zone by limiting overshooting (figure 
4(f)). We hypothesize that the limited scale of these changes was due to the design of the task, 
since in the naive, no-training condition, the mice already spent approximately 6% of the trial 
time in the Rewarded zone (see Results section 3.3, and figure 4(d,e) for a time course 
comparison). In future experiments, it would be interesting to reduce the size of the Rewarded 
zone, in order to encourage more active stabilization of the joint in the Rewarded zone.  
 
The experiments using an acceleration-based control rather than a speed-based control 
highlighted the key impact of controller design on closed-loop performance and motor control 
(figure 5(f,g)). We hypothesize that the relative inefficiency of the acceleration-based controller 
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may be due to the challenge of connecting the acceleration values to the position feedback, 
given that there are no less than two steps of temporal integration between acceleration and 
position (versus only one in the case of the experiments based on the speed controller). 
Nonetheless, these experiments confirmed that mice can take advantage of the sensory feedback 
regardless of their ability to control the actuator (figure 5(d,e)). 
 
 
5. Conclusion 
Our findings suggest that using patterned cortical feedback with a prosthetics-relevant spatio-
temporal structure is an efficient strategy to provide critical information about the position of a 
prosthesis, and support its active control. Here we have tested this strategy to encode the angular 
position of a single rotary joint. It could be extended to explore the simultaneous encoding of 
the angular position of multiple joints, as well as the addition of tactile-like feedback of strategic 
points on the prosthesis surface. Future experiments will be needed to probe the ability of mice 
to integrate such multiple-dimensional feedbacks to actively control a full prosthesis. 
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