
HAL Id: hal-03916493
https://cnrs.hal.science/hal-03916493

Submitted on 30 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A software comparison of RNS and PMNS
Laurent-Stephane Didier, Jean-Marc Robert, Fangan Yssouf Dosso, Nadia El

Mrabet

To cite this version:
Laurent-Stephane Didier, Jean-Marc Robert, Fangan Yssouf Dosso, Nadia El Mrabet. A
software comparison of RNS and PMNS. ARITH29, Sep 2022, Virtual Conference, France.
�10.1109/arith54963.2022.00025�. �hal-03916493�

https://cnrs.hal.science/hal-03916493
https://hal.archives-ouvertes.fr


A software comparison of RNS and PMNS

Laurent-Stéphane Didier, Jean-Marc Robert
Laboratoire IMath
Université de Toulon
La Garde, France

laurent-stephane.didier@univ-tln.fr

jean-marc.robert@univ-tln.fr

Fangan Yssouf Dosso, Nadia El Mrabet
Département SAS

École des Mines de Saint-Étienne
Gardanne, France

fanganyssouf.dosso@emse.fr

nadia.el-mrabet@emse.fr

Abstract—The Polynomial Modular Number System (PMNS)
and the Residue Number System (RNS) are integer number
systems which aim to speed up modular arithmetic. Their
parallel properties make them suitable for the implementation
of cryptographic applications on modern processors with SIMD
instructions. In this work, we will show the implementation
choices made for the modular multiplication in both systems
and compare their implementation performances for several sizes
of moduli. We target the Intel 64-bit sequential instruction set
and the Intel AVX-512 vector instruction set. This instruction set
allows significant speed-ups up to 1 621 bit size moduli, while the
vectorized PMNS implementation is up to 2.5 times faster than
the vectorized RNS, though the vectorized RNS becomes slightly
better for 3 251 bits, due to the difficulty to find a PMNS with
a suitable parameter n. The vectorized RNS implementations
reach performance levels close the state-of-the-art GMP library,
while the retired instruction counts are lower for sizes between
401 and 3 251 bits.

Index Terms—Modular arithmetic, Residue Number System,
Polynomial Number System, SIMD

I. INTRODUCTION

Most protocols in public key cryptography require mod-

ular arithmetic operations over large integers. The classical

representation is the main choice of cryptographers and stan-

dards [1]. In this representation an element of a finite field

Fp, for p a large integer, is seen as an integer modulo p. The
GMP library [2] is the reference for efficiency in the classical

representation.

Alternative candidates such as Residue Number System

(RNS) and Polynomial Modular Number System (PMNS) have

been independently studied in the literature [3]–[15]. Those

representations of a finite field aim to speed up implementation

of modular arithmetic. The RNS representation consists in

choosing a base of n small relatively primes mi such that
n∏

i=1

mi ≥ p. The computations are done in the smaller fields

Fmi and the reconstruction of the integers relies on the Chinese

remainder theorem. The size of the mis is adapted to fit

the machine words. The Polynomial Modular Number System

(PMNS) is a non positional, modular integer number system

in which elements are represented as polynomials with integer

coefficients. The representation ensures that the coefficient

size is small enough to make the computation efficient. In

practice, this size corresponds to the size of machine words.

These two representations support the paralellization of the

computation since operations over each moduli or coefficients

are independent. Furthermore, both arithmetics have side-

channel attack resistance properties [9], [16], [17].

Several hardware implementations illustrate that those rep-

resentations can be more efficient than the classical one [18]–

[20]. However, no software comparison exists. The software

library available in [15] implements the PMNS arithmetic in

sequential mode. The parallelization is now possible using

vectorization even in software implementation.

Our contributions: we propose the first software compari-
son of the RNS and PMNS, in both cases, i.e. parallel and

sequential implementations of Montgomery modular multi-

plications. The coefficient number in PMNS representation

influences the efficiency of computations. We propose an

evaluation of the optimal number of coefficients for given sizes

of large prime p. We compare the performance results of our
parallel and sequential PMNS and RNS implementations to

the GMP library [2].

Organisation of the paper: In Section II we will recall the
definition and properties of RNS and PMNS representation.

The complexity of both representations is analysed in Sec-

tion III. Section IV presents our implementations and results.

II. BACKGROUND ON PMNS AND RNS

A. Background on RNS

Residue Number Systems are non positional integer number

systems based on the Chinese Remainder Theorem [21]–[23].

In this system an integer x is represented by its remainders
xi = x mod mi, where mi are relatively prime numbers.

The set Bm = {m1,m2, . . . ,mn} constitutes the RNS base
composed of n channels. Usually, the modulimi are chosen of

the same w-bit size. We denoteM their product. The advantage

of such a number system is that additions, subtractions and

multiplications can be performed in parallel on each channel:

zi = xi � yi mod mi where � ∈ {+,−,×}
a) Conversions: The forward conversion from binary

system is simply a modular operation on each base chan-

nel. The backward conversion can be done using different

approaches. The Chinese Remainder Theorem provides a

computation formula in the target number system [23].

86

2022 IEEE 29th Symposium on Computer Arithmetic (ARITH)

2576-2265/22/$31.00 ©2022 IEEE
DOI 10.1109/ARITH54963.2022.00025



x =

∣∣∣∣∣
n∑

i=1

xi

(
M
mi

)−1

mi

Mi

∣∣∣∣∣
M

=

n∑
i=1

xi

(
M
mi

)−1

mi

Mi − k ·M
(1)

where

Mi ×
(

M
mi

)−1

mi

≡ 1 (mod M)

Unfortunately, the values used in this sum are large. The

conversion to the Mixed Radix System requires modular

computations on w-bit integers. In this positional system, an
integer xMRS is expressed as follows:

xMRS = x′0 + x′1m0 + x′2m0m1 + · · ·+ x′n−1

n−2∏
i=0

mi

The conversion into this system [24] requires O(n2) oper-
ations on w-bit numbers and O(n2) stored constants.
A trade-off between these two methods has been proposed

by Kawamura et al. [6]. They propose to estimate k in equation
(1) with approximate values through O(n) operations on small
values with O(n) constants.

b) Base extension: The base extension allows the conver-
sion of an RNS number from one RNS base to another. This

operation consists in a backward conversion and a forward

conversion to the targeted RNS base. Both operations are

usually interleaved in order to minimize intermediate-value

storage.

The base extension proposed by Szabo and Tanaka is based

on the mixed-radix conversion [24]. Shenoy and Kumaresan

suggested to compute the value k in equation (1) using an
extra modulus me [3]. The knowledge of k allows to compute
equation (1) in the target RNS base. Similarly, Kawamura et
al. proposed another conversion method using an approximate
evaluation of k [6].

c) Modular multiplication: The RNS modular multipli-
cation is derived from the Montgomery multiplication [25] and

requires base extensions [4], [26]. In Algorithm 1 the base

extensions can be performed with different strategies. In [5],

the authors remark that if the dynamic range of base Bm′ is

large enough, then the first extension can be approximated.

For the second, they use the Shenoy-Kumaresan method [3].

In the multiplication described in [6] both extensions are

Kawamura’s.

In our implementations of Algorithm 1, we chose Bm and

Bm′ in order to use the Bajard-Imbert [5] first extension at step

3. For the second extension in step 7, we use the Kawamura

et al. method [6].

B. Background on PMNS

Polynomial Modular Number System (PMNS) is a non-

positional, modular integer number system in which elements

are represented as polynomials with integer coefficients. A

PMNS is defined by a tuple (p, n, γ, ρ, E), where p, n, γ and
ρ are nonzero positive integers, and E ∈ Z[X] is a monic
polynomial, such that deg(E) = n and E(γ) ≡ 0 (mod p).

Algorithm 1 RNS Modular Multiplication
Require: x in Bm and Bm′ ; y in Bm and Bm′ such that x <

2p and y < 2p.
Precomputation: −p−1 in Bm′ ; p in Bm; M−1 in Bm

Ensure: z = x × y ×M−1 mod p in Bm and Bm′ such that

z < 2p.
1: s← x× y in Bm′ and Bm

2: t← s× (−p−1) in Bm′

3: Base extension of t from Bm′ to Bm

4: u← t× p in Bm

5: v ← s+ u in Bm

6: w ← v ×M−1 in Bm

7: Base extension of w from Bm to Bm′

8: return w

This system has been pioneered by Bajard et al. [11]. Many

works have then been done to improve it [12], [15], [27], [28]

or to use it for higher level operations [9], [13], [14], [17],

[29].

In the sequel, Zn[X] denotes the set of polynomials in Z[X]
which degrees are lower than or equal to n. If A ∈ Zn[X], we
assume A(X) = a0+a1X+ · · ·+anX

n and can equivalently

be represented as the vector a = (a0, . . . , an). Let D,E ∈
Z[X] be two polynomials, then D mod (E, φ) denotes the
polynomial reduction D mod E, where the coefficients of the
result are computed modulo φ ∈ N \ {0, 1}.
Definition 1. Let p � 3 and n, ρ � 2 be three integers.
Let E ∈ Zn[X] be a monic polynomial and γ ∈ Z/pZ \ {0},
such that E(γ) ≡ 0 (mod p). A tuple B = (p, n, γ, ρ, E) is a
PMNS if:

1) ∀A ∈ B, deg(A) < n and ‖A‖∞ < ρ,
2) ∀a ∈ Z/pZ, ∃A ∈ B such that: A(γ) ≡ a (mod p).
Such a polynomial A is called a representation of a in
B and we denote A ≡ aB.

Thus, B designates a PMNS (p, n, γ, ρ, E).
The main operations in PMNS are polynomial addition and

multiplication. However, additional operations must be done

in order to ensure outputs in B. Indeed, if A,B ∈ B. Then
‖A + B‖∞ and ‖A × B‖∞ might be greater than ρ. Also,
deg(A × B) is most-likely to be greater than n. For the first
case, an internal reduction has to be performed and an external

reduction for the latter.
1) External reduction: Let C ∈ Z[X]. The external reduc-

tion consists in computing a polynomial R ∈ Zn−1[X] such
that R(γ) ≡ C(γ) (mod p), using E of B, as follows:

R = C mod E .

Since E ∈ Zn[X] and is monic, R ∈ Zn−1[X]. Moreover,
E(γ) ≡ 0 (mod p) ensures that R(γ) ≡ C(γ) (mod p). The
polynomial E is called the external reduction polynomial.
2) Internal reduction: Let R ∈ Zn−1[X]. The internal

reduction aims to compute a polynomial S ∈ B such that

S(γ) ≡ C(γ) (mod p). In this paper, we focus on the
Montgomery-like approach presented in [12], see Algorithm 2.

87



It is one of the most efficient internal reduction methods and

requires three additional parameters, two polynomials M,M ′

and an integer φ � 2 such that:

M(γ) ≡ 0 (mod p) and M ′ = −M−1 mod(E, φ)

Algorithm 2 Coefficients reduction (RedCoeff) [12]
Require: B = (p, n, γ, ρ, E) a PMNS, V ∈ Zn−1[X], M ∈

B such that M(γ) ≡ 0 (mod p), φ ∈ N \ {0} and M ′ =
−M−1 mod(E, φ).

Ensure: S(γ) = V (γ)φ−1 (mod p), with S ∈ Zn−1[X]
1: Q← V ×M ′ mod (E, φ)
2: T ← Q×M mod E
3: S ← (V + T )/φ
4: return S

This method is efficient if φ is a power of two. Also, it
induces a multiplicative factor φ−1 on the output. In [28],

Didier et al. explain how to deal with this factor. They also

present a process to generate efficient PMNS, where φ can be
any power of two.

Algorithm 3 presents the Montgomery-like modular multi-

plication. RedCoeff refers to Algorithm 2.

Algorithm 3 Multiplication in PMNS
Require: A ∈ B, B ∈ B and B = (p, n, γ, ρ, E)
Ensure: S ∈ B with S(γ) ≡ A(γ)B(γ)φ−1 (mod p)
1: C ← A.B mod E
2: S ← RedCoeff(C)
3: return S

C. Complexities

In this section, we discuss RNS and PMNS complexities

for modular multiplication with the Algorithms 1 and 3. We

consider a w-bit processor architecture and basic arithmetic
computations performed on w-bit words. Let M and A re-

spectively denote the multiplication and the addition of two

w-bit integers. Let L be the notation for logical operations,

for instance the AND function, or the right and left shifts on

w-bit integers.
1) RNS complexity: The RNS addition and multiplica-

tion complexities are linear, while the base extensions are

quadratic. However, software RNS implementations suffer

from the cost of the basic w-bit modular additions and multi-
plications which are not provided by the processor instruction

set. In Table I, we provide the count of elementary arithmetic

operations where n is the number of RNS channels.
2) PMNS complexity:

The performances and the required memory storage of a

PMNS mainly depend on the target architecture and the value

of n. We assume the modular multiplication inputs belong to
a PMNS B = (p, n, γ, ρ, E), such that: ρ = 2t and φ = 2h,
where t, h ∈ N and 1 � t < h � w. Since elements in B
are polynomials, n w-bit data words are required to represent

Operation Cost

Addition nM+ 2nA+ (2n− 1) + 3nL

Multiplication 4nM+ 5nA+ 6nL

1st Base ext. (4n2 + 5n)M+ (5n2 + 7n)A+ (6n2 + 9n)L

2nd Base ext. (7n2 + 4n)M+ (9n2 + 7n)A+ (9n2 + 10n)L

Modular Mult. (11n2 + 30n)M+ (14n2 + 41n)A

+(18n2 + 52n)L

TABLE I: RNS operation theoretical cost.

each of them. Thus, addition is a simple polynomial addition,

whose cost is nA.
In this paper, we consider sparse external reduction polyno-

mials E: E(X) = Xn − 2 or E(X) = Xn −X − 1. Table II
gives the modular multiplication theoretical cost in both cases.

E(X) Cost

Xn − 2 3n2M+ (5n2 − 3n)A+ (2n− 1)L

Xn −X − 1 3n2M+ (5n2 − n− 2)A+ nL

TABLE II: PMNS Modular multiplication theoretical cost, for

for two external reduction polynomials, where φ = 2h.

III. SOME COMPLEXITY ANALYSES

In this section, we give an estimation of the optimal value

of the parameter n for RNS and PMNS. For RNS, we explain
the construction of the system in the context of SIMD software

implementations. This leads to the determination of the sizes

of p we will consider in the sequel.
We also compare PMNS and RNS complexities, given a

modulus size.

A. Estimation of n for a RNS

The authors in [5] have provided a bound for the value of M
depending of the value of p, thus its size, and also the number
n of moduli:

(n+ 2)2 · p < M

The compliance of this condition ensures the correctness of

the modular multiplication.

B. Estimation of n for a PMNS

From Table II, it appears that the smaller the number of

coefficients n is, the better the cost is. When the value of φ is
given, parameter n is computed during the PMNS generation
process and cannot be estimated as easily as the number of

channels in RNS. In this process, we have to set some PMNS

parameters.

In [28], the authors introduce a parameter δ for the PMNS
which corresponds to the desired maximum number of con-

secutive additions without an internal reduction before a mod-

ular multiplication. Our implementation strategy for PMNS

requires to set values for p, δ and φ.
It is shown [28] that Algorithm 3 outputs a polynomial S ∈

B with inputs A,B ∈ Zn−1[X], ‖A‖∞, ‖B‖∞ < (δ+1)ρ, if:

88



ρ � 2n|λ|‖M‖∞ and φ � 2n|λ|ρ(δ + 1)2,

where E(X) = Xn − λ, with λ ∈ Z \ {0}.
If E(X) = Xn−2 or E(X) = Xn−X−1, we can bound

the coefficients of C computed step 1 in Algorithm 3 from

[30, Chapter 2, Proposition 2.1]:

‖C‖∞ � (2n− 1)‖A‖∞‖B‖∞
Thus, the bounds on ρ and φ presented in [28] become:

ρ � 2(2n− 1)‖M‖∞ and φ � 2(2n− 1)ρ(δ + 1)2

This leads to:

φ � 4(δ + 1)2(2n− 1)2‖M‖∞
As explained in [28], the parameter M is computed as a short

vector of a n-dimensional Euclidean lattice whose covolume
is equal to p. From Minkowski’s theorem [31], we can expect
to have:

‖M‖∞ � p1/n

This leads to this approximation:

φ � 4(δ + 1)2(2n− 1)2p1/n (2)

Now, let p be an l-bit modulus; that is p < 2l. Thus, we look
for the smallest integer n such that:

φ � 4(δ + 1)2(2n− 1)22l/n (3)

So, once p, δ and φ are given, the approximate best value for n
is the smallest integer satisfying Equation 3. It can be noticed

that the bigger n is, the smaller the right side of Equation 3
is, since p is supposed to be a large integer.

Example 1. Let’s set φ = 264, δ = 3 and a prime p of size
256 bits (i.e. p < 2256). Then, Equation 3 becomes:

264 � 4(3 + 1)2(2n− 1)22256/n

= 64(4n2 − 4n+ 1)2256/n

Thus:

258 � (4n2 − 4n+ 1)2256/n

The minimum value satisfying this equation is n = 5.

Remark 1. Equation 3 allows to find an estimation of the
best value for n, based on Minkowski’s theorem. In practice,
this is not always the smallest value of n. Indeed, the lattice
reduction used to find M (see [28, Section 5.4]) can compute

a polynomial M with an infinity norm small enough to allow

better (i.e. smaller) value for n. For instance, with φ = 264,
δ = 5 and a prime p of size 401 bits, the minimum value of n
satisfying Equation 3 is 9. However, we were able to generate
PMNS with n = 8. So, the better the lattice reduction is, the
smaller the value of n will be. This lattice reduction process
depends on p, γ and the algorithm used (LLL [32] in our case).

C. Complexity comparison for software implementation

In the classic sequential implementation, the word size

is 64 bits. In the SIMD case (AVX512 instruction

set) and for both systems, we make use of the fused

multiplier-adder VPMADD52, which computes simultaneously
8 multiplications-additions of 52-bit operands for the multipli-

cations, providing the results on 64-bit words.

For the RNS system, this leads to the consideration of the

values of n whose are multiples of 8. Table III provides the
sizes of the modulus p corresponding to the different RNS
systems we consider in the SIMD implementation case, using

52-bit words multiplication operands.

n 8 16 24 32

Size of p 401 807 1 214 1 621

n 40 48 56 64

Size of p 2 029 2 436 2 844 3 251

TABLE III: Estimation of p bit size for n multiple of 8, for
RNS SIMD implementations, with 52-bit moduli.

We choose to consider the sizes listed in Table III as

reference sizes in our implementations. In the sequel, the value

of n for the RNS bases considered with 63-bit moduli is

estimated in Table IV.

Size of p 401 807 1 214 1 621

n 7 13 20 26

Size of p 2 029 2 436 2 844 3 251

n 33 39 46 52

TABLE IV: Estimation of n optimal values for RNS, with
64-bit moduli.

Let’s now consider the PMNS case. For the integer sizes

determined in Table III, we estimated the optimal value of n,
for φ = 252 and φ = 264, when δ = 5. Table V presents these
estimations based on Equation 3.

φ = 264

Size of p 401 807 1 214 1 621

n 9 18 27 37

Size of p 2 029 2 436 2 844 3 251

n 47 57 67 77

φ = 252

Size of p 401 807 1 214 1 621

n 12 24 38 52

Size of p 2 029 2 436 2 844 3 251

n 66 81 96 112

TABLE V: Estimation of n optimal values for PMNS, δ = 5,
for φ = 264 and. φ = 252

From Tables I and II, it is clear that for a given value of n,
PMNS is more efficient than RNS. However, for a given mod-

ulus size, the number of coefficients for PMNS is greater than

the number of RNS channels; see Tables III, IV, V. Thus, for

larger p, the PMNS complexity will approach that of RNS. We
now estimate the threshold above which the PMNS complexity

will exceed the RNS one. For this purpose, we consider that

all operations except multiplications are equivalent. The cost

of one elementary multiplication is considered to be twice that

89



of the other operations, i.e. M = 2A. This leads to the global
cost of the RNS modular multiplication:

CRNS = (36n2 + 101n)A

where n is the number of channels. Similarly, the cost of the
PMNS modular multiplication is CPMNS = (11c2 − c− 2)A
where c is the number of coefficients. So, RNS and PMNS
performances will meet when:

CRNS ≈ CPMNS , that is c ≈ 1.81n.

A numerical evaluation of n and c gives the following
results:

• in case of 52-bit words, this threshold is reached for p of
approximately 5 281 bits;

• in case of 64-bit words, this threshold is reached for p of
approximately 45 000 bits.

One may notice that the sizes of p in both cases are above the
range of our implementation target. Furthermore, the school-

book hypothesis for the polynomial multiplication complexity

evaluation is undoubtedly greatly unfavorable to the PMNS.

IV. IMPLEMENTATIONS

In this section, we describe the software implementations for

both systems, RNS and PMNS. We target sequential native 64-

bit and AVX512 SIMD implementations. The code is written

in C and uses intrinsics for the vectorized version. The vector

implementation uses AVX512 instructions that simultaneously
compute 8 operations, processed on 512-bit registers. This

implementation also uses the FMA instructions which group

a multiplication and an addition. Our implementations are

available on GitHub1.

A. RNS implementation

The elementary operations in RNS are word-length modular

operations. Several choices of moduli are possible. In our

implementations we chose pseudo-Mersenne numbers whose

values are 2e − c with c < 2e/2 [33]. The advantage of
such moduli is that c ≡ 2e mod (2e − c). Thus, the modular
reduction is a simple multiplication by c of the leftmost
bits added to the rightmost bits [34]. The challenge is to

obtain the carry of the addition and the rightmost word of a

multiplication without conditional statement in order to have

the most efficient use of the instruction pipeline.

In our sequential implementation, we target 64-bit opera-

tions. We consider 63-bit values in order to easily obtain the

carry of an addition. In the target processor, the multiplication

can be performed on 64-bit words and provides the result in

one 128-bit word. Thus, the rightmost bits can be obtained

with simple logical operations.

In our vectorized implementation we make use of

the VPMADD52 instructions which are vectorized, fused

multiplier-adders. With these vector instructions, the 52-bit

integers are packed in 64-bit elements. The higher and lower

52-bit parts of their 104-bit multiplication product is provided

1https://github.com/rns-pmns-arith

by separate instructions. These AVX512 instructions operate

on 8-element vectors.

B. PMNS implementation

Our sequential PMNS implementations also make use of the

64-bit native multiplier available in the Intel processors that

computes a full 128-bit result. In this case, the value of φ is
set to 264.

The VPMADD52 vectorized fused multiplier-adder instruc-
tions are also used in the AVX512 versions. As in the RNS

case, we take advantage of the SIMD possibilities. In this case,

the value of φ is set to 252.

We generated and implemented modular multiplications for

PMNS with various modulus p sizes, and we set the parameter
δ = 5. This value is, for instance, large enough for elliptic
curve scalar multiplication, using the Montgomery Ladder

approach described in [35] (Algorithm 9); see [30, Chapter

3, Section 3.4.3] for details. We observed that the number n
of coefficients of the PMNS does not grow linearly with the

width of p as explained in section III-B, and for the AVX512
versions of sizes above 2 029 bits, due to the necessity of

systems with positive coefficients for M , the value of n is
greater than the one for the corresponding sequential systems.

The parameters of the generated PMNS are summarized in

table VI. These PMNS were generated using the generator

available on GitHub2. Our sequential implementations are

obtained from the C codes generator available in the same

repository. Additionally, we have implemented a C codes

generator which takes advantage of AVX512 instruction set

extension. It is also available on GitHub3.

C. Results

1) Experimentation procedure: The measurements were

performed on a Dell Inspiron laptop with an 11th Gen In-

tel Tiger Lake processor i7-1165G7 2.80GHz. The
code has been compiled with gcc 10.2.0 and the follow-

ing options: -O3 -g -lgmp -mavx512f -mavx512dq
-mavx512vl -mavx512ifma.

The test procedure was as follows:

• the Turbo-Boost® is deactivated during the tests;
• 1 000 runs are executed in order to "heat" the cache
memory;

• 50 random data sets are generated, and for each data set
the minimum of the execution clock cycle numbers over

a batch of 1 000 runs is recorded;

• the performance is the average of all these minimums;

The same procedure has been used in order to record the

number of instructions. The clock cycle counter is rdtsc
and the instruction counter is rdpmc with the corresponding
selection [36].

2https://github.com/arithPMNS/low_memory_efficient_PMNS
3https://github.com/rns-pmns-arith/C-code-generators

90



 100

 1000

 10000

 100000

 0  500  1000  1500  2000  2500  3000  3500

#C
lo

ck
 C

yc
le

s

p size in bits

PMNS/RNS 64-bit Modular Multiplication Comparison

GMP Block MM
Seq. PMNS phi=264

Seq. RNS 64

Fig. 1: Timing comparison, PMNS, RNS and GMP block

Montgomery modular multiplications, 64-bit words

 100

 1000

 10000

 100000

 1x106

 0  500  1000  1500  2000  2500  3000  3500

#R
et

ire
d 

In
st

ru
ct

io
ns

p size in bits

PMNS/RNS 64-bit Modular Multiplication Comparison

GMP Block MM
Seq. PMNS phi=264

Seq. RNS 64

Fig. 2: Retired Instructions per cycle comparison, PMNS, RNS

and GMP block Montgomery modular multiplications, 64-bit

words

 10

 100

 1000

 10000

 100000

 1x106

 0  500  1000  1500  2000  2500  3000  3500

#C
lo

ck
 C

yc
le

s

p size in bits

PMNS/RNS 52-bit Modular Multiplication Comparison

GMP Block MM
Seq. PMNS phi=252

AVX512 PMNS phi=252
Seq. RNS 52
AVX512 RNS

Fig. 3: Timing comparison, PMNS, RNS and GMP block

Montgomery modular multiplications, 52-bit words

Size of p Implem. n E(X) φ ρ

256
Seq. 5 X5 − 2 264 254

Seq. 6 X6 −X − 1 252 246

Seq. 8 X8 −X − 1 264 253

401 Seq. 11 X11 −X − 1 252 241

AVX512 11 X11 −X − 1 252 241

Seq. 17 X17 − 2 264 252

807 Seq. 25 X25 −X − 1 252 240

AVX512 25 X25 −X − 1 252 240

Seq. 26 X26 −X − 1 264 251

1 214 Seq. 40 X40 −X − 1 252 240

AVX512 40 X40 −X − 1 252 240

Seq. 35 X35 −X − 1 264 251

1 621 Seq. 56 X56 −X − 1 252 239

AVX512 56 X56 −X − 1 252 239

Seq. 44 X44 −X − 1 264 251

2 029 Seq. 65 X65 − 2 252 238

AVX512 74 X74 −X − 1 252 238

Seq. 54 X54 −X − 1 264 251

2 436 Seq. 78 X78 −X − 1 252 238

AVX512 92 X92 −X − 1 252 238

Seq. 64 X64 −X − 1 264 250

2 844 Seq. 94 X94 − 2 252 238

AVX512 108 X108 −X − 1 252 238

Seq. 74 X74 −X − 1 264 250

3 251 Seq. 107 X107 −X − 1 252 238

AVX512 139 X139 −X − 1 252 237

TABLE VI: Parameters of the implemented PMNS

 10

 100

 1000

 10000

 100000

 1x106

 0  500  1000  1500  2000  2500  3000  3500

#R
et

ire
d 

In
st

ru
ct

io
ns

p size in bits

PMNS/RNS 52-bit Modular Multiplication Comparison

GMP Block MM
Seq. PMNS phi=252

AVX512 PMNS phi=252
Seq. RNS 52
AVX512 RNS

Fig. 4: Retired Instructions per cycle comparison, PMNS, RNS

and GMP block Montgomery modular multiplications, 52-bit

words

2) Results: The performance results are shown in Ta-

ble VII, and figures 1, 2, 3 and 4. We compared the

performance software implementations of RNS, PMNS and

the GMP library [2] (6.2.0 version) for 256-bit up to 3 251-
bit moduli p. The results for 256-bit moduli are irrelevant for
the SIMD RNS implementation, since the number of channels

should be at least 8 moduli. In our PMNS implementation,

the polynomial multiplication is the schoolbook method. In

a future work, we intend to study other strategies such as

Karatsuba approach [37] and multiple word coefficients.

As a general fact, the vectorized implementations dramati-

cally improve the performances of PMNS and RNS operations.

The vectorized AVX512 implementation of the PMNS version

91



is the fastest and has the lowest instruction count. It is

more than twice as fast as the state of the art GMP Block
Montgomery multiplication and is always faster than both

sequential and SIMD RNS implementations, except for the

greatest size, that is p of size 3 251 bits. Indeed, for such size,
we could not find a PMNS with the parameter n estimated
section III-C and we had to increase n dramatically in order
to have positive coefficients for M (see section IV-B and

table VI). This explains why the AVX512 RNS is slightly

better than the corresponding AVX512 PMNS for this size of

p. Improving our generation process to obtain PMNS suited
for AVX512 with smaller value for n remains a challenge we
are working on.

The GMP Block Montgomery multiplication is faster than
the sequential C implementations of PMNS with φ = 264,
regardless of n. However, for the 401-bit primes, the per-
formances are equivalent and the instruction count is smaller

by 13 %. The GMP implementation does not seem to take a

significant advantage of the SIMD architecture. As a matter of

fact, the internal representation of integers is basically a high

radix positional representation for which the carry chain has

to be maintained. According to the GMP documentation, the
library makes limited use of the SIMD instructions except on

some specific cases for shift operations [2]. Furthermore, one

may notice that the GMP Block Montgomery multiplication is
not a constant time implementation, unlike our PMNS/RNS

implementations, and might be weak to side channel attacks.

The sequential RNS implementation is the slowest ap-

proach, due to the complexity of the base extensions and the

cost of the word-size modular arithmetic operations. However,

this implementation appears to make the best use of the

processor and retires up to 2.8 instructions per cycles.

The vectorized RNS is roughly 1.5 slower than the GMP
Block Montgomery multiplication, though the retired instruc-

tion counts are 10 to 20 % lower. This is due to the lower

Instructions Per Cycle characteristic of the instruction set at

the processor micro-architectural level. The SIMD implemen-

tations present an acceleration of up to 8.5. This value over

8 is due to some SIMD instructions that have a throughput

smaller than 1, and also the efficiency of the fused multiplier-

adder VPMADD52.

V. CONCLUSION

In this work, we have compared sequential and SIMD

implementations of RNS and PMNS modular multiplication,

and presented the performance results. The SIMD implemen-

tations largely take advantage of the parallel nature of both

arithmetics and improves their performances, compared to

the sequential cases. PMNS SIMD implementations are faster

than GMP implementations, since the underlying arithmetic

in GMP is not parallel. RNS implementations suffer from

the lack of word-size, modular, arithmetic instructions in the

target processor. The presence of such instructions might

greatly improve the software performance of this arithmetic.

We observed that the degree n of PMNS built for large moduli
p grows faster than the number of RNS channels. Thus, for the

moduli p up to 1 621 bits, the SIMD PMNS implementation
outperforms the GMP library by at least 35% (#clock cycles,

p of 1 621 bits). In a future work, we intend to study the
impact of the use of multiple-word coefficients and Karatsuba

polynomial multiplication, in order to further improve the

PMNS implementations.

REFERENCES

[1] Nist and al., “NIST publications.” https://www.nist.gov/publications.

[2] T. Granlund and al., “GNU multiple precision arithmetic library 6.1.2.”
https://gmplib.org/.

[3] A. Shenoy and R. Kumaresan, “Fast base extension using a redundant
modulus in rns,” IEEE Transactions on Computers, vol. 38, no. 2,
pp. 292–297, 1989.

[4] J.-C. Bajard, L.-S. Didier, and P. Kornerup, “An RNS montgomery
modular multiplication algorithm,” IEEE Transactions on Computers,
vol. 47, no. 7, pp. 766–776, 1998.

[5] J.-C. Bajard and L. Imbert, “A full RNS implementation of RSA,” IEEE
Transactions on Computers, vol. 53, no. 6, pp. 769–774, 2004.

[6] S. Kawamura, M. Koike, F. Sano, and A. Shimbo, “Cox-rower archi-
tecture for fast parallel montgomery multiplication,” in Advances in
Cryptology — EUROCRYPT 2000 (B. Preneel, ed.), (Berlin, Heidelberg),
pp. 523–538, Springer Berlin Heidelberg, 2000.

[7] S. Antão, J.-C. Bajard, and L. Sousa, “RNS based elliptic curve point
multiplication for massive parallel architectures,” The Computer Journal,
vol. 55, no. 5, pp. 629–647, 2012.

[8] J.-C. Bajard, J. Eynard, A. Hasan, and V. Zucca, “A full RNS variant
of fv like somewhat homomorphic encryption schemes,” in SAC 2016,
Selected Areas in Cryptography, St. John’s, Newfoundland and Labrador,
Canada, 2016.

[9] L.-S. Didier, F.-Y. Dosso, N. El Mrabet, J. Marrez, and P. Véron, “Ran-
domization of Arithmetic over Polynomial Modular Number System,”
in 26th IEEE International Symposium on Computer Arithmetic, vol. 1,
(Kyoto, Japan), pp. 199–206, June 2019.

[10] T. Plantard, “Efficient word size modular arithmetic,” IEEE Transactions
on Emerging Topics in Computing, vol. 9, no. 3, pp. 1506–1518, 2021.

[11] J.-C. Bajard, L. Imbert, and T. Plantard, “Modular number systems:
Beyond the mersenne family,” in Selected Areas in Cryptography, 11th
International Workshop, SAC 2004, Waterloo, Canada, pp. 159–169,
2004.

[12] C. Negre and T. Plantard, “Efficient modular arithmetic in adapted
modular number system using lagrange representation,” in Information
Security and Privacy, 13th Australasian Conference, ACISP 2008, Wol-
longong, Australia, pp. 463–477, 2008.

[13] N. El Mrabet and C. Nègre, “Finite field multiplication combin-
ing AMNS and DFT approach for pairing cryptography,” in ACISP,
vol. 5594 of Lecture Notes in Computer Science, pp. 422–436, Springer,
2009.

[14] N. El Mrabet and N. Gama, “Efficient multiplication over extension
fields,” in WAIFI, vol. 7369 of Lecture Notes in Computer Science,
pp. 136–151, Springer, 2012.

[15] T. Coladon, P. Elbaz-Vincent, and C. Hugounenq, “MPHELL: A fast
and robust library with unified and versatile arithmetics for elliptic
curves cryptography (extended version),” in ARITH 2021, Transactions
on Emerging Topics in Computing, (Torino, Italy), June 2021.

[16] J. Courtois, L. Abbas-Turki, and J.-C. Bajard, “Resilience of randomized
rns arithmetic with respect to side-channel leaks of cryptographic com-
putation,” IEEE Transactions on Computers, vol. 68, no. 12, pp. 1720–
1730, 2019.

[17] C. Negre, “Side channel counter-measures based on randomized AMNS
modular multiplication,” in Proceedings of the 18th International Con-
ference on Security and Cryptography, SCITEPRESS - Science and
Technology Publications, 2021.

[18] K. Bigou and A. Tisserand, “Single base modular multiplication for
efficient hardware RNS implementations of ECC,” in Cryptographic
Hardware and Embedded Systems - CHES 2015 - 17th International
Workshop, Saint-Malo, France, September 13-16, vol. 9293 of Lecture
Notes in Computer Science, pp. 123–140, Springer, 2015.

92



This work
Modular GMP low level PMNS PMNS PMNS RNS (moduli size)

Multiplication Block φ = 264 φ = 252 φ = 252 263 252

Montgomery seq. seq. AVX512 seq. seq. AVX512

size of p = 256 bits
n = 5 n = 6 n = 6 n = 5 n = 6

# clock cycles 120 134 194 38 1 456 1 920 -

# instructions 502 378 571 93 4 045 5 366 -

size of p = 401 bits
n = 8 n = 11 n = 11 n = 7 n = 8

# clock cycles 333 329 579 131 2 423 2 983 655

# instructions 1 116 978 1 635 234 6 864 8 401 842

size of p = 807 bits
n = 17 n = 25 n = 25 n = 13 n = 16

# clock cycles 857 1 259 2 825 505 6 818 9 782 1 360

# instructions 3 236 3 784 7 784 953 19 758 28 255 2 598

size of p = 1 214 bits
n = 26 n = 40 n = 40 n = 20 n = 24

# clock cycles 1 728 3 126 7 267 1 009 15 050 20 663 2 526

# instructions 6 580 8 963 19 280 1 841 43 287 59 659 5 394

size of p = 1 621 bits
n = 35 n = 56 n = 56 n = 26 n = 32

# clock cycles 3 053 5 769 14 648 1 973 24 917 35 666 4 382

# instructions 11 503 15 909 37 230 3 558 70 561 102 580 9 187

size of p = 2 029 bits
n = 44 n = 65 n = 74 n = 33 n = 40

# clock cycles 4 431 9 223 20 604 3 770 39 391 54 608 6 431

# instructions 16 801 25 200 53 804 7 264 110 735 157 128 14 021

size of p = 2 436 bits
n = 54 n = 78 n = 92 n = 39 n = 48

# clock cycles 6 602 14 003 30 130 6 172 54 746 77 972 9 123

# instructions 24 559 37 415 77 945 11 691 152 353 223 247 19 828

size of p = 2 844 bits
n = 64 n = 94 n = 108 n = 46 n = 56

# clock cycles 8 472 19 224 44 177 9 006 73 390 105 663 12 378

# instructions 31 804 51 936 112 101 16 745 209 356 300 960 27 124

size of p = 3 251 bits
n = 74 n = 107 n = 139 n = 52 n = 64

# clock cycles 10 446 26 759 58 722 18 129 92 014 133 553 16 498

# instructions 39 847 69 387 145 766 32 106 265 233 390 242 35 170

TABLE VII: Performance comparison for modular multiplication, PMNS and RNS, sequential and AVX512

[19] K. Bigou and A. Tisserand, “Improving modular inversion in RNS using
the plus-minus method,” in Cryptographic Hardware and Embedded
Systems - CHES 2013 - 15th International Workshop, Santa Barbara,
CA, USA, August 20-23, vol. 8086 of Lecture Notes in Computer Science,
pp. 233–249, Springer, 2013.

[20] A. Chaouch, L. Didier, F. Dosso, N. E. Mrabet, B. Bouallegue, and
B. Ouni, “Two hardware implementations for modular multiplication in
the AMNS: sequential and semi-parallel,” J. Inf. Secur. Appl., vol. 58,
p. 102770, 2021.

[21] H. L. Garner, “The residue number system,” IRE Transactions on
Electronic Computers, vol. EL 8, no. 6, p. 140–147, 1959.

[22] Taylor, “Residue arithmetic a tutorial with examples,” Computer, vol. 17,
no. 5, pp. 50–62, 1984.

[23] D. E. Knuth, Art of computer programming, volume 2: Seminumerical
algorithms. Addison-Wesley Professional, 2014.

[24] N. S. Szabo and R. I. Tanaka, Residue arithmetic and its applications
to computer technology. New York: McGraw-Hill, 1967.

[25] P. L. Montgomery, “Modular multiplication without trial division,”
Mathematics of Computation, vol. 44, no. 170, pp. 519–521, 1985.

[26] K. C. Posch and R. Posch, “Modulo reduction in residue number
systems,” IEEE Transactions on Parallel and Distributed Systems, vol. 6,
no. 5, pp. 449–454, 1995.

[27] J.-C. Bajard, L. Imbert, and T. Plantard, “Arithmetic operations in the
polynomial modular number system,” in 17th IEEE Symposium on
Computer Arithmetic (ARITH-17) 2005, Cape Cod, MA, USA, pp. 206–
213, 2005.
Extended (complete) version available at: https://hal-lirmm.ccsd.cnrs.fr/
lirmm-00109201/document.

[28] L.-S. Didier, F. Y. Dosso, and P. Véron, “Efficient modular operations

using the Adapted Modular Number System,” Journal of Cryptographic
Engineering, pp. 1–23, 2020.

[29] C. Bouvier and L. Imbert, “An alternative approach for sidh arithmetic,”
in Public-Key Cryptography – PKC 2021 (J. A. Garay, ed.), (Cham),
pp. 27–44, Springer International Publishing, 2021.

[30] F. Y. Dosso, Contribution de l’arithmétique des ordinateurs aux im-
plémentations résistantes aux attaques par canaux auxiliaires. Theses,
Université de Toulon, Apr. 2020.

[31] H. Minkowski, Geometrie der Zahlen. No. vol. 2 in Geometrie der
Zahlen, B.G. Teubner, 1910.

[32] A. K. Lenstra, H. W. Lenstra, and L. Lovász, “Factoring polynomials
with rational coefficients,” Mathematische Annalen, vol. 261, pp. 515–
534, Dec 1982.

[33] R. Crandall, “Method and apparatus for public key exchange in a
cryptographic system,” Oct. 1992. US Patent 5,159,632.

[34] T. Plantard, “Efficient word size modular arithmetic,” IEEE Transactions
on Emerging Topics in Computing, vol. 9, no. 3, pp. 1506–1518, 2021.

[35] R. Goundar, M. Joye, A. Miyaji, M. Rivain, and A. Venelli, “Scalar
multiplication on weierstraß elliptic curves from co-Z arithmetic,” J.
Cryptographic Engineering, vol. 1, no. 2, pp. 161–176, 2011.

[36] Intel, “Intel 64 and IA-32 architectures software developer’s manual
combined volumes 1, 2a, 2b, 2c, 2d, 3a, 3b, 3c, 3d, and 4,” December
2021.

[37] A. A. Karatsuba and Y. P. Ofman, “Multiplication of many-digital
numbers by automatic computers,” in Doklady Akademii Nauk, vol. 145,
pp. 293–294, Russian Academy of Sciences, 1962.

93


