Oxygen, Carbon and pH Variability in the Indian Ocean
Raleigh R Hood, Tim Rixen, Marina Lévy, Dennis A Hansell, Victoria J Coles, Zouhair Lachkar

To cite this version:

HAL Id: hal-03917888
https://cnrs.hal.science/hal-03917888
Submitted on 6 Feb 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Oxygen, Carbon and pH Variability in the Indian Ocean

Raleigh R. Hood, Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, 21613, USA

Tim Rixen, Leibniz Centre for Tropical Marine Research, University of Bremen, Bremen, 28359, Germany

Marina Levy, LOCEAN-IPSL, Sorbonne University, 75252 Paris Cedex O5, France

Dennis A. Hansell, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA

Victoria J. Coles, Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, 21613, USA

Zouhair Lachkar, Center for Prototype Climate Modeling, New York University, Abu Dhabi, PO Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates

Abstract

This chapter provides an overview of the physical and biogeochemical factors that control spatial and temporal patterns of oxygen minimum zones (OMZs), carbon and pH variability in the Indian Ocean. Oxygen concentrations decline to nearly zero in Arabian Sea intermediate water with profound biogeochemical impacts on the nitrogen cycle as a result of denitrification. These impacts can hardly be observed in the Bay of Bengal where oxygen concentrations are poised just above the threshold below which denitrification becomes significant. Hypoxic/anoxic conditions in the open ocean waters of the northern Indian Ocean have not dramatically changed over past decades, but evidence is now emerging that oxygen concentrations are starting to decline, with significant biogeochemical and ecological impacts. The Indian Ocean accounts for ~1/5 of the global oceanic uptake of atmospheric CO$_2$, with the Arabian Sea as a source of CO$_2$ to the atmosphere and the southern subtropical gyre as a CO$_2$ sink. Net CO$_2$ flux in the Bay of Bengal is uncertain due to sparse sampling. Surface pH values in the Indian Ocean are anomalously low and projected to decline further with negative impacts on calcifying organisms. Dissolved organic carbon (DOC) concentrations in the Indian Ocean tend to be high in near-surface (sub)tropical waters where autotrophic production of DOC exceeds heterotrophic consumption and vertical stability of the water column favors accumulation. In contrast, the highest particulate organic carbon (POC) concentrations in the Indian Ocean are observed in the northwestern part of the basin and the lowest in the southern subtropical gyre, reflecting primary production patterns. POC export flux patterns in the Indian Ocean are similar to the patterns in POC concentration, though carbon flux is also strongly influenced by lithogenic matter content in river-influenced regions like the Bay of Bengal. Observational and modeling research should target improved understanding of northern Indian Ocean OMZ and carbon system variability as such is needed to predict the impacts of anthropogenic influence and global warming on Indian Ocean biogeochemistry and ecosystems.
1. Introduction

1.1 The Northern Indian Ocean oxygen minimum zones (OMZs)

Open ocean Oxygen Minimum Zones (OMZs) occur below the mixed layer of the ocean and are characterized by oxygen concentrations that are low in comparison to surface and deep waters (Dietrich, 1936; Seiwell, 1937; Sverdrup, 1938). Even though mid-water oxygen minimum zones are common features in the ocean, they are typically classified as OMZs only when the lowest minimum oxygen concentrations in the vertical profile drop below certain thresholds (Paulmier et al., 2009). However, due to varying oxygen tolerances of marine organisms, there are multiple definitions for threshold concentrations. Table 1 lays out common definitions, thresholds and impacts of varying definitions of oxygen limitations. A threshold of about 20 µmol/kg is often used to define OMZs because concentrations below this have profound implications for microbes and marine biogeochemical cycles. These oxygen levels are therefore referred to as “microbial hypoxia” (Table 1). The total volume of waters characterized by microbial hypoxia in the global ocean is approximately 15×10^{15} m3, of which 21% (3.13×10^{15} m3) is located in the northern Indian Ocean (Acharya et al., 2016; Garcia et al., 2010). Even though the Indian Ocean OMZ constitutes only 0.23% of the ocean’s volume (1355×10^{15} m3) its influence on the cycles of nitrogen, carbon and associated elements is globally significant.

The thickest OMZ in the world is found in the Arabian Sea (e.g., Morrison et al., 1999) where functional anoxia (concentrations < .05 µmol/kg, Table 1) occurs in intermediate water (~200-800 m), with profound impact on the nitrogen cycle as a result of denitrification. Very low oxygen concentrations are also found in intermediate water in the Bay of Bengal, but there are important physical and biogeochemical differences between the Arabian Sea and the Bay of Bengal, which have, so far, prevented the development of persistent functional anoxia in the Bay of Bengal OMZ (Figures 1 and 2). Hence in contrast to the Bay of Bengal, the Arabian Sea OMZ is a globally important zone of denitrification (Naqvi et al., 2005), where NO$_3^-$ and NO$_2^-$ are converted to N$_2$O and N$_2$ gas, which is then released to the atmosphere. This process of denitrification removes nitrogen containing compounds from the ocean (Figures 1 and 2) and generates N$_2$O, a prominent greenhouse gas (Ramaswamy et al., 2001, Bange et al. 2001). The Arabian Sea OMZ is most intense in the eastern part of the basin (Figures 1 and 2), with the water column contributing ~10 - 20% of global open-ocean mid-water column denitrification (Codispoti et al., 2001; Rixen et al., 2020; Anju et al., 2022).

Questions remain regarding the relative roles of biological oxygen demand derived from surface organic matter export, versus circulation and ventilation timescales, in maintaining subtle differences in the deep oxygen fields in the Arabian Sea and the Bay of Bengal (Valsala et al., 2009; McCreary et al., 2013; Bopp et al., 2017; Rixen et al., 2020). Recent observational and modeling studies in the Indian Ocean suggest that the OMZs are expanding in response to global warming (Lachkar et al., 2020; Rixen et al., 2020). Perhaps the low nitrogen to phosphorus ratios in the western Bay of Bengal are a harbinger of what is to come (Figure 1). This OMZ expansion is consistent with global modeling studies (Stramma et al., 2008; 2010; Doney, 2010; Figure 3) but uncertainties in global model predictions are large (McCreary et al., 2013; Bopp et
Given the importance of the Indian Ocean OMZs in the global carbon and nitrogen cycles, including the production of radiatively active greenhouse gases, it is essential to understand the biogeochemical variability associated with these regions, their rates of change and the potential implications for global warming.

1.2 Role of the Indian Ocean in the global carbon cycle

The Indian Ocean plays an important role in the global carbon cycle, yet it remains one of the most poorly sampled ocean regions with respect to inorganic and organic carbon pools and air-sea carbon fluxes (Figures 4, 5 and 6). Estimates suggest that the Indian Ocean accounts for a significant fraction of the global oceanic uptake of atmospheric CO$_2$ (Takahashi et al., 2002; Sarma et al., 2013; Valsala and Maksyutov, 2013; Sreeush et al., 2018; 2020; de Verneil et al., 2021). This uptake of anthropogenic CO$_2$ drives a decrease in pH, and indeed, surface pH values in the Indian Ocean are among the lowest of the major ocean basins (Feely et al., 2009; Sreeush et al., 2019). Projected increases in oceanic CO$_2$ concentrations will lead to further acidification of the Indian Ocean over the coming decades, with potentially severe negative impacts on coral reefs and other calcifying organisms (Hoegh-Guldberg et al., 2007; Doney, 2010).

Dissolved organic carbon (DOC) is a significant carbon pool in the ocean. As observed elsewhere in the global ocean, DOC concentrations in the Indian Ocean tend to be high in stratified near-surface tropical and subtropical waters where DOC is produced and accumulates, and DOC concentrations are lowest in the deep ocean where heterotrophic consumption of DOC exceeds autotrophic production (Hansell, 2009; Hansell, et al., 2009; Figures 6 and 7). Unsurprisingly, the highest concentrations of DOC are found in the near-surface waters of the central Arabian Sea due to high autotrophic production, and in the northern Bay of Bengal due to the large inputs of fresh water and associated terrigenous DOC flux from rivers (Hansell, 2009; Shah et al., 2018; Figure 6; Data from Hansell and Orellana, 2021). In contrast, particulate organic carbon (POC) concentrations tend to be high in coastal regions of the Indian Ocean where autotrophic production is high, and lowest in the oligotrophic southern subtropical gyre and equatorial waters where autotrophic production is low (Gardner et al., 2006; Figure 8). The highest POC concentrations are found in the western and northern Arabian Sea during the southwest monsoon (SWM) and northeast monsoon (NEM), respectively (Gardner et al., 2006). The spatial and temporal variability in POC export flux in the Indian Ocean is similar to the productivity and POC concentration patterns, consistent with the idea that primary productivity is the main control on the spatial and temporal variability of organic carbon fluxes (Rixen et al., 2019a). However, in regions strongly influenced by river inputs, like the Bay of Bengal, the spatial variability of organic carbon export flux is also strongly influenced by lithogenic matter content, which provides ballast that increases POC sinking rates (Rixen et al., 2019b).

Understanding and predicting these disparate elements of the carbon cycle and its role in basin acidification in the Indian Ocean is critical for understanding the biogeochemical and ecological evolution of the Indian Ocean under the impact of human activities.
2. Oxygen concentrations and the biogeochemical impacts of the OMZs

The first large ocean-going oceanographic expeditions discovered OMZs in the Indian Ocean between the end of the 19th and the first third of the 20th century (Sewell, 1934; Sewell and Fage, 1948 and references therein). During one of these cruises, the John Murray expedition of 1933–34, Gilson (1933) discovered the secondary nitrite maximum of the Arabian Sea, seen as an accumulation of nitrite within the upper part of the OMZ between 200 and 300m depth (Figure 2). Its existence indicates active denitrification (Naqvi, 1991), which in addition to anammox (Dalsgaard et al., 2003; Kuypers et al., 2003) are the main sinks of fixed nitrogen (NH$_4^+$, NO$_2^-$, NO$_3^-$) in the ocean (Gruber, 2004). Denitrifying microbes use nitrate (NO$_3^-$) and nitrite (NO$_2^-$) to fuel heterotrophic respiration in microbially hypoxic waters, in turn reducing these compounds, ultimately, to nitrogen gas (N$_2$). In contrast, the anammox reaction is carried out by chemoautotrophic microbes that derive energy from the oxidation of NH$_4^+$ with NO$_2^-$ to produce N$_2$ in microbially hypoxic waters.

In contrast to fixed nitrogen, N$_2$ is inaccessible to eukaryotic phytoplankton. Even though there are specific bacterial phytoplankton clades capable of fixing or breaking apart and oxidizing N$_2$, the surface ocean is often depleted in fixed nitrogen in comparison to phosphate (Gruber and Sarmiento, 1997). Since phosphate and fixed nitrogen are the primary macro-nutrients required for phytoplankton growth, the intensification of OMZs and the expansion of functional anoxia is assumed to lower marine productivity by favoring denitrification and anammox and thereby the loss of fixed nitrogen in the ocean (Altabet et al., 1995; McElroy, 1983). An interesting feedback is that, over time, reduced productivity and carbon export due to fixed nitrogen loss in turn reduces biological oxygen consumption at depth, such that the expansion of the volume of anoxic waters in the OMZ core can be accompanied by a reduction of the volume of hypoxic waters (Deutsch et al., 2007; Lachkar et al., 2016).

Changes in the coupled marine nitrogen and oxygen cycles also affect the role of the ocean as a sink and/or source of greenhouse gases such as CO$_2$ and N$_2$O. The response of the biologically mediated CO$_2$ uptake of the ocean, referred to as the biological carbon pump (Boyd et al., 2019; Volk and Hoffert, 1985), to environmental changes is difficult to predict (Bopp et al., 2013, Deutsch et al., 2014) because of the multiple processes involved in its functioning (Chakraborty et al., 2018; Boyd et al., 2019). In contrast, the N$_2$O source function of the ocean is assumed to be directly linked to the expansion and intensity of OMZs, since N$_2$O is an intermediate product formed during denitrification (Bange et al., 2001; Fuhrman and Capone, 1991).

Even though denitrification and anammox occur at microbially hypoxic levels of oxygen (concentrations < 20 µmol/kg; Table 1), their impact on the nitrogen cycle becomes significant only with the occurrence of functional anoxia (concentrations < .05 µmol/kg; Table 1). At such low oxygen concentrations, the reduction of nitrite to N$_2$ outcompetes the re-oxidation of nitrite to nitrate, leading to net loss of fixed nitrogen (Bristow et al., 2017; Gaye et al., 2013). The re-oxidation of nitrite to nitrate prevents, in turn, the loss of fixed nitrogen and the formation of the secondary nitrite maximum at higher oxygen concentrations within the OMZ. In contrast to the Bay of Bengal OMZ, which is on the verge of becoming functionally anoxic (Bristow et al.,
2017), functional anoxia is widespread in the Arabian Sea OMZ as indicated by the extent of the secondary nitrate maximum (Naqvi, 1991; Rixen et al., 2014; Figure 2).

2.1 Oxygen distributions, sources and sinks

Low oxygen conditions in the water column are usually associated with slow ventilation and high biological oxygen demand. OMZs are hence found in productive but poorly ventilated shadow zones of the subtropical oceans, where subsurface water masses recirculate beneath a shallow mixed-layer with minimal direct advective or mixing connection to the surface ocean (Luyten et al., 1983). In these domains, the residence time below the thermocline is at a maximum and oxygen is slowly supplied mainly through isopycnal (horizontal) mixing processes (Gnanadesikan et al., 2012; Levy et al., 2021). Moreover, the strong and localized subsurface biological oxygen consumption in OMZs generates strong spatial gradients in oxygen at their edges, making mixing central to the oxygen balance. The Arabian Sea OMZ is not a classical shadow zone due to the northern boundary of the Asian subcontinent, but diapycnal and isopycnal mixing are likely the main oxygen sources balancing strong biological depletion in the core of the OMZ, in roughly equal proportions (Resplandy et al., 2012). Model simulations suggest that without oxygen supplied by eddy mixing, the volume of the Arabian Sea OMZ would double (Lachkar et al., 2016).

In addition to mixing processes in the core of the OMZ, the inflow of oxygen-enriched Indian Ocean Central Water and Persian Gulf Water are assumed to be the main physical oxygen supply mechanism to the edges of the OMZ in the Arabian Sea (Lachkar et al., 2019; McCreary et al., 2013; Resplandy et al., 2012; Sen Gupta and Naqvi, 1984; Swallow, 1984). Indian Ocean Central Water forms through convective mixing as Subantarctic Mode Water in the southern Indian Ocean and is advected northward into the OMZs in both the Arabian Sea and Bay of Bengal (Fine, 1993; McCartney, 1979; Sverdrup et al., 1942). Oxygen-enriched Persian Gulf Water is introduced into the Arabian Sea OMZ after its outflow from the Persian Gulf (Rixen et al., 2005; Schmidt et al., 2020; Schmidt et al., 2021; Tchernia, 1980; Lachkar et al. 2019). The negative water balance of the Persian Gulf drives this localized deep-water formation by increasing the salinity and hence the density of Persian Gulf Water.

The oxygen-poor Arabian Sea intermediate water, in turn, flows into the Bay of Bengal OMZ (Figure 1), where high freshwater inputs from rivers and monsoon rainfall (Figure 5) reduce the vertical oxygen supply by increasing stratification in the surface layers (Rixen et al., 2020). However, in comparison to the Arabian Sea, lower biomass (Figure 8), productivity and a stronger ballast effect prevent development of functional anoxia in the Bay of Bengal OMZ by keeping biological oxygen consumption lower (Al Azhar et al., 2017; Rao et al., 1994; Rixen et al., 2019b). Ballast minerals, which are supplied from land via rivers or as dust, accelerate the sinking of particles, lowering the residence time of exported organic matter in the water column and thereby its decomposition in the OMZ (Haake and Ittekkot, 1990; Ramaswamy et al., 1991). It should be noted, however, that the ballast effect appears to be important primarily in the northern Bay of Bengal (Ittekkot et al., 1991), which suggests that the primary cause of the higher oxygen concentrations further south in the Bay of Bengal is the lower biomass and productivity that results in reduced export and a lower biological oxygen demand. In contrast to the Bay of Bengal, a weak ballast effect and a higher biological production (Figure 8) sustain a higher
biological oxygen consumption at intermediate depths in the Arabian Sea. This enhanced biological oxygen consumption balances the higher physical oxygen supply in the Arabian Sea and explains the more intense OMZ (Rixen et al., 2019a).

Contrary to expectations, the Arabian Sea OMZ is more intense in the eastern part of the basin and less intense in the western parts of the basin where productivity is highest (Antoine and Morel, 1996; Naqvi, 1991; McCreary et al., 2013). The thickest part of the OMZ is in the northeastern Arabian Sea (Sarma et al., 2020). Multiple factors are presumed to cause this asymmetry. The inflow of Indian Ocean Central Water and Persian Gulf Water ventilates the western Arabian Sea preferentially, and is assumed to cause this eastward displacement (Resplandy et al., 2012; McCreary et al., 2013; Rixen et al., 2014). Additionally, the seasonal monsoon-driven reversal of the surface ocean circulation leads to intense vertical eddy mixing in the western Arabian Sea causing an eastward shift of the upper OMZ relative to the region of highest productivity (Resplandy et al., 2012; McCreary et al., 2013; Lachkar et al., 2016). Similarly, the eastward shift of the OMZ has been attributed to weak mixing and high penetration time of intermediate water masses in the northeastern Arabian Sea, with the additional influence of organic matter transport from the shelf region that enhances biological oxygen demand (Sarma et al., 2020).

2.2 Biogeochemical impacts of the northern Indian Ocean OMZs

The Arabian Sea and the Bay of Bengal collectively contain ~59% of the Earth’s marine sediments exposed to hypoxia (Helly and Levin, 2004). Denitrification within sediments (benthic denitrification) underlying functionally anoxic conditions in the water column, is the largest sink for fixed nitrogen in the ocean (Gruber, 2004; DeVries et al., 2013). However, estimates of the relative rates of benthic and water column denitrification are still fraught with large uncertainties on global as well as regional scales. Hence, the role of the Arabian Sea as a sink of fixed nitrogen is difficult to quantify. Although denitrification in the Arabian Sea has been much more intensively studied than in the Bay of Bengal, estimates of benthic and water column denitrification in the Arabian Sea still encompass a wide range with means of 3.9 ± 2.9 Tg N year\(^{-1}\) and 17 ± 16 Tg N year\(^{-1}\), respectively (Bange et al., 2000; Bristow et al., 2017; Deuser et al., 1978; Gaye et al., 2013; Howell et al., 1997; Naqvi et al., 1982; Somasundar et al., 1990). Considering global mean estimates of benthic and water-column denitrification of 183 ± 118 Tg N year\(^{-1}\) and 155 ± 116 Tg N year\(^{-1}\) (Eugster and Gruber, 2012; Gruber, 2004; Somes et al., 2013), on average the Arabian Sea comprises approximately 2% and 11% of the global mean benthic and water column denitrification, respectively. It should be noted, however, that more recent data indicate that benthic denitrification at the Pakistan continental margin alone could be up to 10.5 Tg N year\(^{-1}\) (Schwartz et al., 2009; Somes et al., 2013), greatly exceeding the previously estimated benthic denitrification of 3.9 ± 2.9 Tg N year\(^{-1}\) for the entire Arabian Sea. Moreover, the most recent observations suggest the northeastern Arabian Sea has a water column denitrification rate of 25.3 ± 7.0 Tg N yr\(^{-1}\) (Anju et al., 2022). These estimates suggest that the Arabian Sea comprises at least 6% and 16% of the global mean benthic and water column denitrification, respectively.
The volume of hypoxic waters and rate of denitrification in the Arabian Sea strongly increase in response to enhanced monsoon winds (Lachkar et al., 2018). Stronger winds intensify the upwelling, increasing biological productivity and respiration in excess of the increase in wind-driven ventilation and are also responsible for the deepening of the OMZ. However, as discussed above, increases in denitrification have the potential to reduce biological productivity through nitrogen removal, and hence the efficiency of the biological pump of carbon, at the basin scale (and beyond) on timescales of decades to centuries (Lachkar et al., 2018; Canfield et al., 2019; McElroy, 1983). Therefore, an expansion of Indian Ocean OMZs can affect the large-scale biogeochemical cycles of nitrogen and carbon and contribute to climate variations over long timescales (Altabet et al., 2002; Gaye et al., 2018). The extent of this control depends on the magnitude of the nitrogen removal and the importance of concurrent stabilizing negative feedbacks, including the feedback of reduced productivity on biological oxygen demand and the tight coupling between denitrification and N₂ fixation downstream of OMZs (Deutsch et al., 2007, Gruber and Galloway, 2008). If the excess in phosphorus relative to nitrogen supports local nitrogen fixation within the Indian Ocean basin, the timescales for feedbacks with denitrification could be much shorter than the timescale of the global ocean circulation.

2.3 Recent (decadal) changes in oxygen concentrations

Early reports on the occurrence of coastal hydrogen sulfide in the north-eastern Arabian Sea and off Oman at Ras-al-Hadd (Carruthers et al., 1959; Ivanenko and Rozanov, 1966) indicate that the Arabian Sea OMZ was more intense in the past because the emergence of hydrogen sulfide indicates the transition from functional anoxia (oxygen < 0.05 μmol/kg) towards anoxic (zero oxygen) conditions (Table 1). These are the only reports of the occurrence of hydrogen sulfide in the Arabian Sea except for Naqvi et al. (2000), who discovered an anoxic event that developed along the western Indian coast off Mumbai in the late summer of 1999. Such strong events do not develop every year (Gupta et al., 2016; Sudheesh et al., 2016), but their appearance shows that the spreading of oxygen-depleted zones in coastal regions is a global phenomenon that does not spare the Indian shelf (Altieri et al., 2017; Diaz and Rosenberg, 2008; Diaz et al., 2019). However, contrary to this prevailing understanding, Gupta et al. (2021) argue that the hypoxic-anoxic zone along the west coast of India is formed through a natural process, i.e., upwelling of deoxygenated waters during the summer monsoon, and that the persistence and extent of this coastal oxygen deficiency depend on the degree of deoxygenation of source waters for the upwelling. Moreover, the volume of anoxic waters is strongly modulated by the Indian Ocean Dipole (IOD), with positive IOD events preventing anoxia due to wind-forced downwelling coastal Kelvin waves propagating along the west coast of India (Vallivattathillam et al., 2017).

In contrast to these shelf processes, there is only a weak decadal decline in dissolved oxygen concentrations in the OMZs of the Arabian Sea and the Bay of Bengal in comparison to OMZs of the South Atlantic Ocean and the Pacific Ocean (Ito et al., 2017; Naqvi, 2019; Schmidtko et al., 2017; Stramma et al., 2008). The analysis of all oxygen data available from the Arabian Sea between 1959 and 2004 by Banse et al. (2014) ascribes this modest change to opposing regional trends within the Arabian Sea, where oxygen concentrations increased in the southern part of the Arabian Sea and declined in the central Arabian Sea. In contrast, Sarma et al. (2018) ascribe the modest change in oxygen levels in the Bay of Bengal to the influence of anticyclonic eddies in that precluded the OMZ from intensifying. Follow-up studies report decreasing oxygen
concentrations in the western and northern Arabian Sea (Piontkovski and Al-Oufi, 2015; Queste et al., 2018). In the northern Arabian Sea, dissolved oxygen concentrations in the surface mixed layer largely reflect the decreasing trend seen in the OMZ, as indicated by a compilation of dissolved oxygen data covering the period from the 1960s to 2010 (Gomes et al., 2014). In response to this deoxygenation, the secondary nitrite maximum expanded southward and westward in the early 1990s (Rixen et al., 2014). Perhaps in response to changing oxygen concentrations, the planktonic community structure has changed as shown by the development and now regular occurrence of large Noctiluca winter blooms since the 2000s in the Arabian Sea (Hood et al, 2022 this volume; Gomes et al, 2014; Goes and Gomes, 2016; Goes et al., 2020). It should be noted, however, that it has been shown that Noctiluca blooms occur in oxic conditions, and that both natural and anthropogenic processes appear to have contributed to the development of the massive blooms in the northeastern Arabian Sea (Sarma et al., 2018; Sridevi and Sarma, 2022). Numerical model results suggest that reduced ventilation caused by a reduced inflow of Persian Gulf Water in response to warming, combined with reduced solubility of oxygen in surface water of the Persian Gulf, may have contributed to these developments (Lachkar et al., 2019). In addition to changes in the Gulf outflow, recent numerical model results also attribute decreasing oxygen concentrations in the northern Arabian Sea to reduced local ventilation due to global warming-induced increases in stratification and weakening of winter convective mixing (Lachkar et al., 2020).

Nonetheless, widespread and or more frequent outbreaks of hydrogen sulfide as seen in the upwelling systems off Peru (Schunck et al., 2013) and Namibia (Weeks et al., 2002) have not so far been reported in the northern Indian Ocean during the last 50 years. This finding implies that the interplay between physical oxygen supply and the biological oxygen consumption has prevented the development of persistent anoxia (zero oxygen) in the Arabian Sea and functional anoxia (oxygen < .05 µM) in the Bay of Bengal OMZ (Rixen et al., 2020).

2.4 Future changes in oxygen concentrations

There is high uncertainty in the future evolution of the Arabian Sea OMZ, and of all major OMZs, projected by Earth System models by year 2100 (Bopp et al., 2013, Cabré et al. 2015, Kwiatkowski et al., 2020; Rixen et al., 2020). The uncertainty largely arises from differences among models in the magnitude and timing of changes in ventilation and biological oxygen demand and how strongly they offset each other (Resplandy, 2018). Both processes are strongly influenced by model resolution and are thus challenging to simulate at the centennial scale. It is projected that OMZs may either shrink or expand under projected climate change, depending on the efficiency of mixing (Duteil and Oschlies, 2011, Bahl et al., 2019, Lévy et al., 2021). As discussed above, this uncertainty is particularly large in the northern Indian Ocean where global forecast models generally fail to reproduce the current oxygen concentrations and distributions (McCreary et al., 2013; Rixen et al., 2020; Schimdt et al., 2021). This failure, and the uncertainty in future projections, may also be related to the lack of consideration of the role of cross-shelf transport of organic matter in Earth System models, which is a process that is known to contribute to the development of the OMZs in both the Arabian Sea and Bay of Bengal (Sarma et al., 2020; Udaya Bhaskar et al., 2021).

3. Carbon concentrations and fluxes
The earliest CO₂, pH and POC measurements in the Indian Ocean date back to the International Indian Ocean Expedition in the early 1960s (Figure 4; e.g., Newell, 1969; Berhman, 1981). Carbonate system measurements were also made in the Indian Ocean under the Geochemical Ocean Section Study (GEOSECS) in the 1970s (Moore, 1984), the Joint Global Ocean Flux Study (JGOFS; Fasham, 2003; see also https://en.wikipedia.org/wiki/Joint_Global_Ocean_Flux_SStudy) and the World Ocean Circulation Experiment (WOCE) in the 1990s (Woods, 1985). Subsequently in the first decade of the 21st century CLIVAR Repeat Hydrography project started (Gould et al., 2013), and carbonate system measurements continue through the present under the ongoing GO-SHIP program (Talley et al., 2017; see also https://www.go-ship.org/About.html) and the Second International Indian Ocean Expedition (IIOE-2; Hood et al., 2015). In addition to these major international efforts, there have been numerous national expeditions and programs that have contributed to the current inventory of carbonate system measurements in the Indian Ocean. For example, time-series observations of pH and pCO₂ are being made in the coastal waters of India revealing recent trends (Sarma et al., 2021). There is also now a mooring in the central Bay of Bengal (Figure 4) that has been collecting continuous CO₂ and pH measurements since November, 2013 (see https://www.pmel.nos.saa.gov/co2/story/BOBOA).

In contrast, the history of DOC measurements in the Indian Ocean dates back only to the early 1990s when it was discovered (thanks to advances in measurement methods that achieved ~1 µmol/kg precision sufficient to reveal DOC variability over space and time) that DOC concentrations are more dynamic than previously thought (Hansell, 2009). The timing of this discovery coincided with the onset of the JGOFS Arabian Sea Process Study when some of the earliest “modern” Indian Ocean DOC measurements were made. Subsequently, DOC concentration measurements were made in the Indian Ocean under the US CLIVAR Repeat Hydrography project and they continue under the ongoing GO-SHIP program and through national expeditions. DOC isotopes measurements are also now being made in the northern Indian Ocean to provide insight into DOC sources (Rao and Sarma, 2022).

3.1 Inorganic carbon distributions and fluxes

The Indian Ocean accounts for ~20% of the global oceanic uptake of atmospheric CO₂ (Takahashi et al., 2002). The Arabian Sea is a source of CO₂ to the atmosphere due to elevated pCO₂ within the Southwest Monsoon (SWM)-driven upwelling (Figure 4; see also Takahashi et al., 2009; 2014; Valsala and Maksyutov, 2010; 2013; de Verneil et al., 2021). North of 14°S the Indian Ocean loses CO₂ at a rate of 0.12 – 0.16 PgC/yr (Takahashi et al., 2002; 2009; 2014; de Verneil et al., 2021). The most intense air-sea CO₂ exchange occurs during the SWM where outgassing rates reach ~6 molC/m²/yr in the upwelling regions off Oman and Somalia, but the entire Arabian Sea contributes CO₂ to the atmosphere (Valsala and Murtugudde, 2015; Sreeush et al., 2018; 2020; de Verneil et al., 2021).

Time series measurements have shown that the rates of increase in DIC and pCO₂ per decade are consistent with global trends in the southwestern coastal Bay of Bengal, whereas rates in the northwestern coastal Bay of Bengal have been observed to be 3 to 5 times higher than the global trends (Sarma et al., 2015a). Thus, the northwestern Bay of Bengal, which was previously
considered to be a significant sink for atmospheric CO$_2$, now seems to have become a source of CO$_2$ to the atmosphere. Variability in CO$_2$ fluxes in the northwestern shelf region of the Bay of Bengal depends on the river discharge characteristics and the East India Coastal Current that distributes this water along the coast (Sarma et al., 2012). Nonetheless, it is still uncertain whether the entire Bay of Bengal is a net CO$_2$ source or sink due to the high levels of variability combined with sparse spatial and temporal sampling (Figure 4; Bates et al., 2006). South of 14°S the Indian Ocean appears to be a strong net CO$_2$ sink (-0.44 PgC/yr in the band 14°S-50°S; Figure 4). The solubility pump (CO$_2$ dissolution and its physical mixing and transport) and the biological pump (biologically mediated processes that export carbon) contribute equally to the CO$_2$ sink in the south Indian Ocean region (Valsala et al., 2012). Cold temperatures increase CO$_2$ solubility at higher latitudes and subduction in the subtropical front can transport this CO$_2$ into the ocean interior, but there is also evidence that chemical and biological factors are important, e.g., potential iron fertilization that facilitates particulate carbon export in the southern hemisphere of the Indian Ocean (Piketh et al., 2000).

In addition, the IOD leads to a substantial sea-to-air CO$_2$ flux variability in the southeastern tropical Indian Ocean over a broad region (70–105°E, 0–20°S), with the most intense effects manifesting near the coast of Java-Sumatra due to the impacts on upwelling dynamics and associated westward propagating anomalies. The sea-to-air CO$_2$ fluxes, surface ocean partial pressure of CO$_2$ (pCO$_2$), the concentration of dissolved inorganic carbon (DIC), and ocean alkalinity (ALK) range as much as ±1.0 mole m$^{-2}$ yr$^{-1}$, ±20 μatm, ±35 μmole kg$^{-1}$, and ±22 μmole kg$^{-1}$, respectively, within 80–105°E, 0–10°S due to the IOD. The DIC and ALK are significant drivers of pCO$_2$ variability associated with IOD (Valsala et al., 2020).

Synthesis of the seasonal, annual and interannual air-sea CO$_2$ fluxes based on both models (ocean, atmospheric inversions) and observations (Takahashi et al., 2009) reveals that the net sea-air CO$_2$ uptake estimated from observations (-0.24 PgC/yr) is consistent with uptake derived from models (-0.37 PgC/yr), given the uncertainties (Sarma et al., 2013). However, some models overestimate flux in the Bay of Bengal and underestimate flux in the Arabian Sea / northwestern Indian Ocean (Sarma et al., 2013). These offsets are likely due to the models being inadequately constrained by CO$_2$ observations. There are fewer observations in the Indian Ocean (especially north of 20°S) compared to other oceans in recent years (Figure 4; Bakker et al., 2014, see also www.socat.info). More observations of ocean DIC concentrations and carbon flux are needed in the Indian Ocean to constrain the models and reduce uncertainties in the fluxes. Toward this goal, Valsala et al. (2021) has recently done observing system simulation experiments for Indian Ocean pCO$_2$ arrays and recommended deployment of additional moorings at suitable locations to monitor and better constrain the Indian Ocean air-sea CO$_2$ fluxes. A few key ship-of-opportunity routes for underway pCO$_2$ sampling in the Indian Ocean are also recommended in their study.

3.2 Spatial and temporal variability in pH

Uptake of anthropogenic CO$_2$ by the ocean results in fundamental changes in seawater chemistry that can have significant impacts on ocean ecosystems (Doney et al., 2010; Gattuso and Hansson, 2011). Intergovernmental Panel on Climate Change (IPCC) business-as-usual emission scenarios indicate that atmospheric CO$_2$ levels will reach 800 ppm near the end of this century (Feely et al., 2009). The associated increase in oceanic CO$_2$ concentrations will lead to acidification (lower
pH) of the Indian Ocean over the coming decades, with potential severe negative impacts on
coral reefs and other calcifying organisms (Doney, 2010; IPCC, 2019). In 1995, the surface pH
values for the northern (20°E-120°E, 0°-24.5°N) and southern (20°E-120°E, 0°-40°S) Indian
Oceans were 8.068 +/- 0.03 and 8.092 +/- 0.03, respectively, which is the lowest of the major
ocean basins (Feely et al., 2009). It is not entirely clear why surface pH values are so low in the
Indian Ocean (Takahashi et al., 2014). Increases in sulphate and nitrogen aerosol loadings over
the Bay of Bengal from the Indo-Gangetic Plain and Southeast Asia may be mainly responsible
for the increased acidity in the northwestern Bay of Bengal in recent years (Sarma et al., 2015a).
Reduced Godavari River discharge together with a positive IOD event have also been shown to
contribute to enhanced acidification and pCO2 levels in the coastal waters in the western Bay of
Bengal (Sarma et al., 2015b). A study from the eastern Bay of Bengal indicates a decline in pH
of 0.2 from 1994 to 2012 (Rashid et al., 2013), which is considerably faster than the global
decline of 0.1 over the last century (IPCC 2007). Upwelling of low pH subsurface waters in the
Arabian Sea results in low surface pH (<7.9) during the SWM (Takahashi et al., 2014). Sreeush
et al. (2019) estimated that in addition to the anthropogenic causes, ocean warming exacerbates
acidification in the western Arabian Sea by an additional 16%. Chakraborty et al. (2021) studied
the seasonal drivers of surface ocean pH in the Arabian Sea and Bay of Bengal and found that
DIC and SST make complementary contributions to the seasonal cycle in pH. Tarique et al.
(2021) reported the first time series of Arabian Sea pH from proxy records of Boron Isotopes
from 1990 to 2013. Their investigation reveals that physical oceanographic processes, for
example, upwelling, downwelling and convective mixing modulated by El Niño-Southern
Oscillation (ENSO), largely control surface pH variability and mask expected long-term ocean
acidification trends resulting from anthropogenic CO2 rise. An increase in pH has been observed
in the eastern and southern Bay of Bengal during all seasons associated with warming and a
decrease in salinity (Sridevi and Sarma, 2021). In contrast, a decrease in pH (−0.001 yr−1) and a
pCO2 increase (+0.1 to +0.7 µatm yr−1) has been observed in the western and northern Bay of
Bengal during winter and spring seasons due to deposition of atmospheric pollutants (Sridevi and
Sarma, 2021). These studies suggest that increases in freshwater input due to melting of
Himalayan ice cover and deposition of atmospheric pollutants are dominant controlling factors
on surface ocean pH and pCO2 in the Bay of Bengal between 1998 and 2015, and this region is
acting as a stronger sink for the atmospheric CO2 in the present than in the past two decades
(Sarma et al., 2021; Sridevi and Sarma, 2021).

The susceptibility of the Indian Ocean coral communities to warming has been revealed by the
large-scale coral bleaching events of 1998, 2005, 2011 as well as between 2014 and 2017 caused
by high SST (McClanahan et al., 2007; Moore et al., 2012, Obura et al. 2017, Cerutti et al.
2020). Ocean acidification has the potential to exacerbate these negative impacts on coral reef
ecosystems. For example, the 1998 bleaching event altered the age distribution of commercially
harvested fish (Graham et al. 2007). Because of the combined effects of acidification, human
development and global warming, coral reef ecosystems may be at greater risk than previously
thought (Hoegh-Guldberg et al., 2007; IPCC, 2019). Moreover, some commercially fished
species (e.g., shelled mollusks) are directly vulnerable to ocean acidification (Hoegh-Guldberg et
al., 2014). A study off Somalia suggests that human-induced ocean acidification reduced the rate
at which foraminifera calcify, resulting in lighter shells (de Moel et al., 2009). Due to the effects
of acidification on calcifying pteropods, which are preyed on by many higher trophic level
organisms, the Southern Ocean sector of the Indian Ocean could experience major disruptions in pelagic food webs (Bednarsek et al., 2012).

In addition to the direct impacts of acidification, increasing CO₂ in the upper ocean could lead to increased primary productivity for some species (e.g., diazotrophic cyanobacteria; Hutchins et al., 2007), altering rates of nitrogen fixation and therefore the biogeochemistry of particulate organic matter formation and remineralization. Declines in pH also shift the chemical equilibrium from ammonia (NH₃) to ammonium (NH₄⁺), which could alter key biogeochemical processes such as nitrogen assimilation by phytoplankton and microbial nitrification (Gattuso and Hansson, 2011).

3.3 Large scale DOC and POC distribution and fluxes

Near-surface (< 50 meters) DOC concentrations in the Indian Ocean vary between ~50 and 80 µmolC/kg with the lowest values occurring south of 40° S (Hansell, 2009; Hansell et al., 2009; Figures 6, 7). In general, near-surface concentrations of DOC are positively correlated with temperature and, to a lesser extent, they are negatively correlated with nutrient concentrations. The positive correlation with temperature happens because warm, low-latitude waters tend to be more strongly stratified, and there is reduced vertical mixing. As a result, DOC concentrations increase in these waters even though there are low rates of net DOC production because the DOC is not mixed away (Hansell, 2009). As a result, near-surface DOC concentrations in the Indian Ocean tend to be highest (> 70 µmolC/kg) in tropical and subtropical waters (Hansell, 2009; Hansell et al., 2009; Figure 7). These patterns are also found in the Atlantic and Pacific (Hansell, 2009; Hansell et al., 2009).

Near-surface DOC concentrations tend to be inversely correlated with nitrate, silicate and phosphate concentrations because, when these nutrients are consumed, DOC is produced (Hansell, 2009). Thus, a negative correlation is also observed between DOC and nitrate and phosphate concentrations in the deep waters (> 500 meters) of the Indian Ocean where DOC concentrations decline to < 50 µmolC/kg (Figure 7) and nitrate and phosphate concentrations are substantially enriched. However, these correlations are not observed between DOC and silicate concentrations because in deep waters of the Indian Ocean there are large gradients in silicate that are associated with very little change in DOC (Hansell, 2009).

As in the Pacific and Atlantic, the lowest DOC concentrations in the Indian Ocean (40 - 42 µmol/kg at 3000 meters) are found below 1000 meters depth (Figure 7; Figure 2 in Hansell, et al., 2009). Global observations show that DOC concentrations below 1000 meters depth in the Indian Ocean are comparable to those in the Atlantic and significantly higher than deep DOC concentrations in the Pacific (< 40 µmol/kg at 3000 meters; Hansell et al., 2009). DOC concentrations decline below the euphotic zone because heterotrophic consumption exceeds autotrophic production (Hansell et al., 2009). Presumably, a significant fraction of the DOC below 1000 meters in the Indian Ocean is very old (> 4000 years) and refractory (resistant to bacterial consumption) as has been shown to be the case in the Atlantic and Pacific (Bercovici et al., 2018).
As observed elsewhere in the global ocean, satellite-estimated near-surface POC concentrations are elevated in coastal regions of the Indian Ocean with values often exceeding 120 mgC/m3 (= 10 μmolC/kg; Figure 8; Gardner et al., 2006). The highest POC concentrations in the Indian Ocean are observed in the northwestern part of the basin in the Arabian Sea and off of the coast of Somalia with values estimated to be greater than 96 mgC/m3 (= 8 μmolC/kg) extending well into the open ocean during the NEM (Figure 8). These high POC values are associated with high chlorophyll concentrations, although chlorophyll itself only accounts for > 6% of the POC and presumably the remainder is cellular and detrital material (Gardner et al., 2006). Note that C:Chl ratios range from ~15-158 by weight (Sathyendrenath et al, 2009). Elevated POC concentrations (> 72 mgC/m3 = 6 μmolC/kg) are also observed in the Indonesian Throughflow region (particularly during the Southeast Monsoon, SEM) and off of southern Africa over the Agulhas Bank, and in the Agulhas Current and its retroflection, again associated with high chlorophyll concentrations (> .4% of POC; Figure 8, Gardner et al., 2006). The lowest POC concentrations in the Indian Ocean are observed between 40° S and 10° N in the oligotrophic southern subtropical gyre and equatorial waters where primary production is very low (Gardner et al., 2006; Figure 8; see below).

Unsurprisingly, the spatial and temporal variability in POC export flux in the Indian Ocean is similar to the above mentioned patterns in POC and chlorophyll concentration, consistent with primary production as the main control on the spatial and temporal variability of organic carbon fluxes (Rixen et al., 2019a). However, as discussed above, in river-influenced regions like the Bay of Bengal, the spatial variability of organic carbon flux is also strongly influenced by lithogenic matter content. Rixen et al. (2019b) estimate that lithogenic matter content enhances organic carbon flux rates on average by 45% and by up to 62% in river-influenced regions of the Indian Ocean. This strong ballast effect explains why organic carbon fluxes are lower in the highly productive western Arabian Sea than they are in the relatively unproductive southern Java Sea. This explanation appears to be broadly consistent with the earlier global estimates of organic carbon burial and sediment accumulation rates calculated by Janke (1996; Figure 9), indicating that both are elevated in the coastal and northern regions of the Arabian Sea where rates of primary production are very high, but river influence is small. In contrast, both organic carbon burial and sediment accumulation rates are elevated over a much larger area in the Bay of Bengal where primary production is lower, but river influence is large (Janke, 1996; Figure 9).

3.4 Regional DOC and POC distributions and fluxes

3.4.1 Arabian Sea

DOC in the surface ocean is a short-term reservoir for carbon, expanding and contracting seasonally. In the Arabian Sea the highest near-surface (< 50 meters) DOC concentrations (80-100 μmolC/kg) are observed near the coast when upwelling is not active. During the SWM, upwelling results in lowered near-surface DOC concentrations along the western side of the basin, i.e., DOC concentrations increase seaward from <70 μmolC/kg near the coast to >80 μmolC/kg in the central Arabian Sea. In the open ocean, the highest surface DOC concentrations (80-95 μmolC/kg) are observed during the Northeast Monsoon (NEM) and they remain high through mid SWM. The lowest open ocean near-surface DOC concentrations (65-75 μmolC/kg)
are observed during late SWM and during the Fall Intermonsoon (Hansell and Peltzer, 1998; Hansell, 2009).

The seasonal accumulation of DOC north of 15°N in the Arabian Sea happens mostly during the NEM, and it has been estimated to be equivalent to 6-8% of annual primary production and 80% of net community production. In contrast, net DOC production is very small during the SWM (Hansell and Peltzer, 1998).

In the vertical, DOC concentrations decrease to values of <55 μmolC/kg at the top of the OMZ (~100 meters). Vertical layering is also observed in DOC concentrations in the Arabian Sea and is associated with vertical layering of the water masses, with Persian Gulf Water producing a clear signal of elevated DOC. DOC concentrations below 500 meters are low (<50 μmolC/kg) and relatively uniform across the basin and there appears to be little impact of the OMZ on DOC concentrations (Hansell and Peltzer, 1998; Hansell, 2009).

Consistent with satellite estimates (Gardner et al., 2006), in situ measurements of near surface (0 - 150 meters) POC concentrations in the Arabian Sea are generally high near the coast of Oman and decrease offshore throughout the year with concentrations often exceeding 12.5 μmolC/kg (Gunderson et al., 1998; Figure 10). The spatial distributions are always patchy due to the influence of mesoscale eddies and jets. Seasonal variations in POC concentrations in the upper 150 m can be the same order of magnitude as basin-wide spatial variations and these concentrations are strongly influenced by nutrient availability and mixing (Gunderson et al., 1998). POC and chlorophyll concentrations are clearly correlated (Figures 10 and 11), indicating that variability in phytoplankton production drives much of the observed POC variations (Gunderson et al., 1998; Gardner et al., 2006). Subsurface POC and chlorophyll maxima are also observed, particularly offshore and during the intermonsoon periods with the latter generally deeper and more pronounced, as observed elsewhere (e.g., Fennel and Boss, 2003; see also review by Cullen, 2015). Interestingly, when POC and chlorophyll concentrations are vertically integrated the values can be higher during the spring intermonsoon than during the SWM because of the strong subsurface POC and chlorophyll maxima that develop during the spring intermonsoon (Gunderson et al., 1998).

In the Arabian Sea, POC export normalized to 2000 meters ranges from < 6 to > 22 mgC m⁻² d⁻¹ (equal to < 0.5 to > 1.8 mmolC m⁻² d⁻¹) depending upon location and season (Rixen et al., 2019; Honjo et al., 1999). In contrast, POC export from the base of the euphotic zone in the western Arabian Sea estimated from the satellite-derived net primary production data and export fluxes calculated with a model give 258.3 and 335.7 mgC m⁻² d⁻¹ (equal to 21.5 and 27.9 mmolC m⁻² d⁻¹), respectively (Sreeush et al., 2018), suggesting dramatic declines in export at depth compared to the surface. The POC fluxes are generally highest in the western Arabian Sea during the SWM (> 20 mgC m⁻² d⁻¹ equal to > 1.7 mmolC m⁻² d⁻¹) where large seasonal variations in flux (7-24 mgC m⁻² d⁻¹ = 0.6-2 mmolC m⁻² d⁻¹) are also observed (Honjo et al., 1999; Rixen et al., 2019b). In contrast, POC fluxes at 2000 meters are generally much lower in the central Arabian Sea (4-12 mgC m⁻² d⁻¹ = 0.25-0.5 mmolC m⁻² d⁻¹) with the highest fluxes (> 10 mgC m⁻² d⁻¹ equal to > 0.8 mmolC m⁻² d⁻¹) also occurring during SWM, though with much less pronounced seasonal variations (Rixen et al., 2019; Honjo et al., 1999). These patterns of POC flux in the Arabian Sea are broadly consistent with organic carbon burial and sediment accumulation rates calculated.
by Janke (1996), though with the latter an order of magnitude lower (Figure 9; <5 to >50 mmolC m\(^{-2}\) yr\(^{-1}\)) which is equal to <0.01 to >.14 mmolC m\(^{-2}\) d\(^{-1}\)). Major flux events are also observed in the western Arabian Sea during both the SWM and NEM in association with passing eddies and wind-curl events; these events can dominate the annual mass flux (Honjo et al., 1999). \(^{234}\)Th-estimated POC export fluxes in the Arabian Sea reveal similar spatial and temporal patterns with POC export efficiencies varying from <2 to 5% (Subha Anand et al, 2018a,b).

3.4.2 Bay of Bengal

Some of the highest concentrations of DOC in the Bay of Bengal (75-100 μmolC/kg) are observed in the near-surface (< 50 meters) waters of the northern Bay of Bengal, primarily due to the large inputs of fresh water and terrigenous DOC from rivers (Hansell, 2009; Shah et al., 2018; Figure 7). In addition, this fresh water enhances near-surface stratification which helps to maintain the elevated DOC concentrations because it inhibits vertical mixing, as discussed above. The concentration of DOC in the upper ocean in the Bay of Bengal also exhibits a significant relationship with Chlorophyll-a, POC and DOC exudation rates, suggesting possible sources through in situ biological processes (Rao and Sarma, 2022). Elevated DOC concentrations are also observed to > 200 meters depth in the Bay of Bengal due to the remineralization of sinking POM from the surface waters (Shah et al., 2018; Figure 7). Near-surface DOC concentrations tend to decline at lower latitudes (<14°N, Hansell, 2009; Shah et al., 2018). Rao et al. (2021) report that about half of the primary production in the Bay of Bengal is released as DOC during the summer monsoon due to existence of oligotrophic conditions, warm waters and dominance of picophytoplankton biomass and Shah et al. (2018) estimate that DOC remineralization fuels ~18% of the apparent oxygen utilization. As observed in the Arabian Sea, DOC concentrations below 500 meters in the Bay of Bengal are low (<50 μmolC/kg) and relatively uniform across the basin, and there appears to be little impact of the OMZ on DOC concentrations (Figure 7).

In the Bay of Bengal, the near-surface concentrations of POC can vary from < 4 to > 10 μmol/kg depending on location and season (Fernandes et al., 2009; Figure 12). Spatial and temporal variations are smaller compared to the Arabian Sea with POC concentrations varying from 4.3 to 11.1 μmolC/kg, 3.1 to 10.9 μmolC/kg, and 4.3 to 9.0 μmolC/kg during SWM, fall intermonsoon, and spring intermonsoon, respectively, in one study (Fernandes et al. 2009). In contrast to the Arabian Sea, POC and chlorophyll concentrations can be higher offshore compared to coastal stations in the Bay of Bengal, especially during SWM (Fernandes et al., 2009; Vinayachandran, 2009; Thushara et al., 2019). These elevated offshore POC and chlorophyll concentrations are not, however, revealed by remote sensing. Rather, the satellite estimates generally indicate that the highest concentrations occur near the coast (Gardner et al., 2006; Figure 8). As in the Arabian Sea, POC and chlorophyll concentrations are correlated in the Bay of Bengal with subsurface chlorophyll maxima generally deeper and more pronounced, as discussed above (e.g., Fernandes et al., 2009). In general, POC concentrations and percent POC contribution to the total suspended particulate matter tends to decrease with increasing water column depth indicating heterotrophic remineralization of sinking particles (Fernandes et al., 2009). High chlorophyll concentrations and high Chla/POC ratios observed during the SWM and fall intermonsoon indicate the presence of relatively fresh POM in the Bay Bengal during these two seasons (Fernandes et al., 2009). POC concentration measured during the spring intermonsoon
POC export normalized to 2000 meters in the Bay of Bengal is generally lower and less strongly seasonal than in the Arabian Sea, with fluxes varying between 2 and 14 mgC m⁻² d⁻¹ (= 0.17 – 1.2 mmolC m⁻² d⁻¹; Rixen et al., 2019b). In contrast, POC export from the euphotic zone in the Sri Lanka Dome region estimated from the satellite-derived net primary production data and export fluxes calculated with a model give 118.5 and 427.4 mgC m⁻² d⁻¹ (equal to 9.8 and 35.6 mmolC m⁻² d⁻¹), respectively (Sreeush et al., 2018), again suggesting dramatic declines in export at depth compared to the surface. In general, riverine freshwater and nutrient inputs to the Bay of Bengal increase POC export near the coast. This pattern is revealed by ⁴²⁸Th-estimated POC export flux in the Bay of Bengal during the NEM, which varies from 0.1 to 1.6 mmolC m⁻² d⁻¹ with the highest flux observed in the east Indian coastal zone (Subha Anand et al., 2017). These patterns of POC flux are also broadly consistent with organic carbon burial and sediment accumulation rates calculated by Janke (1996), where the former are highest along the east coast of India (Figure 9). Though, as in the Arabian Sea, the organic carbon burial rates estimated by Janke (1996) are an order of magnitude lower than the POC fluxes normalized to 2000 meters from Rixen et al. (2019).

3.4.3 Equatorial waters, Indonesian Throughflow, and the Leeuwin Current

A modeling study reported by Hansell (2009) and Hansell et al. (2009) suggests a zonal decline in near-surface (30 meter) DOC concentrations along the equator in the Indian Ocean with values dropping from ~75 μmolC/kg in the east off of northern Sumatra to < 70 μmolC/kg in the west off of central east Africa. This pattern appears to be linked to the aforementioned declines in near-surface DOC concentrations to < 70 μmolC/kg that are associated with upwelling along the western side of the basin (Hansell and Peltzer, 1998; Hansell, 2009). The modeling study reported by Hansell (2009) and Hansell et al. (2009) also suggests that near-surface DOC concentrations are elevated to > 75 μmolC/kg in an open ocean region between 10° and 20°S and 80° and 100°E coincident with shallow OMZ (Figure 1), minimum sedimentation rate (Figure 9), and lower salinity (Figure 5), and that concentrations decline eastward to < 70 μmolC/kg in the the Indonesian Throughflow region and in the Leeuwin Current, but these features are not readily apparent in meridional or zonal sections (Figure 7). DOC concentrations below 500 meters in these waters are also low (<50 μmolC/kg) and uniform (Figure 7).

Satellite-estimated near-surface POC concentrations in open ocean equatorial waters of the Indian Ocean are generally low (< 60 mgC m⁻³ which is equal to < 5 μmolC/kg) with concentrations increasing during the SWM, especially in the west due to the aforementioned influence of coastal upwelling (Gardner et al., 2006; Figure 8). Elevated POC concentrations (> 72 mgC/m³ which is equal to > 6 μmolC/kg) are also observed in the eastern equatorial Indian Ocean along the coast off Sumatra and Java and in the Indonesian Throughflow region, particularly during the SEM. All of these regions of elevated POC are associated with elevated chlorophyll concentrations (> 0.4% of POC; Figure 8, Gardner et al., 2006). Unsurprisingly,
POC and chlorophyll concentrations are generally low along the coast of western Australia where the downwelling Leeuwin Current flows southward (Figure 8). Estimated organic carbon burial rates show similar patterns, i.e., low rates (< 5 mmolC m\(^{-2}\) yr\(^{-1}\)) in open ocean equatorial waters and higher rates in the west and east in association with upwelling and the influence of the Indonesian Throughflow (Janke, 1996; Figure 9). Surprisingly, estimated organic carbon burial rates are distinctly elevated (5-10 mmolC m\(^{-2}\) yr\(^{-1}\)) along the coast of Western Australia (Janke, 1996; Figure 9), likely due to coastal mixing processes, intermittent localized upwelling and eddy generation in the otherwise oligotrophic downwelling Leeuwin Current (Hood et al., 2017).

\(^{234}\)Th-estimates of POC export flux have revealed elevated values in eastern-central equatorial waters of the Indian Ocean during spring intermonsoon (up to 7.7 mmolC m\(^{-2}\) d\(^{-1}\)) in association with elevated rates of primary production (Subha Anand et al., 2017). These elevated rates are somewhat surprising given the downwelling circulation that is associated with the eastward-flowing equatorial currents (Strutton et al., 2015), but they are consistent with eastward increases in organic carbon burial and sedimentation rates along the equator (Janke, 1996; Figure 9). They are also consistent with eastward increases in POC export from the euphotic zone estimated from the satellite-derived net primary production data and export fluxes calculated with a model that give 149.4 and 590.5 mgC m\(^{-2}\) d\(^{-1}\) (equal to 12.54 and 49.2 mmolC m\(^{-2}\) d\(^{-1}\)), respectively, off Sumatra, compared to similarly estimated values of 110.8 and 220.1 mgC m\(^{-2}\) d\(^{-1}\) (equal to 9.2 and 18.3 mmolC m\(^{-2}\) d\(^{-1}\)), respectively, in the Seychelles-Chagos Thermocline Ridge region (Sreeush et al., 2018).

There are few direct measurements of POC concentrations and export flux off of western Australia. Waite et al. (2016) has shown that mesoscale eddies generated by the Leeuwin Current can strongly impact carbon export fluxes. Specifically, the subsurface distribution of particles in these eddies funnel into a wineglass shape down to 1000 m (Figure 13), leading to a sevenfold increase of vertical carbon flux in the eddy center versus the eddy flanks. This is consistent with the aforementioned idea that eddy generation in the Leeuwin Current gives rise to elevated organic carbon burial rates along the coast of Western Australia (Janke, 1996; Figure 9).

3.4.4 Southwestern Indian Ocean

Although the modeling study reported by Hansell (2009) and Hansell et al. (2009) suggests that near-surface (30 meter) DOC concentrations are lower (< 65 μmolC/kg) in the southwestern Indian Ocean and in the Mozambique Channel, these declines are not apparent in zonal sections (e.g., Figure 7). Rather, a meridional section along ~30° E (IO6N from Arctic to western South Africa) shows a very clear increase in near-surface (< 50 meter) DOC concentrations north of 45° S from < 50 μmolC/kg to >70 μmolC/kg (Hansel, 2009; Figure 7). Moreover, these elevated concentrations extend downward to > 300 meters depth (Figure 7). These data suggest that the Agulhas Current advects relatively high tropical and subtropical DOC concentrations southwestward along the coast of South Africa and also eastward in the Agulhas Retroflection, and that these elevated concentrations are being mixed downward in the current. This speculation is consistent with the fact that the Agulhas Current extends to >1000 meters depth and is derived from oligotrophic tropical and subtropical sources waters (Hood et al., 2017) that
have relatively high DOC concentrations (Figure 7). DOC concentrations below 1000 meters in these waters are low (<50 μmolC/kg) and relatively uniform (Figure 7).

Satellite estimates suggest that POC concentrations are generally low (< 72 mgC m⁻³ which is equal to < 6 μmolC/kg) in the southwestern Indian Ocean and in the Agulhas Current during both the austral summer and winter seasons (Gardner et al., 2006; Figure 8). But some elevated POC concentrations (> 72 mgC/m³, > 6 μmolC/kg) are observed in the austral winter in the Mozambique Channel, along the southwestern coast of South Africa, over the Agulhas Bank and in the Agulhas retroflection (Gardner et al., 2006; Figure 8). All of these regions are associated with elevated chlorophyll concentrations (> .4% of POC; Figure 8, Gardner et al., 2006). In the Mozambique Channel the elevated concentrations are associated with entrainment and offshore advection of coastal POM in eddies (Kolasinsky et al., 2012), whereas the elevated POM concentrations along the southwestern coast of South Africa and over the Agulhas Bank are associated with wind-induced and topographically controlled coastal upwelling (Hood et al., 2017; Hood et al., 2021, this volume). The tongue of elevated POC and chlorophyll concentration that is associated with the Agulhas retroflection is particularly striking (Figure 8). This is a region where strong eastward flows and persistent eddies are observed (Pazan and Niiler, 2004). It is possible that these eddies mix or upwell nutrients into the euphotic zone, fueling a low level of primary production. This region of elevated POC and chlorophyll extends all the way to the Kerguelen Islands during the austral summer (Figure 8; Gardner et al., 2006).

Estimated organic carbon burial rates in the southwestern Indian Ocean range from < 5 - ~10 mmolC m⁻² yr⁻¹ with the highest rates observed along the coastal zone of southeastern Africa (Janke, 1996; Figure 9). Interestingly, these estimates also clearly show elevated organic carbon burial (and sedimentation) rates in the same region where there is a tongue of elevated near-surface POC and chlorophyll concentration associated with the Agulhas retroflection (Gardner et al., 2006; compare Figures 8 and 9). These elevated carbon burial rates also extend all the way to the Kerguelen Islands. This is in contrast to the low carbon burial rates (< 5 mmolC m⁻² yr⁻¹; Janke, 1996; Figure 9) and low ²³⁴Th-estimated POC export fluxes (from 0.10 to 2.53 mmolC m⁻² d⁻¹ below 100m) that are observed slightly further south (Coppola et al., 2005).

3.4.5 Southern subtropical gyre

Near surface (< 50 meters) DOC concentrations in the southern subtropical gyre of the Indian Ocean are significantly elevated (> 75 μmolC/kg) between 10° and 35° S (Figure 7), consistent with the positive correlation between DOC concentrations and temperature, i.e., the southern subtropical gyre is warm and stratified and DOC concentrations become elevated because there is reduced vertical mixing. Near-surface DOC concentrations decline precipitously to < 50 μmolC/kg south of 40° S due to increased vertical mixing in the higher latitude waters (Figure 7). There is also evidence of subduction and northward transport of DOC in the subtropical front between 10° and 35° S where elevated DOC concentrations can be seen extending to > 250 meters depth (Figure 7). The source of this subducted water has DOC concentrations between 65 and 70 μmolC/kg, and as this water moves downward and equatorward the DOC is remineralized, dropping to ~55 μmolC/kg at 250 meters depth (Hansell, 2009; Figure 7). DOC concentrations below 500 meters in the southern subtropical Indian Ocean are also low (<50 μmolC/kg) and relatively uniform (Figure 7).
The lowest POC concentrations (<48 mgC/m³ equal to <4 umolC/kg) in the Indian Ocean are observed in the oligotrophic southern subtropical gyre. These low POC values are associated with low chlorophyll concentrations (<3% of POC; Figure 8, Gardner et al., 2006). These low POC and low percent chlorophyll waters dramatically increase in area during the Southern Hemisphere summer due to increases in summer stratification and lower nutrient availability (Gardner et al., 2006; Figure 8). Nonetheless, subsurface chlorophyll maxima exist below these oligotrophic regions (see Hood et al., 2022, this volume). It is likely that the subsurface chlorophyll maxima are associated with somewhat shallower subsurface POC maxima, with the latter weaker as discussed above.

Sediment trap-measured POC fluxes in the southern subtropical gyre of the Indian Ocean are some of the lowest recorded worldwide (~0.50 mgC m⁻² day⁻¹ = 0.04 mmolC m⁻² d⁻¹, measured at 500–600 and 2600–3500 meters; Harms et al., 2021). Low POC fluxes are consistent with the extremely low organic carbon burial (<2 mmolC m⁻² yr⁻¹) and sediment accumulation rates calculated by Janke (1996; Figure 9). These low POC fluxes are the result of the strongly stratified, nutrient-depleted and low productivity near-surface waters in the gyre (Harms et al., 2021; Hood et al., 2022; this volume). These continuously oligotrophic conditions result in an almost constant POC fluxes in space and time. The lack of seasonality in the POC fluxes can also be attributed to intense organic matter degradation in the water column (Harms et al., 2021). The small amount of variability that is observed is related to variations wind-induced physical mixing events and the passage of eddies. Preliminary estimates indicate that the average POC export efficiency is extremely low (~0.03%) in these waters (Harms et al., 2021).

5. Summary and conclusions

The thickest OMZ in the world is found in the northern Indian Ocean in the Arabian Sea where intermediate water (~200–800 m) oxygen concentrations decline to nearly zero, with consequent impacts on nitrogen cycling. These impacts include denitrification-driven reductions in deep NO₃⁻ concentrations, appearance of NO₂⁻ maxima, generation of greenhouse gases (N₂O) and globally-significant losses of fixed nitrogen from the ocean. In contrast, these biogeochemical impacts are not observed in the Bay of Bengal where intermediate water dissolved oxygen concentrations are poised just above the threshold below which denitrification becomes significant. The low oxygen conditions in the water column in both the Arabian Sea and the Bay of Bengal are associated with slow ventilation and high biological oxygen demand. It appears that a weaker ballast effect and higher biological productivity sustain higher biological oxygen consumption in the Arabian Sea compared to the Bay of Bengal, which balances the higher physical oxygen supply in the Arabian Sea and explains its more intense OMZ.

The volume of hypoxic waters and denitrification in the Arabian Sea strongly increase in response to increases in monsoon winds. Such increases in Arabian Sea denitrification are expected to cause increases in N₂ and N₂O production. However, global syntheses of long term OMZ variability reveal only a weak decrease of dissolved oxygen concentrations in the OMZs of the Arabian Sea and the Bay of Bengal in comparison to OMZs of the South Atlantic Ocean and the Pacific Ocean. Moreover, outbreaks of hydrogen sulfide have so far not been reported in the northern Indian Ocean during the last 50 years, other than in bottom waters on the Indian shelf.
The absence of \(\text{H}_2\text{S} \) implies that the interplay between physical oxygen supply and the biological oxygen consumption has largely maintained the current hypoxic/anoxic conditions in the Arabian Sea and the Bay of Bengal OMZs. However, recent observational and modeling studies indicate that oxygen concentrations are now decreasing in the Arabian Sea and that these decreases are having significant biogeochemical and ecological impacts. Future evolution of the northern Indian Ocean OMZs projected by Earth System models is highly uncertain.

The Indian Ocean remains one of the most poorly sampled ocean regions with respect to inorganic and organic carbon pools and air-sea carbon fluxes. The system accounts for \(~20\%\) of the global oceanic uptake of atmospheric \(\text{CO}_2 \). The Arabian Sea is a source of \(\text{CO}_2 \) to the atmosphere due to elevated \(\text{pCO}_2 \) within the SWM-driven upwelling whereas it is still uncertain whether the Bay of Bengal is a \(\text{CO}_2 \) source or sink due to the sparse spatial and temporal sampling. South of \(14^\circ\text{S} \) the Indian Ocean appears to be a strong net \(\text{CO}_2 \) sink due to the combined effects of both the solubility pump and the biological pump. Surface \(\text{pH} \) values in the Indian Ocean are among the lowest of the major ocean basins, and the reasons for this are poorly understood. Increases in sulphate and nitrogen aerosol loadings over the Bay of Bengal may be mainly responsible for the increased acidity in the northwestern Bay of Bengal in recent years and reduced river discharge together with a positive IOD event have also been shown to contribute to enhanced acidification and \(\text{pCO}_2 \) levels in the coastal waters in the western Bay of Bengal. Projected increases in oceanic \(\text{CO}_2 \) concentrations will lead to further acidification of the Indian Ocean over the coming decades, with potentially severe negative impacts on coral reefs and other calcifying organisms.

\(\text{DOC} \) concentrations in the Indian Ocean vary between \(~40 \) and \(80 \mu\text{molC/kg} \). \(\text{DOC} \) concentrations in the Indian Ocean tend to be high in stratified near-surface tropical and subtropical waters where \(\text{DOC} \) is produced and accumulates, and \(\text{DOC} \) concentrations are lowest in the deep ocean where heterotrophic consumption of \(\text{DOC} \) exceeds autotrophic production. As observed elsewhere in the global ocean, satellite-estimated near-surface POC concentrations are elevated in coastal regions of the Indian Ocean with values often exceeding \(120 \mu\text{gC/m}^3 \) \((= 10 \mu\text{molC/kg}) \). The highest POC concentrations in the Indian Ocean are observed in the northwestern part of the basin in the Arabian Sea and off the coast of Somalia with values estimated to be greater than \(96 \mu\text{gC/m}^3 \) \((= 8 \mu\text{molC/kg}) \). These high POC values are associated with high chlorophyll concentrations. The lowest POC concentrations \((< 48 \mu\text{gC/m}^3 \approx 4 \mu\text{molC/kg}) \) are observed in the oligotrophic southern subtropical gyre. These low POC values are associated with low chlorophyll concentrations.

The spatial and temporal variability in POC export flux in the Indian Ocean is similar to the above mentioned patterns in POC and chlorophyll concentration, consistent with primary production as the main control on the spatial and temporal variability of organic carbon fluxes. However, in river-influence regions, like the Bay of Bengal, the spatial variability of organic carbon flux is also strongly influenced by lithogenic matter content. In the Arabian Sea POC export at 2000 meters ranges from \(< 6 \) to \(> 22 \mu\text{gC/m}^2 \ \text{d}^{-1} \) \((< 0.5 \) to \(> 1.8 \mu\text{molC/m}^2 \ \text{d}^{-1}) \) with the highest fluxes observed during the SWM. In contrast, POC export at 2000 meters in the Bay of Bengal is generally lower and less strongly seasonal than in the Arabian Sea with fluxes varying between \(2 \) and \(14 \mu\text{gC/m}^2 \ \text{d}^{-1} \) \((0.17 \) to \(1.1 \mu\text{molC/m}^2 \ \text{d}^{-1}) \). \(^{234}\text{Th} \)-estimates of POC export flux have revealed elevated values in eastern-central equatorial waters of the Indian
Ocean (up to 7.7 mmolC m$^{-2}$ d$^{-1}$) in association with elevated rates of primary production. These elevated rates are surprising given the downwelling equatorial circulation, but they are consistent with zonal variations in satellite and model-based estimates of near surface POC export flux and organic carbon burial rates. There are few direct measurements of POC concentrations and export flux off of Western Australia where estimated organic carbon burial rates are distinctly elevated, perhaps due to the influence of Leeuwin Current eddies. Estimated organic carbon burial rates in the southwestern Indian Ocean range from < 5 - ~10 mmolC m$^{-2}$ yr$^{-1}$, with the highest rates observed along the coastal zone of southeastern Africa and in the Agulhas retroflection. POC export fluxes in the southern subtropical gyre of the Indian Ocean are some of the lowest recorded worldwide (~0.50 mg C m$^{-2}$ d$^{-1}$ = 0.04 mmolC m$^{-2}$ d$^{-1}$).

As in the other ocean basins, it is clear that there is a strong connection in the Indian Ocean between the physics that drives (or suppresses) nutrient delivery to the photic zone and responses of oxygen, CO$_2$ flux, pH, DOC, POC and POC export. Monsoonal wind forcing is a major driver of biogeochemical variability throughout the northern Indian Ocean and in equatorial waters. In addition, there are regionally specific processes that significantly modulate oxygen, CO$_2$ flux, pH, DOC, POC and POC export. For example, upwelling and strong advective impacts in the Arabian Sea; freshwater and stratification in the Bay of Bengal; the influence of ITF, poleward transport, downwelling and eddies in the southeastern Indian Ocean; and poleward transport of tropical waters, combined with localized upwelling in the southwestern Indian Ocean. The southern subtropical gyre is extremely oligotrophic.

Observational and modeling research should be aimed at improving understanding of northern Indian Ocean OMZ variability at seasonal and decadal time scales. Further, uncertainty in future projections needs to be reduced. Additional observations are also needed to better constrain air-sea CO$_2$ fluxes and the carbon cycle in general. Measurements of CO$_2$ and DOC concentrations, capturing spatial and temporal variability, are particularly sparse. This improved understanding is needed to predict the impacts of anthropogenic influence and global warming on Indian Ocean biogeochemistry and ecosystems and also for understanding the role of the Indian Ocean in global ocean biogeochemical cycles both now and in the future.

6. Educational Resources

- Ocean Data View, free software for plotting oceanographic data. Available at: https://odv.awi.de
- World Ocean Atlas, a collection of objectively analyzed, quality controlled temperature, salinity, oxygen, phosphate, silicate, and nitrate means based on profile data from the World Ocean Database. Available at: https://www.ncei.noaa.gov/products/world-ocean-atlas
- Surface Ocean CO$_2$ Atlas (SOCAT) is a synthesis of quality-controlled, surface ocean fCO$_2$ (fugacity of carbon dioxide) observations by the international marine carbon research community. Available at: https://www.socat.info
- Satellite ocean color data. Available at: https://oceancolor.gsfc.nasa.gov
Acknowledgements

The development of this article was supported by the Scientific Committee for Oceanic Research (SCOR) via direct funding to the Second International Indian Ocean Expedition (IIOE-2) and indirect funding through the Integrated Marine Biosphere Research (IMBeR) regional program SIBER (Sustained Indian Ocean Biogeochemistry and Ecosystem Research). Additional support was provided by NASA grant no. 80NSSC17K0258 49A37A, NOAA grant no. NA15NMF4570252 NCRS-17, and NSF grant no. 2009248 to R. Hood. The Ocean Data View software package (https://odv.awi.de) was used in developing this article’s original graphics. The article also benefitted from extensive comments provided by Dr. V.V.S.S. Sarma and one anonymous reviewer. This is UMCES contribution YYYY.

Author contributions

All authors contributed to writing of the text, discussion of content, and structure of the chapter.

Index Terms

Indian Ocean, Arabian Sea, Bay of Bengal, Indonesian Throughflow, Leeuwin Current, Mozambique Channel, Agulhas Current, Indian Ocean southern subtropical gyre, oxygen, oxygen minimum zone, salinity, stratification, denitrification, N_{2}O, CO_{2}, pH, dissolved organic carbon (DOC), particulate organic carbon (POC), carbon export flux.

References

Bopp, Laurent, Laure Resplandy, James C Orr, Scott C Doney, John P Dunne, M Gehlen, P Halloran, Christoph Heinze, Tatiana Ilyina, and Roland Seferian. 2013. 'Multiple
stressors of ocean ecosystems in the 21st century: projections with CMIP5 models',
Biogeosciences, 10: 6225-45.

Bristow, Laura A, Cameron M Callbeck, Morten Larsen, Mark A Altabet, Julien Dekaezemacker, Michael Forth, M Gauns, Ronnie N Glud, Marcel MM Kuypers, and Gaute Lavik. 2017. 'N₂ production rates limited by nitrite availability in the Bay of Bengal oxygen minimum zone', *Nature Geoscience*, 10: 24-29.

Codispoti, L., J. A. Brandes, J. Christensen, A. Devol, S. Naqvi, H. W. Paerl, and T. Yoshinari. 2001. 'The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as we enter the anthropocene?', *Scientia Marina (Barcelona)*, 65, suppl. 2: 85-105.

Lachkar, Zouhair, Marina Lévy, and Shafer Smith. 2018. 'Intensification and deepening of the Arabian Sea oxygen minimum zone in response to increase in Indian monsoon wind intensity', *Biogeosciences*, 15: 159-86.

Rixen, Tim, Antje Baum, Birgit Gaye, and Birgit Nagel. 2014. 'Seasonal and interannual variations in the nitrogen cycle in the Arabian Sea', *Biogeosciences*, 11: 5733-47.

Sarma, VVSS, MS Krishna, YS Paul, and VSN Murty. 2015a. 'Observed changes in ocean acidity and carbon dioxide exchange in the coastal Bay of Bengal--a link to air pollution', *Tellus B: Chemical and Physical Meteorology*, 67: 24638.

Sarma, VVSS, MS Krishna, VD Rao, R Viswanadham, NA Kumar, TR Kumari, L Gawade, S Ghatkar, and A Tari. 2012. 'Sources and sinks of CO2 in the west coast of Bay of Bengal', *Tellus B: Chemical and Physical Meteorology*, 64: 10961.

Sarma, VVSS, YS Paul, DG Vani, and VSN Murty. 2015. 'Impact of river discharge on the coastal water pH and pCO2 levels during the Indian Ocean Dipole (IOD) years in the western Bay of Bengal', *Continental Shelf Research*, 107: 132-40.

Schmidt, Henrike, Rena Czeschel, and Martin Visbeck. 2020. 'Seasonal variability of the circulation in the Arabian Sea at intermediate depth and its link to the Oxygen Minimum Zone', *Ocean Science Discussions*.

Tchernia, Paul. 1980. 'Descriptive regional oceanography'.

Thushara, Venugopal, Puthenveettil Narayana Menon Vinayachandran, Adrian J Matthews, Benjamin GM Webber, and Bastien Y Queste. 2019. 'Vertical distribution of chlorophyll in dynamically distinct regions of the southern Bay of Bengal', Biogeosciences, 16: 1447-68.

Waite, Anya M, Lars Stemmann, Lionel Guidi, Paulo HR Calil, Andrew Mc C Hogg, Ming Feng, Peter A Thompson, Marc Picheral, and Gaby Gorsky. 2016. 'The wineglass effect shapes particle export to the deep ocean in mesoscale eddies', Geophysical Research Letters, 43: 9791-800.

<table>
<thead>
<tr>
<th>Terminology</th>
<th>Threshold for impacts to occur maybe in different units</th>
<th>Impacts</th>
<th>Indian Ocean Regions with oxygen minimums below threshold</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild Hypoxia</td>
<td>107 µmol/kg, 109 µM, 3.5 mgO2/l, ~53 % saturation,</td>
<td>Sensitive species show avoidance reactions</td>
<td>Eastern and Central Indian Ocean south of 20S, Western Indian Ocean south of 10S</td>
<td>Cenr 2010</td>
</tr>
<tr>
<td>Hypoxia</td>
<td>61 µmol/kg, 63 µM, 2 mgO2/l, ~30 % saturation,</td>
<td>Fishes and the majority of higher organisms suffer from oxygen deficiency, ecosystem adapted to low oxygen conditions</td>
<td>Arabian Sea, Bay of Bengal</td>
<td>Ekau et al., 2010; Vaquer-Sunyer and Duarte 2008</td>
</tr>
<tr>
<td>Microbial hypoxia, suboxic, Severe hypoxia, typical OMZ definition.</td>
<td>22 µmol/kg, 22 µM, 0.71 mgO2/l, ~11 % saturation</td>
<td>Microbes start to experience the toxic effects of oxygen on anaerobic processes, only highly specialized species survive</td>
<td>Northern tropical Indian Ocean</td>
<td>Rixen et al., 2020, Diaz and Rosenburg (2008)</td>
</tr>
<tr>
<td>Functional anoxia</td>
<td>0.05 µM</td>
<td>Anaerobic microbial processes dominate, nitrite accumulation</td>
<td>Central and Eastern Arabian Sea</td>
<td>Rixen et al., 2020, Morrison et al., 1999, Ulloa et al, 2012</td>
</tr>
</tbody>
</table>
Figure 1: Spatial maps of the A) oxygen concentration (umol/kg) at the depth of the oxygen minimum, B) nitrate to phosphorus ratio at the depth of the oxygen minimum, C) the depth (m) of the oxygen minimum, D) the potential density anomaly (kg/m³) at the depth of the oxygen minimum.
Figure 2: Comparison of vertical profiles of (a) oxygen, (b) nitrate and (c) nitrite in the Arabian Sea (filled circles) and Bay of Bengal (open circles). Station locations are shown in insets. The Arabian Sea inset also shows limit of the denitrification zone to the eastern-central basin. Figure reproduced from Naqvi et al. (2006).
Figure 3: Changes in dissolved oxygen (DO) (μmol kg⁻¹) at 200 dbar between 1960–1974 and 1990–2008 in the Indian Ocean. Increases (decreases) in DO are indicated in red (blue). Areas with differences below the 95% confidence interval are shaded by black horizontal lines. Figure modified from Stramma et al. (2010).
Figure 4: Annual CO₂ flux (mol C m⁻² yr⁻¹) referenced to the year 2000 (Takahashi et al., 2009) over the Indian Ocean. Data points colored by year of collection (Takahashi & Sutherland, 2016) are overlaid as points. Major rivers are also delineated over the continents. The star in the central Bay of Bengal shows the location of a mooring that has been collecting continuous CO₂ and pH measurements since November, 2013. Figure and caption from Hood et al. (2019).
Figure 5: Map of the Indian Ocean showing oceanographic sections discussed (left) and gridded surface salinity (right) during austral summer (WOA), with transports associated with the Indonesian Throughflow (ITF) and Agulhas Current (AC) indicated. Relevant basins are labeled: Arabian Sea (AS); Bay of Bengal (BB); Red Sea (RS); Arabian Gulf (AG), also known as the Persian Gulf.
Figure 6: Surface distributions of salinity (left) and DOC (μmolC/kg; right) observed during cruises. Data from Hansell et al. (2021).
Figure 7: Upper 1500 m section plot of DOC (color; μmolC/kg) and salinity (contours) along I09N/I08S (top panel, occupied in 2016), I05 (middle panel, occupied in 2009) and I06S (bottom panel, occupied in 2019). Data from Hansell et al. (2021).
Figure 8: Distribution of: (A) SeaWiFS CHL (mg m\(^{-3}\), level 3, reprocessing 4 data); (B) average POC (mgC m\(^{-3}\)) over one attenuation depth calculated from \(K_{490}\cdot c_p\cdot POC\); (C) CHL as a % of POC for: (Left Panels) summer season (1997–2002, May–August, 20 months); (Right Panels) winter season (1997–2002, December–March, 20 months). White lines in (B) mark boundaries separating ocean basins as used by Behrenfeld and Falkowski (1997). Figure and caption modified from Gardner et al. (2006).
Figure 9: Estimated A) organic carbon burial rate (mmolC m\(^{-2}\) yr\(^{-1}\)); B) sediment accumulation rate (grams per square centimeter per thousand years); and C) seafloor distribution of organic carbon (weight percent). Figures and caption modified from Jahnke (1996).
Figure 10: POC sections of the northern transect (left panels) and southern transect (right panels) for each cruise. Mean MLD [delta sigma = 0.03] (dotted line) and 0.5 μM/l nitrate isopleth (solid line) are shown for each cruise. The station locations are shown in the map inset in the upper left panel. Figures and caption modified from Gunderson et al. (1998).
Figure 11: Chlorophyll sections of the northern transect (left panels) and southern transect (right panels) for each cruise. Mean MLD \([\text{delta sigma} = 0.03]\) (dotted line) and 0.5 \(\mu\text{M/l}\) nitrate isopleth (solid line) are shown for each cruise. The station locations are shown in the map inset in the upper left panel. Figures and caption modified from Gunderson et al. (1998).
Figure 12: Distributions of chlorophyll a concentration (Chl a ng/l, top panels) and particulate organic carbon (POC μM C, bottom panels) in the central Bay of Bengal during (a) SWM, (b) FIM and (c) SPIM. Figure and caption modified from Fernandes et al. (2009).
Figure 13: (a) Sea-surface temperature (°C) and (b) chlorophyll a (mg m\(^{-3}\)) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite, showing the mesoscale eddy in the Leeuwin Current (LC) off Australia. White circles indicate stations sampled. Spatial distributions of particles across the eddy: (c) Small (0.06–0.5 mm) and (d) large (0.5–1 mm) particles shown in color, with isopycnals contoured in white. Figures and caption modified from Waite et al. (2016).