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A FREE DISCONTINUITY APPROACH TO OPTIMAL PROFILES IN STOKES

FLOWS

DORIN BUCUR, ANTONIN CHAMBOLLE, ALESSANDRO GIACOMINI, AND MICKAËL NAHON

Abstract. In this paper we study obstacles immersed in a Stokes flow with Navier boundary condi-
tions. We prove the existence and regularity of an obstacle with minimal drag, among all shapes of
prescribed volume and controlled surface area, taking into account that these shapes may naturally
develop geometric features of codimension 1. The existence is carried out in the framework of free
discontinuity problems and leads to a relaxed solution in the space of special functions of bounded
deformation (SBD). In dimension 2, we prove that the solution is classical.
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1. Introduction

Consider an obstacle E ⊂ Rd (d = 2, 3 in real applications) contained in a (finite) channel Ω in which
a fluid with viscosity coefficient µ > 0 is flowing. Assume that the flow is stationary and incompressible,
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and that the associated velocity field u is equal to a constant vector V∞ on the walls of the channel.
The obstacle E experiences a force, whose component in direction of V∞ will be denoted by Drag(E)
and is usually called the drag force. If we further assume that the velocity of the fluid satisfies the
Stokes equation in Ω \ E and obeys to Navier boundary conditions on ∂E, the expression of the drag
force turns out to be given (up to a multiplicative constant) by

(1.1) Drag(E) = 2µ

∫
Ω\E
|e(u)|2 dx+ β

∫
∂E
|u|2 dHd−1,

where e(u) := 1
2(Du+(Du)∗) denotes the symmetrized gradient of u and β > 0 is the friction coefficient

(we refer to Subsection 3.2 for details).
We are interested in minimizing the drag force among all obstacles E with a prescribed volume

and controlled surface area. Precisely we look for the existence of such an optimal obstacle and for
its qualitative properties. The existence question is not very relevant as soon as one imposes strong
geometric constraints on the admissible obstacles (e.g. convexity, uniform cone conditions, etc.) since
this may hide some specific features which would naturally occur. Indeed, letting the geometry of
the obstacle to be completely free, some qualitative behavior (blocked by rigid geometric constraints)
can be observed. This is the case of our problem, where the optimal obstacle (that we prove to exist
without imposing any geometric or topological constraint) may be composed, roughly speaking as a
union of a body with the prescribed volume and pieces of surfaces of dimension d−1. Those surfaces do
not have volume, but count for the total surface area Hd−1(∂E) and of course have a strong influence
on the flow.

Penalizing the surface area and the volume, the model problem we are interested in can be written
as

min
E

{
Drag(E) + cHd−1(∂E) + f(|E|)

}
,

where c > 0 and f : (0, |Ω|) → R ∪ {+∞} is a lower semicontinuous function. Roughly speaking, the
terms involving perimeter and volume can be thought as a price to pay in order to build the obstacle
E, and we can give the two relevant choices of function f :

f(m) = +∞1{m6=m0} for some m0 ∈ (0, |Ω|), or f(m) = −λm for some λ > 0.

Many similar optimisation problems have been considered under the “no-slip” boundary condition,
meaning flows for which u = 0 at ∂E. Under volume constraint and an a priori symmetry hypothesis
around an axis parallel to the flow, the minimal drag question has been studied in [36] on smooth
surfaces. In [31], still under symmetry hypotheses, it was conjectured that the optimal profile in three
dimensions is a prolate spheroid with sharp ends of angle of 120 degrees. In the same symmetry
context, let us also mention the slender body approximation of [34]. We also refer the reader to

the paper by S̆verák [35] who, in two dimensions, proves the existence of an optimal obstacle under
topological hypotheses, namely that the obstacle has at most a given number of connected components
(in particular this number can be equal to 1). The proof is genuinely two dimensional and can not be
extended to higher dimensions.

The Navier boundary condition gives many new challenges, namely the possible apparition of lower
dimensional structures in the obstacle that minimize the drag, something which was absent under the
no-slip condition. The Navier boundary condition may be seen as a partial adherence to the boundary
of the obstacle, and it may be asymptotically obtained as a limit of flows with perfect slip on an obstacle
with rough boundary. More precisely, a periodic microstructure with the right scaling on the boundary
is modelled at the limit by a Navier boundary condition, as was proved in [14]. In dimension higher
than two it is also necessary to take into account more complex geometries for the microstructure,
which at the limit produce an anisotropic factor that favors certain directions of the flow. Moreover,
infinitesimal boundary perturbations can dramatically modify the solution of the Stokes equation with
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Navier boundary conditions, while in presence of no-slip boundary conditions the solution remains
stable. We refer the reader to [9] for an analysis of those phenomena and for a discussion on the
pertinence of the Navier boundary conditions in physical models.

For a fixed obstacle E, the minimization of the drag with respect to the friction parameter β of
the Navier conditions (meaning, from a physical point of view, with respect to the microstructure
on the boundary) has been studied in [5], for both Stokes and Navier-Stokes flows. While for Stokes
flows the drag is increasing with the friction parameter, an important observation which occurs for the
Navier-Stokes equation is that the monotonicity of the drag with respect to the parameter β does not
hold. This is a reason for which the results we give in this paper for the Stokes flows are not expected
to hold, as such, for the Navier-Stokes equation.

Since the stationary velocity field associated to a Lipschitz obstacle E turns out to be characterized
variationally as the minimizer of the right hand side of (1.1) in the class of admissible velocities

Vreg
E,V∞

(Ω) =
{
u ∈ H1(Ω \ E;Rd) : divu = 0, u|∂E · νE = 0, u|∂Ω = V∞

}
(see (3.4) in Subsection 3.1 for more details), we can conveniently rephrase the minimization problem
by letting also the velocity fields intervene explicitely in the form

(1.2) min
E,u∈Vreg

E,V∞ (Ω)

{
2µ

∫
Ω\E
|e(u)|2 dx+ β

∫
∂E
|u|2 dHd−1 + cHd−1(∂E) + f(|E|)

}
.

The first main goal of the paper is to find suitable relaxations of problem (1.2) for which we can
prove the existence of minimizers without any a priori constraint on the regularity or the topology of
the sets E.

In order to avoid unnatural geometric restrictions on the obstacle E, it is natural in view of the
third term appearing in (1.2) to let it vary within the class of sets of finite perimeter (see Subsection
2.2), and replace the topological boundary with reduced one ∂∗E.

In order to describe properly obstacles with very narrow spikes which in the limit degenerate to
(d−1)-surfaces and that cannot be taken into account through the reduced boundary, it is convenient to
consider admissible velocity fields which can be discontinuous outside E (see Subsection 3.3). Since the
symmetrized gradient e(u) is involved explicitly in (1.2), a natural family for the admissible velocities
is given by the space of functions of bounded deformation SBD. The natural relaxation of the energy
takes the form (see Remark 4.11 for further comments)

J (E, u) :=2µ

∫
Ω\E
|e(u)|2 dx+ β

∫
∂∗E
|u+|2 dHd−1 + β

∫
Ju\∂∗E

[|u+|2 + |u−|2] dHd−1

+ cHd−1(∂∗E) + 2cHd−1(Ju \ ∂∗E) + f(|E|),
(1.3)

where u is set equal to zero a.e. in E, while Ju denotes the discontinuity set of u and u± are the traces
of u on ∂∗E and Ju (the trace u− vanishes on ∂∗E by the choice of orientation, while u+ is on the
outward side).

Within this framework the global obstacle is given by E∪Ju, so that it contains also lower dimensional
parts, namely Ju \∂∗E: roughly speaking, for the optimal velocity these discontinuous regions generate
(d− 1)-surfaces which correspond to volumeless, lower dimensional subsets of the optimal obstacle.

Admissible velocities must be tangent to the obstacles, meaning that not only u is tangent to ∂∗E,
but also the two traces u± are orthogonal to the normal νu along the jump set Ju. The contribution
of the Navier surface term takes naturally into account the contribution from both sides given by u±.
Concerning the perimeter term, we count twice the lower dimensional parts because we see the relaxed
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obstacle as a limit of regular obstacles, such that points of Ju \ ∂∗E correspond to thin parts of the
regular obstacle that collapse on a lower-dimensional structure. We could also see the perimeter term
as a price to pay in order to construct the obstacle and just keep Hd−1(∂∗E ∪ Ju) instead, and the
main results of the paper would not be affected.

The relaxed optimization problem can be seen as a minimization problem on the pairs (E, u) which
has the features of classical geometrical problems for E coupled with a free discontinuity problem for
u, with a surface term depending on the traces which are subject to suitable tangency constraints and
boundary conditions.

The first main results of the paper (Theorem 4.8) concerns the existence of minimizers for the relaxed
functional J in (1.3) among the class of admissible configurations (see Definition 4.1 for the precise
definition).

The main difficulties we have to face in order to prove that the problem is well posed are the
following:

(a) the closure of the non-penetration constraint for the velocity on ∂∗E ∪ Ju under the natural
weak convergence of the problem;

(b) the lower semicontinuity of energies of the form

(1.4)

∫
Ju

[|u+|2 + |u−|2] dHd−1

associated to the Navier conditions.

Point (a) is a consequence of a lower semicontinuity result for the energy∫
Ju

[
|u+ · νu|+ |u− · νu|

]
dHd−1

which is proved in Theorem 5.2, by resorting to recent lower semicontinuity results for functionals on
SBD by Friedrich, Perugini and Solombrino [28].

The energy of point (b) naturally appears in a scalar setting when dealing with shape optimization
problems involving Robin boundary conditions (see e.g. [8, 12, 11, 13]), and it is easily seen to enjoy
lower semicontinuity properties by working with sections. The lower semicontinuity result in the
vectorial SBD setting is given by Theorem 5.4 and cannot rely on an easy argument by sections, which
instead would yield the lower semicontinuity of an energy of the form∫

Ju

[
|u+ · ξ|2 + |u− · ξ|2

]
|ξ · νu| dHd−1

with ξ ∈ Rd with |ξ| = 1: the optimization in ξ in order to recover (1.4) does not seem feasible in
dimension d ≥ 3. We thus follow a different strategy based on a blow up argument in which we
reconstruct the vector quantities u± by controlling them along a sufficiently high number of directions
(see Subsection 5.3 for details): in this way we can deal with more general energy densities of the form
φ(u+) + φ(u−), where φ is a lower semicontinuous function.

The second main result of the paper (see Theorem 4.10) concerns the regularity of the relaxed
minimizers of (1.3). Provided that the volume penalization function f is Lipschitz and that we are in
two dimensions, we prove that for a minimizer (E, u) of J , the optimal obstacle E ∪ Ju is a closed set,
while the optimal velocity u is a smooth Sobolev function outside the obstacle, recovering somehow
the classical setting of the problem. More precisely we show that

(1.5) H1(Ω ∩ ∂∗E ∪ Ju \ (∂∗E ∪ Ju)) = 0,

so that the optimal obstacle can be described as the closed set obtained by the complement of the
connected components of Ω \ ∂∗E ∪ Ju on which u does not vanish identically.



OPTIMAL PROFILES IN STOKES FLOWS 5

The technical ideas to prove (1.5) stem from the pioneering result of De Giorgi, Carriero and Leaci
on the Mumford-Shah problem [30, 24], where the key of the proof is a decay estimate obtained by a
contradiction/compactness argument. For vectorial problems, a similar strategy, but definitely more
involved, was used for the Griffith fracture problem in [19] (for the two-dimensional case) and in [16]
(for higher dimension). In the fracture problem, the key compactness result relies on the possibility to
approximate a field u ∈ SBD([−1, 1]d) with a small jump set by a Sobolev function which is locally
controlled in H1 (via the classical Korn inequality).

In our case, we follow a similar approximation procedure, but we have to handle two additional
constraints: incompressibility and non-penetration at the jumps. From a technical point of view, this
is problematic since the bound in [19] in not strong enough to stay in divergence-free vector fields and
the method in [16] creates new jumps on which the non-penetration constraint is not a priori verified.
However, when restricted to two dimensions, the method of [16] leads to a stronger result, so that both
constraints can be handled.

The paper is organized as follows. In Section 2 we fix the notation and recall some basic facts
concerning sets of finite perimeter, functions of bounded deformation and Hausdorff convergence of
compact sets. Section 3 is devoted to the precise exposition of the drag optimization problem. In
Section 4 we detail the relaxation of the problem in the family of obstacle of finite perimeter and with
velocities of bounded deformation, and formulate the main results of the paper concerning the existence
of minimizers (in any dimension) and their regularity in dimension two. The proof of the existence of
minimizers is given in Section 6, and it is based on some technical results for SBD functions collected
in Section 5, while the regularity result is proved in Section 7.

2. Notations and Preliminaries

2.1. Basic notation. If E ⊆ Rd, we will denote with |E| its d-dimensional Lebesgue measure, and by
Hd−1(E) its (d−1)-dimensional Hausdorff measure: we refer to [25, Chapter 2] for a precise definition,
recalling that for sufficiently regular sets Hd−1 coincides with the usual area measure. Moreover, we
denote by Ec the complementary set of E, and by 1E its characteristic function, i.e., 1E(x) = 1 if
x ∈ E, 1E(x) = 0 otherwise. In addition we will say that E1 b E2 if E1 ⊂ E2. Finally we will denote
with Qx,r ⊆ Rd the cube of center x and side r: when x = 0, we will simply write Qr.

If A ⊆ Rd is open and 1 ≤ p ≤ +∞, we denote by Lp(A) the usual space of p-summable functions
on A with norm indicated by ‖ · ‖p. W 1,p(A) will stand for the Sobolev space of functions in Lp(A)

whose gradient in the sense of distributions belongs to Lp(A;Rd). Finally, given a finite dimensional
unitary space Y , we will denote byMb(A;Y ) the space of Y -valued Radon measures on A, which can
be identified with the dual of Y -valued continuous functions on A vanishing at the boundary.

We will denote by Md×m the set of d ×m matrices with values in R: when d = m we will denote
by Md×d

sym the subspace of d× d symmetric matrices. For a ∈ Rd and b ∈ Rm we will denote with a⊗ b
the element of Md×m such that

(a⊗ b)ij = aibj ,

while if a, b ∈ Rd we denote with a� b the matrix in Md×d
sym such that

(a� b)ij =
aibj + ajbi

2
.

Given ξ ∈ Rd with |ξ| = 1, we denote with ξ⊥ the hyperplane through the origin orthogonal to ξ. If
E ⊆ Rd, we set

(2.1) Eξ := πξ⊥(E),
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where π denotes the orthogonal projection, and for y ∈ ξ⊥ we set

(2.2) Eξy := {t ∈ R : y + tξ ∈ E}.

2.2. Functions of bounded variation and sets of finite perimeter. If Ω ⊆ Rd is open, we say
that u ∈ BV (Ω;Rm) if u ∈ L1(Ω;Rm) and its derivative in the sense of distributions is a finite
Radon measure on Ω, i.e., Du ∈ Mb(Ω;Md×m). BV (Ω;Rm) is called the space of functions of
bounded variation on Ω with values in Rm and it is a Banach space under the norm ‖u‖BV (Ω;Rm) :=
‖u‖L1(Ω;Rm) + ‖Du‖Mb(Ω;Md×m). We call |Du|(Ω) := ‖Du‖Mb(Ω;Md×m) the total variation of u. We

refer the reader to [1] for an exhaustive treatment of the space BV .
We say that u ∈ SBV (Ω;Rm) if u ∈ BV (Ω;Rm) and its distributional derivative can be written in

the form

Du = ∇u dx+ (u+ − u−)⊗ νuHd−1bJu,
where ∇u ∈ L1(Ω;Md×m) denotes the approximate gradient of u, Ju denotes the set of approximate
jumps of u, u+ and u− are the traces of u on Ju, and νu(x) is the normal to Ju at x.

Note that if u ∈ SBV (Ω;Rm), then the singular part of Du is concentrated on Ju which is a
countably Hd−1-rectifiable set: there exists a set E with Hd−1(E) = 0 and a sequence (Mi)i∈N of
C1-submanifolds of Rd such that Ju ⊆ E ∪

⋃
i∈NMi.

We will say that E ⊆ Rd with |E| < +∞ has finite perimeter if 1E ∈ BV (Rd). The perimeter of E
is defined as

Per(E) = |D1E |(Rd).
It turns out that

D1E = νEHd−1b∂∗E, Per(E) = Hd−1(∂∗E),

where ∂∗E is called the reduced boundary of E, and νE is the associated inner approximate normal (see
[1, Section 3.5]). We have that ∂∗E ⊆ ∂E, but the topological boundary can in in general be much
larger than the reduced one. If A ⊆ Rd is open and bounded with Hd−1(A) < +∞, then A has finite
perimeter with Per(A) ≤ Hd−1(∂A).

2.3. Functions of bounded deformation. If Ω ⊆ Rd is open, we say that u ∈ BD(Ω) if u ∈
L1(Ω;Rd) and its symmetric gradient Eu := Du+(Du)∗

2 in the sense of distributions is a finite Radon

measure on Ω, i.e., Eu ∈Mb(Ω; Md×d
sym). BD(Ω) is called the space of functions of bounded deformation

on Ω. We refer the reader to [33, 32] for the main properties of the space BD.
We will make use of a subspace of BD(Ω) called the space of special functions of bounded deformation

introduced in [2]. We say that u ∈ SBD(Ω) if u ∈ BD(Ω) and its symmetrized distributional derivative
can be written in the form

Eu = e(u) dx+ (u+ − u−)� νuHd−1bJu,

where e(u) ∈ L1(Ω; Md×d
sym) denotes the approximate symmetrized gradient of u, Ju denotes the set of

approximate jumps of u, u+ and u− are the traces of u on Ju, and νu(x) is the normal to Ju at x. As
in the case of functions of bounded variation, Ju is a Hd−1-countably rectifiable set.

We will use the following compactness and lower semicontinuity result proved in [3].

Theorem 2.1. Let Ω ⊆ Rd be open, bounded and with a Lipschitz boundary, and let (un)n∈N be a
sequence in SBD(Ω) such that

sup
n

[
|Eun|(Ω) + ‖un‖L1(Ω;Rd) + ‖e(un)‖Lp(Ω;Md×d

sym) +Hd−1(Jun)
]
< +∞
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for some p > 1. Then there exists u ∈ SBD(Ω) and a subsequence (unk)k∈N such that

unk → u strongly in L1(Ω;Rd),

e(unk) ⇀ e(u) weakly in Lp(Ω; Md×d
sym),

and

Hd−1(Ju) ≤ lim inf
k→+∞

Hd−1(Junk ).

We will need also some properties of the sections of SBD-functions. If Ω ⊆ Rd is open and u ∈
SBD(Ω), let us consider the scalar function on Ωξ

y given by

(2.3) ûξy(t) := u(y + tξ) · ξ

and the set

(2.4) Jξu := {x ∈ Ju : (u+(x)− u−(x)) · ξ 6= 0}

The following result holds true (see [2]).

Theorem 2.2 (One dimensional sections of SBD-functions). Let Ω ⊆ Rd be open, ξ ∈ Rd with
|ξ| = 1 and let u ∈ SBD(Ω). Then for Hd−1-a.e. y ∈ Ωξ we have

ûξy ∈ SBV (Ωξ
y)

with

(ûξy)
′(t) = (e(u)ξ · ξ)(y + tξ) for a.e. t ∈ Ωξ

y

and

J
ûξy

= (Jξu)ξy.

3. Obstacles in Stokes fluids and drag minimization

In this section we explain the drag problem for an obstacle immersed in a stationary flow.

3.1. The flow around the obstacle. Let Ω ⊂ Rd be an open bounded set with Lipschitz boundary,
and let V ∈ C1(Rd;Rd) be a divergence free vector field. Given E b Ω open and with a Lipschitz
boundary, let us consider the stationary flow for a viscous incompressible fluid around E with boundary
conditions on ∂Ω given by V , and with Navier boundary conditions on ∂E. More precisely, if u : Ω\E →
Rd is the velocity field, we require that the following items hold true.

(a) Incompressibility: div u = 0 in Ω \ E.
(b) Boundary conditions: we have

u = V on ∂Ω and the non-penetration condition u · ν = 0 on ∂E,

where ν denotes the exterior normal to E.
(c) Equilibrium: considering the stress

(3.1) σ := −pId + 2µe(u),

where µ > 0 is a viscosity parameter, e(u) the symmetrized gradient of u (also denoted by
D(u)) and p is the pressure, we require

(3.2) div σ = 0 in Ω \ E.

(d) Navier conditions on the obstacle: we have

(σν)τ = βu on ∂E,

where β > 0 is a friction parameter, and (σν)τ denotes the tangential component of force σν.
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The stationary flow has the following variational characterization: u is the minimizer of the energy

(3.3) E(u) := 2µ

∫
Ω\E
|e(u)|2 dx+ β

∫
∂E
|u|2 dHd−1

among the class of (sufficiently regular) admissible fields

(3.4) Vreg
E,V (Ω) := {v ∈ H1(Ω \ E;Rd) : v satisfies points (a) and (b)},

where Hd−1 stands for the (d− 1)-dimensional Hausdorff measures, which reduces to the area measure
on sufficiently regular sets. Indeed if u is a minimizer, and ϕ is an admissible variation, so that ϕ = 0
on ∂Ω, we get

0 = 2µ

∫
Ω\E

e(u) : e(ϕ) dx+ β

∫
∂E
u · ϕdHd−1

= 2µ

∫
Ω\E

e(u) : ∇ϕdx+ β

∫
∂E
u · ϕdHd−1

= −2µ

∫
Ω\E

div e(u) · ϕdx+

∫
∂E

[−2µe(u)ν + βu] · ϕdHd−1

In particular, choosing ϕ with compact support in Ω \ E we have

2µdiv e(u) = ∇p

for some pressure field p: as a consequence σ := −pId + 2µe(u) satisfies (3.2) of condition (c).
Since the admissible functions ϕ are tangent to ∂E, the optimality condition reduces to

(3.5) 0 =

∫
∂E

[−2µe(u)ν + βu] · ϕdHd−1 =

∫
∂E

[−σν + βu] · ϕdHd−1.

Notice that every tangential vector field η on ∂E can be extended to a divergence free vector field on
Ω\E which vanishes on ∂Ω, hence it is the trace of an admissible variation ϕ: indeed any extension W
which vanishes on ∂Ω has a divergence with zero mean, so that considering W1 with divW1 = divW
with W1 = 0 on ∂Ω and on ∂E (whose existence is guaranteed, for example by [6, Theorem IV.3.1])),
the required extension is given by W −W1. We conclude that the optimality condition (3.5) yields the
Navier condition of point (b).

3.2. The drag force. Assume now that the external vector field V is equal to a constant V∞ ∈ Rd\{0},
i.e. the obstacle E is immersed in a uniform flow. The flow is perturbed near E, assuming the value
u, and the obstacle experiences a force which has a component in the direction V∞ which is given by

Drag(E) :=

∫
∂E
σν · V∞
|V∞|

dHd−1,

which is called the drag force on E in the direction of the flow.
We claim that

(3.6) Drag(E) =
1

|V∞|
E(u),

where E(u) is the energy defined in (3.3). Using the facts that σ is symmetric and with zero divergence
(so that also the vector field σV∞ is divergence free), and that u = V∞ on ∂Ω, we may write∫

∂E
σν · V∞ dHd−1 =

∫
∂E
σV∞ · ν dHd−1 =

∫
∂Ω
σV∞ · ν dHd−1 =

∫
∂Ω
σu · ν dHd−1

=

∫
Ω\E

div (σu) dx+

∫
∂E
σu · ν dHd−1 =

∫
Ω\E

σ : ∇u dx+

∫
∂E
σν · u dHd−1.

(3.7)
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Using again that σ is symmetric and that u is divergence free, together with the constitutive equation
(3.1), we have ∫

Ω\E
σ : ∇u dx =

∫
Ω\E

σ : e(u) dx =

∫
Ω\E

(−p Id + 2µe(u)) : e(u) dx

=

∫
Ω\E

(−pdiv u+ 2µ|e(u|2) dx = 2µ

∫
Ω\E
|e(u)|2 dx,

while in view of the Navier conditions on ∂E and the fact that u is tangent to the obstacle∫
∂E
σν · u dHd−1 =

∫
∂E

(σν)τ · u dHd−1 = β

∫
∂E
|u|2 dHd−1.

Inserting into (3.7), we get that (3.6) follows.

3.3. The optimization problem. Let c > 0 and let f : (0, |Ω|)→ R ∪ {+∞} be a lower semicontin-
uous functions that is not identically equal to +∞. We are concerned with the following optimization
problem:

min
E

{
Drag(E) + cHd−1(∂E) + f(|E|)

}
.

We are thus interested in finding the optimal shape of an obstacle which minimizes the drag force,
under a penalization involving its perimeter and its volume.

In view of the energetic characterization of the drag force established in Subsection 3.2, we can
formulate the problem as a minimization problem among the pairs (E, u), where u is a velocity field
belonging to the family Vreg

E,V∞
(Ω) defined in (3.4):

min
E,u∈Vreg

E,V∞ (Ω)

{
2µ

|V∞|

∫
Ω\E
|e(u)|2 dx+

β

|V∞|

∫
∂E
|u|2 dHd−1 + cHd−1(∂E) + f(|E|)

}
.

Setting all the constants equal to 1, and replacing V∞ by a given divergence free velocity vector
field V as in Subsection 3.1, the drag minimization problem above is a particular case of the following
shape optimization problem

(3.8) min
E,u∈Vreg

E,V (Ω)

{∫
Ω\E
|e(u)|2 dx+

∫
∂E
|u|2 dHd−1 +Hd−1(∂E) + f(|E|)

}
.

If we want to apply the direct method of the calculus of variations to the problem, i.e., if we want to
recover a minimizer by looking at minimizing sequences (En, un)n∈N, the following considerations are
quite natural.

(a) Since the problem involves the perimeter of E, the sequence (En)n∈N is relatively compact in
the family of sets of finite perimeter (see Section 2).

(b) Concerning the velocities, it turns out naturally that it is convenient to consider also dis-
continuous vector fields. Indeed if un → u in some sense, and ∂En collapses in some parts
generating a surface Γ outside the limit set E, the limit velocity field u can present, in general,
discontinuities across Γ.
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En
E

Γ

We thus expect an extra term in the surface integral related to the Navier conditions, which
amounts at least to ∫

Γ\∂E
[|u+|2 + |u−|2] dHd−1,

where u± are the two traces from both sides of Γ.

The previous considerations yield to formulate a relaxed version of problem (3.8) in which E varies
among the family of sets of finite perimeter contained in Ω, while the family of associated admissible
velocity fields u is naturally contained in the space of special functions of bounded deformation SBD(Ω)
(see Section 2).

In Section 4, we will give a precise formulation of problem in this weak setting, which guarantees
existence of optimal solutions, describing in particular how the boundary conditions on ∂Ω and on the
obstacle have to be rephrased in this context.

4. A relaxed formulation of the shape optimization problem and statements of the
main results

Let Ω ⊆ Rd be open, bounded and with a Lipschitz boundary, and let V ∈ C1(Rd;Rd) be a divergence
free vector field. In order to deal conveniently with the boundary conditions, let us consider Ω′ ⊆ Rd
open and bounded such that Ω b Ω′.

The following definition deals with the family of admissible configurations in the relaxed setting.

Definition 4.1 (The class A(V ) of admissible obstacle-velocity configurations). We say that
(E, u) is an admissible configuration for the external velocity V , and we will write (E, u) ∈ A(V ), if
E ⊆ Ω is a set of finite perimeter, while

u ∈ SBD(Ω′) ∩ L2(Ω′;Rd)
is such that u = 0 a.e. on E and the following conditions are satisfied.

(a) The flow is divergence free: div u = 0 in the sense of distributions in Ω′.
(b) External boundary conditions: u = V a.e. on Ω′ \ Ω.
(c) Non-penetration condition on the obstacle:

u± · ν = 0 on ∂∗E ∪ Ju,
where ν denotes the normal to the rectifiable set ∂∗E ∪ Ju.

Remark 4.2. The crucial difference between admissible velocities in the present framework and those
of the family Vreg

E,V (Ω) introduced before (see (3.4)) is that they may have discontinuities outside of E.
Within the new setting, the global obstacle is given by

E ∪ Ju
i.e. it may contain (d− 1) dimensional parts.

Given (E, u) ∈ A(V ), concerning the traces of u on ∂∗E, we will denote with u+ the trace in the
direction of the external normal νE , so that u− = 0 Hd−1-a.e. on ∂∗E.
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Concerning the non-penetration constraint, notice that it suffices to require it only on Ju, since it is
then automatically verified also on ∂∗E. Indeed forHd−1-a.e. x ∈ ∂∗E\Ju, we have u−(x) = u+(x) = 0
and the constraint is verified, while for Hd−1-a.e. x ∈ Ju ∩ ∂∗E the two rectifiable sets Ju and ∂∗E
share the same normal vector.

Remark 4.3. The space SBD(Ω′) is naturally a subspace of L1(Ω′;Rd): we require for admissibility
that u ∈ L2(Ω′;Rd) to ensure that the velocity field has finite kinetic energy. It will turn out that
velocities in SBD(Ω′) which are interesting for our problem (i.e., with finite energy) are automatically
elements of L2(Ω′;Rd) (see Theorem 5.1).

Remark 4.4 (On the boundary condition). If (E, u) ∈ A(V ), then u ∈ SBD(Ω′) with u = V a.e.
on Ω′ \ Ω, so that

Ju ∩ ∂Ω = {x ∈ ∂Ω : γ(u)(x) 6= V (x)},
where γ(u) is the trace of u on ∂Ω coming from Ω (i.e., the usual trace of u seen as an element
of SBD(Ω)). We conclude that within the present framework, the boundary condition is somehow
relaxed: a possible mismatch between u and V on ∂Ω is admitted, but then the zone is counted
as a jump part of the velocity field, and consequently as a part of the obstacle ∂∗E ∪ Ju, and will
carry a contribution for the energy (see (4.2) below). Such a relaxation of the boundary condition is
a feature which is common to several applications of functions of bounded variation to problems in
continuum mechanics (see for example [27, 23] in connection to fracture mechanics or [22] for problems
in plasticity).

Remark 4.5. Given (E, u) ∈ A(V ), the obstacle E ∪ Ju may touch ∂Ω only on those part where V is
tangent to Ω: this is due to the fact that on (∂∗E ∪ Ju) ∩ ∂Ω, the two sets share Hd−1-a.e. the same
normal, and u+ = V (if the orientation is suitably chosen).

Remark 4.6. Let E b Ω be open and with a Lipschitz boundary. Then we can find W ∈ H1(Ω\E;Rd)
such that W = V on ∂Ω, W = 0 on ∂E and divW = 0. Indeed if ϕ ∈ C∞(Rd) is such that ϕ = 1 on a
neighborhood of Rd \Ω and ϕ = 0 on a neighborhood of E, we can consider the vector field V1 := ϕV ,
whose divergence has zero mean on Ω \ E (by Gauss theorem). Then we can find V2 ∈ H1

0 (Ω \ E;Rd)
such that divV = divV1 (see [6, Theorem IV.3.1]), so that the field W := V1 − V2 is an admissible
choice. In particular we get that (E,W ) ∈ A(V ), so that the class of admissible configurations is not
empty.

Let

(4.1) f : [0, |Ω|]→ R ∪ {+∞} be lower semicontinuous, not identically equal to +∞.

For every (E, u) ∈ A(V ), let us set (normalizing to 1 the constants involved in the drag force problem)

J (E, u) :=

∫
Ω′
|e(u)|2 dx+

∫
∂∗E
|u+|2 dHd−1 +

∫
Ju\∂∗E

[|u+|2 + |u−|2] dHd−1

+Hd−1(∂∗E) + 2Hd−1(Ju \ ∂∗E) + f(|E|).
(4.2)

Remark 4.7. Concerning the volume integral in J (E, u), the density e(u) is equal to e(V ) a.e. on
Ω′ \Ω and equal to 0 a.e. on E: as a consequence we could replace it with an integral on Ω\E without
affecting the minimization of J .

Concerning the Navier energy and the surface penalization for ∂∗E∪Ju, notice that it counts also for
the possible mismatch at the boundary between u and V as pointed out in Remark 4.4: the mismatch
is thus “penalized” by the energy of the problem.

The previous observations show that the larger domain Ω′ plays only an instrumental role for the
problem, as it can be replaced by any open domain strictly containing Ω.

The first main result of the paper is the following
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Theorem 4.8 (Existence of optimal obstacles). Let Ω ⊆ Rd be a bounded open set with Lipschitz
boundary, V ∈ C1(Rd;Rd) a divergence-free vector field, and f a function satisfying (4.1). Let the
family of admissible configurations A(V ) be given by Definition 4.1 and let J be the functional defined
in (4.2). Then the problem

(4.3) min
(E,u)∈A(V )

J (E, u)

admits a solution.

Remark 4.9. We recover the original drag minimization problem when V is a constant nonzero
vector V∞, and we restore properly in the functional the physical constants µ and β, together with the
perimeter penalization constant c.

The second main result of the paper concerns the regularity of minimizers in the two dimensional
setting.

Theorem 4.10 (Regularity in dimension two). Let Ω ⊆ R2 be a bounded open set with Lipschitz
boundary, V ∈ C1(R2;R2) a divergence-free vector field, and f : [0, |Ω|]→ [0,+∞[ a Lipschitz function.
Let (E, u) ∈ A(V ) be a solution to (4.3) according to Theorem 4.8. Then

H1
(
Ω ∩ (Ju ∪ ∂∗E \ (Ju ∪ ∂∗E))

)
= 0,

and u ∈ C∞(Ω \ Ju ∪ ∂∗E;R2).

Theorem 4.8 will be proved in Section 6, on the basis of some technical results established in 5. The
proof of Theorem 4.10 will be addressed in Section 7.

Remark 4.11. In order to prove that the functional J (E, u) is the relaxation of the energy appear-
ing in the original problem 3.8 in the sense of the lower semicontinuous envelope of the Calculus of
Variations, we need to approximate in energy any (E, u) ∈ A(V ) through “regular” configurations
(En, un) ∈ A(V ), where En has Lipschitz boundary and un ∈ H1(Ω \ En;Rd). This reminds the
situation studied in [7], which can be extended to the case of energies involving only the symmetrized
gradient like in the study of material voids in linearly elastic materials (in this direction, see for exam-
ple [20]). However the constraints of the our problem make the analysis very hard to be carried out:
more specifically, admissibility requires the divergence free condition div un = 0 and the tangency con-
straint un ⊥ ∂En, and it is not clear how to enforce them within the by now available approximation
procedures.

5. Some technical results in SBD

In this section we collect some technical properties concerning the space SBD that will be funda-
mental in the proof of Theorem 4.8. In particular in Theorem 5.1 we will prove that admissible velocity

vector fields enjoy higher summability properties (indeed they belong to L
2d
d−1 ). In Theorem 5.3 we

will prove that velocity fields u with u± tangent to the discontinuity set Ju form a closed set under the
natural convergence of minimizing sequences for the main optimization problem. Finally in Theorem
5.4 we will prove a lower semicontinuity result for surface energies depending on the traces, which
entails in particular the lower semicontinuity of the term associated to the Navier conditions.

5.1. An immersion result. The following embedding result holds true.

Theorem 5.1. Let Ω ⊆ Rd be a bounded open set, and let u ∈ SBD(Rd) be supported in Ω such that

E(u) :=

∫
Ω
|e(u)|2 dx+

∫
Ju

[
|u+|2 + |u−|2

]
dHd−1 < +∞.



OPTIMAL PROFILES IN STOKES FLOWS 13

Then u ∈ L
2d
d−1 (Ω) with

‖u‖ 2d
d−1
≤ C

√
E(u),

where C depends on d and diam(Ω) only.

Proof. It suffices to follow the strategy of the proof of the classical embedding of BD into Ld/d−1

explained in [32], but concentrating on the square of the components.
Let us consider the unit vector

ξ :=
1√
d

(1, 1, . . . , 1) ∈ Rd.

Employing the characterization by sections recalled in Section 2, for Hd−1-a.e. y ∈ ξ⊥ we have

ûξy ∈ SBV (Ωξ
y)

with ∫
Ωξy

|(ûξy)′|2 dt+
∑
t∈J

û
ξ
y

[
|(ûξy)+(t)|2 + |(ûξy)−(t)|2

]
< +∞.

Then we can write for a.e. t ∈ R

‖ûξy‖2L∞(Ωξy)
≤
∣∣∣D(ûξy)

2
∣∣∣ (Ωξ

y) =

∫
Ωξy

2|ûξy(ûξy)′|dt+
∑
t∈J

û
ξ
y

∣∣∣|(ûξy)+(t)|2 − |(ûξy)−(t)|2
∣∣∣

≤ 1

2
‖ûξy‖2L∞(Ωξy)

+ 2|Ωξ
y|
∫

Ωξy

∣∣∣(ûξy)′∣∣∣2 dt+
∑
t∈J

û
ξ
y

(∣∣∣(ûξy)+(t)
∣∣∣2 +

∣∣∣(ûξy)−(t)
∣∣∣2) ,(5.1)

Let us set

gξ(x) :=

∫
Ωξy

|(ûξy)′|2 dt+
∑
t∈J

û
ξ
y

[
|(ûξy)+(t)|2 + |(ûξy)−(t)|2

]
,

where y := πξ⊥(x), i.e., the projection of x on the hyperplane ξ⊥. gξ(x) only depends on the projection

of x on ξ⊥ and ∫
ξ⊥
gξdHd−1 =

∫
Ω
|e(u)ξ · ξ|2 dx+

∫
Ju

[
|u+|2 + |u−|2

]
|ξ · ν| dHd−1

≤ C
[∫

Ω
|e(u)|2 dx+

∫
Ju

[
|u+|2 + |u−|2

]
dHd−1

]
where C depends only on d. Thanks to (5.1) we have

(5.2) |ξ · u|2 ≤ Cgξ a.e. on Ω,

where C depends on the diameter of Ω, and from now on all the constants C that appear depend on
n,diam(Ω). For every k = 1, . . . , d− 1, we can write

ξ =
1√
d
ek +

√
d− 1

d
hk,

where ek is the k-th vector of the canonical base, and hk is the unit vector in the direction
√
dξ − ek.

Reasoning as above on the decomposition

ξ · u =

√
d− 1

d
hk · u+

1√
d
ek · u
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we obtain a similar estimate

(5.3) |ξ · u|2 ≤ C (ghk + gek) ,

Multiplying inequality (5.2) with inequalities (5.3) for k = 1, . . . , d− 1, we obtain reasoning as in [32,
Chapter II, Theorem 1.2]

‖(ξ · u)2‖ d
d−1
≤ C

[∫
Ω
|e(u)|2 dx+

∫
Ju

[
|u+|2 + |u−|2

]
dHd−1

]
.

Since this estimate does not depend on the particular choice of the basis and hence holds for any ξ
with norm one, the theorem is proved. �

5.2. Closure of the non-penetration constraint. In the context of equi-Lipschitz boundaries, the
preservation of the non-penetration property for a sequence of Sobolev functions converging weakly,
comes rather directly via the divergence theorem (we refer the reader, for instance, to [9]). However,
in the case of collapsing boundaries, so that the limit function lives on both sides of a surface and
in absence of any smoothness of the limit set, this technique does not work. The proof of the non-
penetration preservation requires different technical arguments that we handle in the SBD context.

Let us start with the following lower semicontinuity result.

Theorem 5.2. Let Ω ⊆ Rd be a bounded open set, and let (un)n∈N be a sequence in SBD(Ω) such
that

sup
n

[∫
Ω
|e(un)|2 dx+Hd−1(Jun)

]
< +∞

with

un → u in measure

for some u ∈ SBD(Ω). Then∫
Ju

[
|u+ · νu|+ |u− · νu|

]
dHd−1 ≤ lim inf

n→+∞

∫
Jun

[
|u+
n · νun |+ |u− · νun |

]
dHd−1.

Proof. Let us consider a countable set of functions {ϕh : h ∈ N} which is dense with respect to ‖ · ‖∞
inside the set {

f ∈ C0
c (]0,+∞[) :

∫ +∞

0
f dt = 0 and ‖f‖∞ ≤ 1

}
.

Given ε > 0, let us consider

gh,k(x) :=

∫ 1
2
|x−xk|2

0
ϕh(t) dt,

where {xk : k ∈ N} is a countable and dense set in Bε(0) ⊂ Rd with x0 = 0. Clearly gh,k ∈ C1
c (Rd)

with

Gh,k(x) := ∇gh,k(x) = ϕh

(
1

2
|x− xk|2

)
(x− xk).

We have that Gh,k is a continuous conservative vector field with compact support on Rd.
Let us set for (i, j) ∈ Rd × Rd and ν ∈ Rd with |ν| = 1

fε(i, j, ν) := sup
h,k

(Gh,k(i)−Gh,k(j)) · ν.

By construction fε is a symmetric jointly convex function according to [28, Definition 3.1]. We claim
that for i 6= j

(5.4) |i · ν|+ |j · ν| ≤ fε(i, j, ν) ≤ |i · ν|+ |j · ν|+ 2ε.



OPTIMAL PROFILES IN STOKES FLOWS 15

In view of the lower semicontinuity result [28, Theorem 5.1] we have

lim inf
n→+∞

∫
Jun

fε(u
+
n , u

−
n , νun) dHd−1 ≥

∫
Ju

fε(u
+, u−, νu) dHd−1.

We can thus write

lim inf
n→+∞

[∫
Jun

[
|u+
n · νun |+ |u−n · νun |

]
dHd−1 + 2εHd−1(Jun)

]

≥ lim inf
n→+∞

∫
Jun

fε(u
+
n , u

−
n , νun) dHd−1 ≥

∫
Ju

fε(u
+, u−, νu) dHd−1

≥
∫
Ju

[
|u+ · νu|+ |u− · νu|

]
dHd−1,

so that the result follows taking into account the bound on Hd−1(Jun) and letting ε→ 0.
In order to complete the proof, we need to show claim (5.4). The estimate from above follows from

[Gh,k(i)−Gh,k(j)] · ν ≤ |(i− xk) · ν|+ |(j − xk) · ν| ≤ |i · ν|+ |j · ν|+ 2ε

since ‖ϕh‖∞ ≤ 1 and |xk| < ε. Let us prove the estimate from below. We select xkn → 0 such that
|i− xkn | 6= |j − xkn | (which is always possibile in view of the density of {xk : k ∈ N} inside Bε(0) and
since i 6= j) and then ϕhn such that for n→ +∞

ϕhn

(
1

2
|i− xkn |2

)
→ i · ν
|i · ν|+ η

and ϕhn

(
1

2
|j − xkn |2

)
→ − j · ν

|j · ν|+ η
,

where η > 0. By definition of fε we infer that

fε(i, j, ν) ≥ |i · ν|+ |j · ν| − 2η,

so that the estimate from below follows by sending η → 0. �

We are now in a position to prove the main result of the section.

Theorem 5.3 (Closure of the non-penetration constraint on the jump set). Let Ω ⊆ Rd be a
bounded open set, and let (un)n∈N be a sequence in SBD(Ω) such that

sup
n

[∫
Ω
|e(un)|2 dx+Hd−1(Jun)

]
< +∞

and

un → u in measure

for some u ∈ SBD(Ω). If

u±n · νun = 0 Hd−1-a.e. on Jun ,

then

u± · νu = 0 Hd−1-a.e. on Ju.

Proof. By Theorem 5.2 we may write∫
Ju

[
|u+ · νu|+ |u− · νu|

]
dHd−1 ≤ lim inf

n→+∞

∫
Jun

[
|u+
n · νun |+ |u− · νun |

]
dHd−1 = 0,

so that the result follows. �
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5.3. A lower semicontinuity result for surface energies in SBD. In this section we deal with
the lower semicontinuity of the surface term of the functional J in (4.2) connected with the Navier
conditions on the obstacle. The following lower semicontinuity result holds true.

Theorem 5.4. Let Ω ⊆ Rd be an open set, un, u ∈ SBD(Ω) such that

un → u strongly in L1(Ω;Rd)
and

sup
n

[∫
Ω
|e(un)|2 dx+Hd−1(Jun)

]
< +∞.

Then if φ : Rd → [0,+∞] is a lower semicontinuous function, we have∫
Ju

[φ(u+) + φ(u−)] dHd−1 ≤ lim inf
n→+∞

∫
Jun

[φ(u+
n ) + φ(u−n )] dHd−1.

This applies in particular to φ(u) = |u|2 and φ(u) = 1{u6=0}, which will be of interest to us.

Proof. Notice first that φ may be supposed to be continuous. Indeed for any lower-semicontinuous
nonnegative φ, by considering a sequence of continuous nonnegative functions φk ↗ φ we get∫

Ju

[φ(u+) + φ(u−)] dHd−1 = lim inf
k→∞

∫
Ju

[φk(u
+) + φk(u

−)] dHd−1

≤ lim inf
k→∞

lim inf
n→+∞

∫
Jun

[φk(u
+
n ) + φk(u

−
n )] dHd−1

≤ lim inf
n→+∞

∫
Jun

[φ(u+
n ) + φ(u−n )] dHd−1

Through a by now standard blow-up argument ( see Remark 5.6), we can reduce the problem to the
following lower semicontinuity result. Let Q1 ⊆ Rd be the unit square centred at 0, and let us set

H := Q1 ∩ {xd = 0} and Q±1 := Q1 ∩ {xd ≷ 0}.
Given u± ∈ Rd with u+ 6= u− and un ∈ SBD(Q1) with

(5.5) un → u := u+1Q+
1

+ u−1Q−1
strongly in L1(Q1;Rd),

(5.6) sup
n
Hd−1(Jun) < +∞

and

(5.7) e(un)→ 0 strongly in L1(Q1;Md×d
sym),

then

(5.8) φ(u+) + φ(u−) ≤ lim inf
n→+∞

∫
Jun

[φ(u+
n ) + φ(u−n )] dHd−1.

We now divide the proof in several steps, and we will employ the characterization by sections of SBD
functions explained in Section 2.

Step 1. Let ε > 0 be given. We fix δ > 0 and N ∈ N with N > d: these numbers will be subject to
several constraints that will appear during the proof.

Let us fix N unit vectors {ξi}1≤i≤N such that

(5.9) |ed · ξi − 1| < δ

and such that any subset of d of them forms a basis of Rd. Moreover, we may assume in addition that

(5.10) (u+ − u−) · ξi 6= 0
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for every i = 1, . . . , N .
Thanks to (5.5) and (5.6), we can fix a > 0 small such that setting H± := H ×{±a} = H ± aed, we

have

(un)|H± → u± strongly in L1(H±;Rd)
and

(5.11) ∀n ∈ N : Hd−1(Jun ∩H±) = 0.

Step 2. We claim that, up to a subsequence, we can find H−ε ⊂ H− with

(5.12) Hd−1(H− \H−ε ) < ε

such that for every i = 1, . . . , N , for every y ∈ H−ε and for every n ∈ N

(5.13) H−ε ∩ Jun = ∅,
and

(5.14) H0((Jun)ξiy ) < +∞, H0((Jun)ξiy ∩R+) ≥ 1 .

Moreover setting

(̂un)
ξi

y := un(y + tξi) · ξi,
for every y ∈ H−ε we have

(̂un)
ξi

y ∈ SBV ((Q1)ξiy ),

(5.15) J
(̂un)

ξi
y

= (Jun)ξiy

(cf notation (2.4)),

(5.16) ‖[(̂un)
ξi

y ]′‖L1 → 0 uniformly for y ∈ H−ε ,

and

(5.17) (un)|H− → u− uniformly on H−ε .

Indeed, if the number δ appearing in (5.9) is small enough, we can find A−ε ⊆ H− with

(5.18) Hd−1(H− \A−ε ) <
ε

2

and such that for every y ∈ A−ε the lines {y+ tξi : t ∈ R} intersect H+ for every i = 1, . . . , N . In view
of (5.5), (5.6) and (5.7), and since pointwise convergence implies almost uniform convergence, we can
find Nε ⊂ A−ε with

(5.19) Hd−1(Nε) <
ε

2

and such that, up to a subsequence

(5.20) ‖(̂un)
ξi

y − û
ξi
y ‖L1 → 0 uniformly for y ∈ A−ε \Nε

(5.21) ‖[(̂un)
ξi

y ]′‖L1 → 0 uniformly for y ∈ A−ε \Nε

(5.22) (un)|H− → u− uniformly on A−ε \Nε,

and for every y ∈ A−ε \Nε

(5.23) H0((Jun)ξiy ) < +∞.
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Notice that for n large enough and for every y ∈ A−ε \Nε we have

(5.24) (Jun)ξiy 6= ∅.

Indeed otherwise, we would get for nk → +∞ the existence of yk ∈ A−ε \Nε with (̂unk)
ξi

yk
∈W 1,1((Q1)ξiyk),

and (5.22) together with (5.21) would yield

‖(̂unk)
ξi

yk
− u−‖1 → 0

against (5.20) (recall that by the choice (5.10) of the ξi, the functions ûξiy have a jump). The claim
follows by setting

H−ε := Aε \

[
Nε ∪

⋃
n

(Jun ∩H−)

]
.

Indeed (5.12) follows from (5.18), (5.19) and (5.11), while (5.13) is clearly satisfied. Relation (5.14)
follows by (5.23) and (5.24), while relation (5.16) follows from (5.21). Finally relation (5.17) follows
from (5.22).

Step 3. For every i = 1, . . . , N , let us consider the set J i,−n given by the first point of intersection
(with t > 0) of the line {y + tξi : t ∈ R} with the jump set Jun as y varies in the set H−ε defined in
Step 2 (recall (5.14) and (5.15)). In view of (5.16) and (5.17), we can find ηn → 0 such that for every

x ∈ J i,−n with νun · ξi > 0

(5.25) |u−n (x) · ξi − u− · ξi| < ηn.

Step 4. We claim that, for δ small enough and N large enough, up to a subsequence, we can find
J̃−n ⊆ Jun with

(5.26) Hd−1(J̃−n ) ≥ 1− cε,

where cε → 0 as ε→ 0, and such that for every x ∈ J̃−n

(5.27) x ∈ J i,−n for d different indices i ∈ {1, . . . , N},

where J i,−n is defined in Step 3. Moreover, we can orient νun on J̃−n in such a way that

(5.28) ed · νun > 0 and ξi · νun > 0 for every i = 1, . . . , N.

Intuitively speaking, the points in J̃−n are seen from H−ε under d different directions: moreover the
associated lines cut the jump transversaly, from the “lower” to the “upper” part.

Indeed, in view of the definition of ξi (which form a very small angle with ed as δ → 0) and of the
area formula (cf for instance [26, Sec. 3.2]), we can assume that δ is so small that for every i = 1, . . . , N

(5.29) Hd−1(J i,−n ) ≥
∫
Ji,−n

|νun · ξi| dHd−1 = Hd−1((H−ε )ξi) =
1

1 + ĉδ
Hd−1(H−ε ),

where the notation (H−ε )ξi is defined in (2.1) and where ĉδ → 0, so that, taking into account (5.12),
for small δ we have

(5.30) Hd−1(J i,−n ) ≥ 1− 2ε.
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By Lemma 5.5 below (with X = Jun , µ = Hd−1, andM given by the family of Borel sets) if N is large
enough we can find an index ī such that

(5.31) Hd−1

J ī,−n \
⋃

i1<i2<···<id
ih=1,...,N

(
J i1,−n ∩ J i2,−n ∩ · · · ∩ J id,−n

) < ε.

Intuitively speaking, most of the points in J ī,−n are seen from H−ε at least under d different directions:

we call this set J̃−n , i.e.,

(5.32) J̃−n := J ī,−n ∩
⋃

i1<i2<···<id
ih=1,...,N

(
J i1,−n ∩ J i2,−n ∩ · · · ∩ J id,−n

)
.

In view of (5.30) and (5.31) we get

(5.33) Hd−1(J̃−n ) ≥ 1− 3ε.

Finally, if we set

Gn,ε := {x ∈ J̃−n : |νun · ξī| > ε} and Bn,ε := J̃−n \Gn,ε,

coming back to (5.29) we have

Hd−1(Gn,ε) + ε2Hd−1(Bn,ε) > 1− 3ε,

so that

Hd−1(Gn,ε) > 1− 3ε− ε2C,

where C := supnHd−1(Jun) < +∞. Finally we orient the normal νun on Gn,ε in such a way that

νun · ξī > ε.

The inequalities (5.28) then also hold true on Gn,ε if δ is small enough thanks to (5.9). Reducing J̃−n
to Gn,ε if necessary, the full claim follows taking into account (5.32) and (5.33).

Step 5. Let J̃−n ⊆ Jun be the set given by Step 4. Since the points of this set are seen from H−ε under

d different directions, in view of (5.25) we infer that there exists η̃n → 0 such that for every x ∈ J̃−n
|u−n (x)− u−| < η̃n.

Reasoning in a similar way starting from the upper part H+
ε , and employing the opposite directions

{−ξi : i = 1, . . . , N}, we can construct J̃+
n ⊆ Jun with νun oriented such that again

ed · νun > 0 and ξi · νun > 0 for every i = 1, . . . , N,

such that

(5.34) Hd−1(J̃+
n ) ≥ 1− cε

with cε → 0 as ε→ 0, and such that for every x ∈ J̃+
n

|u+
n (x)− u+| < η̃n.

Notice that for x ∈ J̃−n ∩ J̃+
n , the orientation chosen is compatible with that of (5.28), so that indeed

u−n (x) and u+
n (x) are the two traces of un at x.
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We can thus write, in view of the continuity of φ∫
Jun

[φ(u+
n ) + φ(u−n )] dHd−1 ≥

∫
J̃+
n ∩J̃−n

[φ(u+
n ) + φ(u−n )] dHd−1 +

∫
J̃+
n ∆J̃−n

[φ(u+
n ) + φ(u−n )] dHd−1

≥
∫
J̃+
n ∩J̃−n

[φ(u+
n ) + φ(u−n )] dHd−1 +

∫
J̃+
n \J̃−n

φ(u+
n ) dHd−1 +

∫
J̃−n \J̃+

n

φ(u−n ) dHd−1

≥
∫
J̃+
n

φ(u+
n ) dHd−1 +

∫
J̃−n

φ(u−n ) dHd−1

≥ [φ(u+)− η̃n]Hd−1(J̃+
n ) + [φ(u−)− η̃n]Hd−1(J̃−n )

where η̃n → 0, so that, taking into account (5.26) and (5.34)

lim inf
n→+∞

∫
Jun

[φ(u+
n ) + φ(u−n )] dHd−1 ≥ [φ(u+) + φ(u−)](1− 2cε).

The conclusion follows by letting ε→ 0. �

In the proof of Theorem 5.4 we made use of the following abstract lemma.

Lemma 5.5. Let (X,M, µ) be a finite measure space. Let ε > 0 and d ≥ 2. Then there exists N ∈ N
that only depends on µ(X), ε, d such that if {Ei}i=1,...,N is a family of sets in M, we can find ī such
that

µ

Eī \ ⋃
j1<j2<···<jd

(Ej1 ∩ Ej2 ∩ · · · ∩ Ejd)

 < ε.

Proof. Up to dividing ε by µ(X) we suppose without loss of generality that µ(X) = 1. It is enough to
prove that for any d ≥ 2, ε > 0, there is some N(d, ε) ≥ 1 such that any family of N ≥ N(d, ε) of sets
(Ei)1≤i≤N there is some i that verifies

µ

Ei \ ⋃
J⊂[1,N ]\{i},|J |=d−1

⋂
j∈J

Ej

 < ε,

meaning that there is some i such that every point of Ei outside a set of measure less than ε is in (at
least) d− 1 other sets Ej (for j 6= i).

We prove it by recursion. If d = 2, let N :=
[

1
ε

]
, where [·] denotes the integer part. Given (Ei)1≤i≤N ,

let us consider the sets
(
Ei \

⋃
1≤j≤N,j 6=iEj

)
1≤i≤N

. These are disjoint and µ(X) = 1, so there is some

i such that

µ

Ei \ ⋃
1≤j≤N,j 6=i

Ej

 ≤ 1

N
≤ ε,

which proves the initialisation.
Assume now that the result is true for d and let us check it for d+ 1. Let

N := N
(
d,
ε

2

)
and M :=

[
2

ε

]
,

and let us consider N ×M sets that we classify into N groups of M sets, written (Ek,i)1≤k≤N,1≤i≤M .

For every k ∈ [1, N ], the sets
(
Ek,i \

⋃
1≤j≤M,j 6=iEk,j

)
1≤i≤M

are disjoints so there is some ik such that

µ

Ek,ik \ ⋃
1≤i≤M,i6=ik

Ek,i

 ≤ 1

M
≤ ε

2
.
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Considering the sets (Ek,ik)1≤k≤N , since N = N
(
d, ε2
)

we find some k such that

µ

Ek,ik \ ⋃
K⊂[1,N ]\{k},|K|=d−1

⋂
k∈K

Ek,ik

 ≤ ε

2
.

This means that outside a set of measure at most ε
2 , every point of Ek,ik

is in d − 1 sets of the form

Ek,ik for k 6= k, and similarly every point outside a set of measure at most ε
2 is also in one set of the

form Ek,i for some i 6= ik. We conclude that outside of measure at most ε, every point of Ek,ik
belongs

to d other sets, meaning N(d+ 1, ε) is well-defined and N(d+ 1, ε) ≤ N
(
d, ε2
) [

2
ε

]
. �

Remark 5.6. Let us detail the blow up argument used in the proof of Theorem 5.4. If we set

µn := [φ(u+
n ) + φ(u−n )]Hd−1bJun

and assume that (up to a subsequence)

µn
∗
⇀ µ weakly* in Mb(Ω)

for some Radon measure µ on Ω, the conclusion follows if we show that

µ ≥ [φ(u+) + φ(u−)]Hd−1bJu as measures on Ω.

With this aim is sufficient to show that

(5.35)
dµ

dHd−1
(x) ≥ [φ(u+(x)) + φ(u−(x))] for Hd−1-a.e. x ∈ Ju,

where dµ
dHd−1 denotes the Radon-Nykodim derivative of µ with respect to Hd−1 (restricted to Ju).

Let us assume (up to subsequences) that

λn := Hd−1bJun
∗
⇀ λ weakly* in Mb(Ω),

and that

|e(un)| dx ∗
⇀ f dx weakly* in Mb(Ω),

where f ∈ L1(Ω) (this is possible since (e(un))n∈N is bounded in L2).
Let x ∈ Ju be such that

dµ

dHd−1
(x) = lim

r→0

µ(Qx,r)

rd−1
, lim

r→0

λ(Qx,r)

rd−1
< +∞, lim

r→0

1

rd−1

∫
Qr(x)

|f | dx = 0,

and (having choosen the axis so that νu(x) = ed), for r → 0+

u(x+ r·)→ u+(x)1Q+
1

+ u−(x)1Q−1
strongly in L1(Q1;Rd).

Since Hd−1-a.e. x ∈ Ju satisfies these properties, it suffices to concentrate on such points to prove
inequality (5.35).

Let rk → 0 be such that

µ(∂Qx,rk) = λ(∂Qx,rk) = 0.

Since by weak convergence and the relation above we have µn(Qx,rk)→ µ(Qx,rk), and similarly for λ,
we can choose nk ↗ +∞ such that

µ(Qx,rk) ≥ µnk(Qx,rk)−
rd−1
k

k
, λ(Qx,rk) ≥ λnk(Qx,rk)−

rd−1
k

k
,

and ∫
Qx,rk

|f | dx ≥
∫
Qx,rk

|e(unk)| dx−
rd−1
k

k
.
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Moreover, setting vk(y) := unk(x+ rky) we can assume also

vk → u+(x)1Q+
1

+ u−(x)1Q−1
strongly in L1(Q1;Rd).

We get ∫
Q1

|e(vk)| dx =
1

rd−1
k

∫
Qx,rk

|e(unk)| dx ≤ 1

rd−1
k

∫
Qx,rk

|f | dx+
1

k
→ 0

and

Hd−1(Jvk) =
1

rd−1
k

Hd−1(Junk ∩Qx,rk) =
λnk(Qx,rk)

rd−1
k

≤ λ(Qx,rk)

rd−1
k

+
1

k
→ c < +∞,

so that, using the lower semicontinuity (5.8) concerning functions on the unit square (and to which
the proof of the Theorem has been reduced)

dµ

dHd−1
(x) = lim

k→+∞

µ(Qx,rk)

rd−1
k

≥ lim inf
k→+∞

µnk(Qx,rk)

rd−1
k

= lim inf
k→+∞

∫
Jvk

[φ(v+
k ) + φ(v−k )] dHd−1 ≥ φ(u+(x)) + φ(u−(x))

and (5.35) follows.

6. Existence of minimizers: proof of Theorem 4.8

We are now in a position to prove the first main result of the paper.

Proof of Theorem 4.8. Let (En, un)n∈N be a minimizing sequence: since the function f is not identically
equal to +∞, and in view of Remark 4.6, there exists C > 0 such that

J (En, un) ≤ C.
Since un = 0 a.e. on En we may write∫

∂∗En

|u+
n |2 dHd−1 +

∫
Jun\∂∗En

[|u+
n |2 + |u−n |2] dHd−1 =

∫
Jun

[|u+
n |2 + |u−n |2] dHd−1

so that we infer

Hd−1(∂∗En) ≤ C and

∫
Ω
|e(un)|2 dx+Hd−1(Jun) +

∫
Jun

[|u+
n |2 + |u−n |2] dHd−1 ≤ C.

Notice that

|E(un)|(Ω′) =

∫
Ω′
|e(un)| dx+

∫
Jun

|u+
n − u−n | dHd−1

≤
∫

Ω′\Ω
|e(V )| dx+

∫
Ω
|e(un)| dx+

∫
Jun

[|u+
n |+ |u−n |] dHd−1

≤
∫

Ω′\Ω
|e(V )| dx+

1

2

[
|Ω|+

∫
Ω
|e(un)|2 dx+ 2Hd−1(Jun) +

∫
Jun

[|u+
n |2 + |u−n |2] dHd−1

]
≤ C̃,

for some C̃ > 0. Moreover, thanks to Theorem 5.1 applied to u− V we may assume also that

(6.1) ‖un‖
L

2d
d−1 (Ω′)

≤ C̃.

By the compactness result in SBD (see Theorem 2.1), there exist a subsequence (unk)k∈N and u ∈
SBD(Ω′) with u = V on Ω′ \ Ω and such that

(6.2) unk → u strongly in L1(Ω′;Rd),

(6.3) e(unk) ⇀ e(u) weakly in L2(Ω′;Md×d
sym),
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and

Hd−1(Ju) ≤ lim inf
k→+∞

Hd−1(Junk ).

Concerning the sets Enk , we may assume, up to a further subsequence if necessary, that there exists a
set of fine perimeter E ⊆ Ω such that

(6.4) 1Enk → 1E strongly in L1(Rd)

with

Hd−1(∂∗E) ≤ lim inf
k→+∞

Hd−1(∂∗Enk).

In particular we get

(6.5) f(|E|) ≤ lim inf
n→+∞

f(|En|).

Let us prove that

(6.6) (E, u) ∈ A(V ).

In view of (6.1) we infer that u ∈ L
2d
d−1 (Ω′;Rd) so that in particular u ∈ L2(Ω′;Rd). Moreover u = V

on Ω′ \ Ω, while u = 0 a.e. on E thanks to (6.2) and (6.4).
Since the divergence constraint is intended in the sense of distributions on Ω, this passes easily to

the limit thanks to (6.2). Moreover, in view of Theorem 5.3 we deduce

u± ⊥ νu on Ju.

In particular this entails

u+ ⊥ νE on ∂∗E ∩ Ω,

since for x ∈ ∂∗E we have either x ∈ Ju or u+(x) = 0. We conclude that the non-penetration constraint
for the velocity field holds on ∂∗E and on Ju \ ∂∗E, so that (6.6) holds true.

Let us prove the pair (E, u) is a minimizer for the problem. Thanks to (6.3) we get∫
Ω′
|e(u)|2 dx ≤ lim inf

k→+∞

∫
Ω′
|e(unk)|2 dx,

while in view of Theorem 5.4 we have that∫
Ju

[|u+|2 + |u−|2] dHd−1 ≤ lim inf
k→+∞

∫
Junk

[|u+
nk
|2 + |u−nk |

2] dHd−1,

which entails ∫
∂∗E
|u+|2 dHd−1 +

∫
Ju\∂∗E

[|u+|2 + |u−|2] dHd−1

≤ lim inf
k→+∞

[∫
∂∗Enk

[u+
nk
|2 dHd−1 +

∫
Junk

\∂∗Enk
[|u+

nk
|2 + |u−nk |

2] dHd−1

](6.7)

since u = 0 a.e. on E and unk = 0 a.e. on Enk .
Let us prove that

(6.8) 2Hd−1(Ju \ ∂∗E) +Hd−1(∂∗E) ≤ lim inf
k→+∞

(
2Hd−1(Junk \ ∂

∗Enk) +Hd−1(∂∗Enk)
)
.

Let us choose h ∈ Rd such that

Hd−1({x ∈ ∂∗E ∪ Ju : u+(x) = h}) = Hd−1({x ∈ ∂∗E ∪ Ju : u−(x) = h})

= Hd−1({x ∈ ∂∗Enk ∪ Junk : u+
nk

(x) = h}) = Hd−1({x ∈ ∂∗Enk ∪ Junk : u−nk(x) = h}) = 0.
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This is possible because for example the sets {x ∈ ∂∗E ∪ Ju : u+(x) = h} are disjoint as h varies, and
similarly for the other sets. In particular, setting

vh := u+ h1E and vhnk := unk + h1Enk

we have

Jvh = Ju ∪ J1E = ∂∗E ∪ Ju and Jvhnk
= Junk ∪ J1Enk

= ∂∗Enk ∪ Junk

up to Hd−1-negligible sets. If we apply Theorem 5.4 with the choice φh(s) = 1{s 6=h} to the sequence

(vhnk)k∈N we get

Hd−1(∂∗E) + 2Hd−1(Ju \ ∂∗E) =

∫
J
vh

[φh((vh)+) + φh((vh)−)]dHd−1

≤ lim inf
k→+∞

∫
J
vhnk

[φh((vhnk)+) + φh((vhnk)−)]dHd−1

= lim inf
k→+∞

[
Hd−1(∂∗Enk) + 2Hd−1(Junk \ ∂

∗Enk)
]

(6.9)

so that (6.8) holds true.
Gathering (6.3), (6.7), (6.5) and (6.8), we deduce

J (E, u) ≤ lim inf
k→+∞

J (Enk , unk)

so that, taking into account (6.6), the pair (E, u) is a minimizer of the main problem (4.3), and the
proof is concluded. �

7. Regularity of two-dimensional minimizers: proof of Theorem 4.10

This section is devoted to the proof of Theorem 4.10 concerning the regularity of minimizers in
dimension two.

As mentioned in the Introduction, the general strategy used by De Giorgi, Carriero and Leaci for
the Mumford-Shah problem in [24] faces the new difficulties given by the vectorial context, considered
in [19, 16] in connection to the Griffith fracture problem, and also by extra conditions proper to our
problem, that is incompressibility and non-penetration for the velocity fields. We follow the main lines
of [19, 16]: however technical difficulties allow us to deal only with dimension 2 (see point (a) below).

Since our drag problem involves pairs (E, u) as admissible configurations, and some points of ∂∗E
may not be jump points of u, it will be useful to deal with pairs (J, u), where J is a rectifiable set and
u is a function whose jumps are contained (up to H1-negligible sets) in J and satisfy the constraints
of zero divergence and non-penetration. More precisely we formulate the following definition.

Definition 7.1 (The class V). Let Ω ⊆ R2 be an open set. We say that (J, u) ∈ V(Ω) if J ⊆ Ω is a
rectifiable set, and u ∈ SBD(Ω) is such that div u = 0 in the sense of distributions in Ω, H1(Ju\J) = 0
and u±|J · νJ = 0 H1-a.e. on J .

The structure of the section is the following.

(a) In Section 7.1 we prove a fundamental approximation lemma (Smoothing Lemma 7.2), which
allows us to approximate every (J, u) ∈ V(Q1) with H1(J) small by a configuration (J \Qr, v) ∈
V(Q1), where v is a Sobolev function in the slightly smaller square Qr with a control on the
energy. The idea is that the jumps of u in Qr are “smoothed out”, giving rise to the function
v which preserves the divergence free constraint together with the non-penetration condition.
This result is inspired by [16], and it is here that the dimension two is fundamental.
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(b) In Section 7.2 we prove regularity for local minimizers of a Griffith functional

G(J, u) :=

∫
Ω
|e(u)|2dx+H1(J),

defined on pairs (J, u) ∈ V(Ω). The kind of local minimality considered is very weak, and
inspired by the kind of competitors that can be constructed thanks to the Smoothing Lemma
7.2. The key result to get regularity is given by the decay estimate contained in Proposition
7.7.
Regularity for minimizers of the Griffith energy is then used in Section 7.3 to prove Theorem
4.10, that is to show the regularity of minimizers of the drag problem.

(c) Finally, motivated by the regularity result of Theorem 4.10, in Section 7.4 we describe a differ-
ent relaxation of the drag problem which involves topologically closed obstacles and Sobolev
velocities: the regularity result can be used to prove that such a formulation is well posed in
dimension two.

7.1. The smoothing lemma. We fix a standard radial, smooth, nonnegative mollifier ρ with support
in a disc of radius 1/8 and denote

ρδ(x) := δ−2ρ
(x
δ

)
.

The main result of the section is the following smoothing lemma which is in the spirit of [16].

Lemma 7.2 (Smoothing Lemma). There exist C, η > 0 such that for any (J, u) ∈ V(Q1) with

H1(J) < η, then letting δ := H1(J)
1
2 there exist r ∈]1 − δ

1
2 , 1[ and v ∈ SBD(Q1) ∩H1(Qr) such that

the following items hold true.

(a) H0(J ∩ ∂Qr) = 0 and for every 0 < s < r

H1(J ∩ (Qr \Qr−s)) ≤ Cδ
3
2 s.

(b) {v 6= u} ⊆ Qr and (J \Qr, v) ∈ V(Q1).
(c) It holds

‖e(v)‖L2(Q1) ≤ (1 + Cδ
1
6 )‖e(u)‖L2(Q1).

(d) There exists a cut-off function ϕ ∈ C∞(Qr, [0, 1]) with ϕ = 0 on Qr \ Qr−δ, ϕ = 1 on Qr−4δ,
and such that

‖e(v)− ϕρδ ∗ e(u)‖L2(Qr) ≤ Cδ
1
6 ‖e(u)‖L2(Q1).

Proof. The proof follows the strategy introduced in [16], and some parts will be referred directly to
that paper. However, since our conclusion is slightly different, we prefer to develop some computations
in detail. We will use the notation a . b when a ≤ Cb for some dimensional constant C.

We divide the proof in several steps.

Step 1: Subdivision in small squares. Let us set

N := 1 +
[
H1(J)−

1
2

]
,

where [·] denotes the integer part. In the following we will assume that H1(J) is arbitrary small, so

that N is arbitrarily large. For convenience in the construction, we will set δ = 1/N≤ H1(J)
1
2 , which

(mildly) differs from the choice of the statement: yet since δ is asymptotically equivalent to H1(J)
1
2 ,

the mismatch does not affect the validity of the conclusion.

For r ∈]1− δ
1
2 , 1[ and each k ≥ −2, let us set

δk :=
δr

2k
and rk =

(
N − 1

2k

)
δ .
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Then we consider a partition (up to a negligible set) of Qr into cubes obtained by filling Qr0 with
cubes of side δ0 and denoted by (q̃0,j)j , and then each Qrk \Qrk−1

with cubes of side δk and denoted
(q̃k,j)j (note that there is only one way to do this).

For any square q = z + [−t, t]2, we write

q′ := z +

[
−8

7
t,

8

7
t

]2

and q′′ := (q′)′.

We will set
qk,j := (q̃k,j)

′.

We may notice that with our choices

(7.1) ∀k ≥ 1 : q′′k,j b Qrk+1
\Qrk−2

,

and {q′′k,j}k,j is a covering of Qr with a fixed finite number of overlapping: indeed each q′′k,j meets at

most 8 neighbours q′′p,i, and they all verify |k − p| ≤ 1, meaning δk/δp ∈
{

1
2 , 1, 2

}
. This is because the

factor 8
7 above is chosen such that

(
8
7

)3
< 3

2 .

Step 2: Choice of the square Qr. We now make a convenient choice of r such that the density of
J near ∂Qr is small, following an approach similar to [18, Theorem 2.1].

We claim that there exist C, η > 0 such that for δ < η we can choose r ∈]1−
√
δ, 1[ withH0(J∩∂Qr) =

0,

(7.2) ∀ s ∈]0, r[ : H1(J ∩ (Qr \Qr−s)) ≤ Cδ
3
2 s

and

(7.3)

∫
Qr\Qr−2

|e(u)|2 dx < Cδ
1
2

∫
Q1

|e(u)|2 dx.

Consider indeed the measure µ on [0, 1] defined as

µ(E) :=
H1(J ∩QE)

H1(J)
+

∫
QE
|e(u)|2 dx∫

Q1
|e(u)|2 dx

,

where QE := ∪r∈E∂Qr is the cubic shell associated to E ⊂ [0, 1]. It suffices to prove that we can find

r ∈]1− δ
1
2 , 1[ such that

(7.4) H0(J ∩ ∂Qr) = 0,

and, denoting Isr := [r − s, r[ for 0 < s < r,

(7.5) µ(Isr ) ≤ Ĉδ−
1
2 s,

where Ĉ > 0 is a suitable constant which we fix below. Indeed, if δ is small enough this implies that
(recall that H1(J) behaves like δ2)

H1(J ∩ (Qr \Qr−s)) ≤ H1(J)µ(Isr ) ≤ Ĉδ
3
2 s

and ∫
Qr\Qr−4δr

|e(u)|2 dx ≤ Ĉδ−
1
2 (4δr)

∫
Q1

|e(u)|2 dx ≤ 4Ĉδ
1
2

∫
Q1

|e(u)|2 dx,

so that (7.2) and (7.3) follow by choosing C := 4Ĉ.
Let I1 be the union of all intervals that do not satisfy (7.5). If (Isiri ) is a Vitali covering of I, then

2 = µ([0, 1]) ≥
∑
i

µ(Isiri ) > Ĉδ−
1
2

∑
i

|Isiri | =
Ĉδ−

1
2

5

∑
i

|5Isiri | ≥
Ĉδ−

1
2

5
|I1|
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hence |I1| < 10
Ĉ
δ

1
2 .

Let I2 := πx(J)∪πy(J), where πx, πy denote the projection on the coordinate axis: we have asymp-
totically |I2| ≤ 2δ2. If C > 10, this implies that for δ small enough

]1−
√
δ, 1[\(I1 ∪ I2) 6= ∅,

which yields the existence of r which verifies claims (7.4) and (7.5).

Step 3: A first approximation. In view of (7.2) and of (7.1), for every k ≥ 1 we have

H1(Ju ∩ q′′k,j) . δ
3
2 δk,

while if δ is small enough (recall that H1(J) behaves like δ2 and r ∈]1− δ
1
2 , 1[)

H1(Ju ∩ q′′0,j) ≤ H1(Ju) . δδ0.

This means that the jump set of u in every cube of the constructed subdivision is arbitrarily small
compared to its sides.

Thanks to [15, Proposition 3], and taking into account the preceding inequalities , for every (k, j)
there is a set ωk,j ⊂ q′k,j and an affine function ak,j with e(ak,j) = 0, such that

(7.6) |ωk,j | . δkH1(Ju ∩ q′′k,j) . δδ2
k

(7.7)

∫
q′k,j\ωk,j

|u− ak,j |4 dx .

(
δk

∫
q′′k,j

|e(u)|2 dx

)2

,

and the function vk,j := u+ (ak,j − u)1ωk,j verifies∫
qk,j

|e(ρδk ∗ vk,j)− ρδk ∗ e(u)|2 dx .

(
H1(Ju ∩ q′′k,j)

δk

) 1
3 ∫

q′′k,j

|e(u)|2 dx

. δ
1
3

∫
q′′j,k

|e(u)|2 dx,
(7.8)

(see [15, p. 1389]) where ρ is the mollifier defined at the beginning of the section.
Notice that in view of our construction (namely the choice of r), we have

(7.9) |ωk,j | � |qk,j |,

and this is where we most use the fact that we are in two dimensions.
We now let (ϕk,j) be a partition of unity associated to the covering (qk,j) of Qr and such that

|∇ϕk,j | . 1
δk

. Let us set

w := 1Q1\Qru+ 1Qr
∑
k,j

ϕk,jwk,j where wk,j := ρδk ∗ vk,j .

We claim that

(7.10) w ∈ SBD(Q1) ∩H1(Qr), {w 6= u} ⊂ Qr, H1(Jw \ J) = 0,

(7.11)

∥∥∥∥∥∥e(w)−
∑
k,j

ϕk,jρδk ∗ e(u)

∥∥∥∥∥∥
L2(Qr)

. δ
1
6 ‖e(u)‖L2(Q1),
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and

(7.12) the trace of w and u on ∂Qr coincide.

We postpone the proof of these claims to Step 5.
Let us set

ϕ :=
∑

(0,j)∈K

ϕ0,j ,

where K denotes the set of indices such that q0,j has a distance greater than 2δr from ∂Qr. Since

r ∈]1− δ
1
2 , 1[, in view of the definition of the set of indices K, we get that the function ϕ vanishes on

Q \Qr−δ and it is equal to 1 on Qr−4δ.
We can write

e(w)−
∑
k,j

ϕk,jρδk ∗ e(u) =
[
e(w)− ϕρδ ∗ e(u)

]
−

∑
(k,j)6∈K

ϕk,jρδk ∗ e(u).

Thanks to (7.3) we have

∥∥∥∥∥∥
∑

(k,j) 6∈K

ϕk,jρδk ∗ e(u)

∥∥∥∥∥∥
2

L2(Qr)

=

∥∥∥∥∥∥
∑

(k,j)6∈K

ϕk,jρδk ∗ e(u)

∥∥∥∥∥∥
2

L2(Qr\Qr−2δr)

.
∑

(k,j)6∈K

‖ϕj,kρδk ∗ e(u)‖2L2(Q1\Qr−2δr)

. ‖e(u)‖2L2(Q1\Qr−3δr)
. δ

1
2 ‖e(u)‖2L2(Q1),

so that in view of (7.11) we conclude

(7.13) ‖e(w)− ϕρδ ∗ e(u)‖L2(Qr) . δ
1
6 ‖e(u)‖L2(Q1).

Moreover we may write

‖e(w)‖L2(Qr) ≤ ‖ϕρδ ∗ e(u)‖L2(Qr) + ‖e(w)− ϕρδ ∗ e(u)‖L2(Qr)

= ‖ϕρδ ∗ e(u)‖L2(Qr−δ) + ‖e(w)− ϕρδ ∗ e(u)‖L2(Qr)

≤ ‖e(u)‖L2(Q1) + ‖e(w)− ϕρδ ∗ e(u)‖L2(Qr),

so that taking into account (7.13) we deduce

(7.14) ‖e(w)‖L2(Q1) ≤ (1 + Cδ
1
6 )‖e(u)‖L2(Q1),

where C > 0.

Step 4: Enforcing the divergence free constraint. By admissibility, u is divergence free in the
sense of distributions in Q1, so that the trace of e(u) is zero in Q1, while

(7.15)

∫
∂Qr

u · ν dH1 = 0,

where ν is the outward normal vector of Qr, and u denotes the trace on ∂Qr (J does not intersect ∂Qr
by construction).

Recalling that w ∈ H1(Qr), we may write thanks to (7.13)

‖divw‖L2(Qr) = ‖Tr(e(w))‖L2(Qr) = ‖Tr(e(w)− ϕρδ ∗ e(u))‖L2(Qr) . δ
1
6 ‖e(u)‖L2(Q1).
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By (7.12) the trace of u on ∂Qr coincides with that of w, so that from (7.15) we deduce∫
Qr

divw dx = 0.

Using a classical result (recorded at the end of this proof in Lemma 7.3), there exists a vector field
q ∈ H1

0 (Qr) such that

(7.16) div q = divw and ‖∇q‖L2(Qr) . ‖divw‖L2(Qr) . δ
1
6 ‖e(u)‖L2(Q1).

Let

v :=

{
w − q in Qr

u in Q1 \Qr,
and let us check that v satisfies the conclusions of the lemma.

The choice of r given by Step 2 yields immediately point (a). Clearly v ∈ SBD(Q1) ∩H1(Qr) with
{v 6= u} ⊆ Qr. Moreover, since the trace of w− q and u coincide on ∂Qr, we get div v = 0 in the sense
of distributions in Q1, so that point (b) is proved. Points (c) and (d) follow from the corresponding
properties for w (see (7.13) and (7.14)) taking into account that the correction term q has a small

gradient norm of the order δ
1
6 as estimated in (7.16).

Step 5: Proof of the claims (7.10), (7.11) and (7.12). In order to conclude the proof, we need to
check the claims on the function w contained in Step 3.

Let us start by noticing that the oscillation of the maps ak,j on intersecting squares can be estimated.
Indeed as soon as qk,j and qp,i intersects, then

|qk,j ∩ qp,i| & max(|qk,j |, |qp,i|),
and since (see (7.9))

|(q′k,j ∩ q′p,i) ∩ (ωk,j ∪ ωp,i)| � |q′k,j ∩ q′p,i|
and aj,k, ai,p are affine, then using [16, Lemma 3.4] and (7.7) we deduce

(7.17) ‖ak,j − ap,i‖L4(q′k,j∩q
′
p,i)
. ‖ak,j − ap,i‖L4((q′k,j∩q

′
p,i)\(ωk,j∪ωp,i))

≤ ‖ak,j − u‖L4(q′k,j\ωk,j) + ‖ap,i − u‖L4(q′p,i\ωp,i) . δ
1
2
k ‖e(u)‖L2(q′′k,j)

+ δ
1
2
p ‖e(u)‖L2(q′′p,i)

. δ
1
2
k ‖e(u)‖L2(q′′k,j∪q

′′
p,i)
,

as δk and δp are comparable.
Let us come to the claims. Clearly

e(w) =
∑
k,j

ϕk,je(wk,j) +
∑
k,j

∇ϕk,j � wk,j ,

so that

(7.18) e(w)−
∑
k,j

ϕk,jρδk ∗ e(u) =
∑
k,j

ϕk,j

[
e(wk,j)− ρδk ∗ e(u)

]
+
∑
k,j

∇ϕk,j � wk,j .

For the first term of the right hand side, we have thanks to (7.8)∥∥∥∥∥∥
∑
k,j

ϕk,j

[
e(wk,j)− ρδk ∗ e(u)

]∥∥∥∥∥∥
2

L2(Qr)

.
∑
k,j

∥∥∥ϕk,j[e(wk,j)− ρδk ∗ e(u)
]∥∥∥2

L2(Qr)

≤
∑
k,j

‖e(wk,j)− ρδk ∗ e(u)‖2L2(qk,j)
≤ δ

1
3

∑
k,j

‖e(u)‖2L2(q′′k,j)
. δ

1
3 ‖e(u)‖2L2(Qr)

,

(7.19)
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where we used the finite overlapping of the squares q′′k,j for the first and last estimates.

Let us estimate the second term on the right hand side of (7.18). Notice that we may write∑
k,j

∇ϕk,j � wk,j =
∑

qk,j∩qp,i 6=∅

∇ϕk,j � (wk,j − wp,i) on qp,i

since
∑

k,j ∇ϕk,j = 0.

(a1) If q′′p,i b Qr−1 , then qj,k ∩ qi,p 6= ∅ means that δk = δp = δ, k = p = 0, and we may rewrite the
term as ∑

q0,j∩q0,i 6=∅

∇ϕ0,j � (w0,j − w0,i)

We get

(7.20)

∥∥∥∥∥∥
∑

q0,j∩q0,i 6=∅

∇ϕ0,j � (w0,j − w0,i)

∥∥∥∥∥∥
2

L2(q0,i)

.
∑

q0,j∩q0,i 6=∅

1

δ2
‖w0,j − w0,i‖2L2(q0,j∩q0,i).

Now

‖w0,j − w0,i‖L2(qo,j∩q0,i) = ‖ρδ ∗ (v0,j − v0,i)‖L2(q0,j∩q0,i) ≤ ‖v0,j − v0,i‖L2(q′0,j∩q′0,i).

Since

‖v0,j − v0,i‖L2(q′0,j∩q′0,i) ≤ ‖(a0,j − a0,i)1ω0,j∪ω0,i‖L2(q′0,j∩q′0,i) + ‖(u− a0,j)1ω0,i‖L2(q′0,j\ω0,j)

+ ‖(u− a0,i)1ω0,j‖L2(q′0,i\ω0,i)

≤ ‖(a0,j − a0,i)‖L4(q′0,j∩q′0,i)|ω0,j ∪ ω0,i|
1
4 + ‖(u− a0,j)‖L4(q′0,j\ω0,j)|ω0,i|

1
4

+ ‖(u− a0,i)‖L4(q′0,i\ω0,i)|ω0,j |
1
4 ,

recalling (7.6), (7.7) and (7.17) we get

‖w0,j − w0,i‖L2(qo,j∩q0,i) ≤ ‖v0,j − v0,i‖L2(q′0,j∩q′0,i) ≤ δ
1+ 1

4 ‖e(u)‖L2(q′′0,j∪q′′0,i).

Coming back to (7.20) we infer∥∥∥∥∥∥
∑
k,j

∇ϕk,j � wk,j

∥∥∥∥∥∥
2

L2(q0,i)

≤

∥∥∥∥∥∥
∑

q0,j∩q0,i 6=∅

∇ϕ0,j � (w0,j − w0,i)

∥∥∥∥∥∥
2

L2(q0,i)

. δ
1
2

∑
q0,j∩q0,i 6=∅

‖e(u)‖2L2(q′′0,j∪q′′0,i)
.

(7.21)

(a2) If qp,i * Qr−1 , then for qk,j ∩ qp,i 6= ∅, we decompose

wp,i − wk,j = ρδp ∗ (vp,i − ap,i)− ρδk ∗ (wk,j − ak,j) + (ap,i − ak,j).
Notice the crucial step that ρδk ∗ ak,j = ak,j due to the fact that ak,j is harmonic (since it is
affine). Then we have thanks to (7.7) and (7.17)

‖ρδk ∗ (vp,i − ap,i)‖L2(qk,j∩qp,i) ≤ ‖vp,i − ap,i‖L2(q′p,i)
. δp‖e(u)‖L2(q′′i,p)

‖ρδk ∗ (vk,j − ak,j)‖L2(qk,j∩qp,i) ≤ ‖vk,j − ak,j‖L2(q′k,j)
. δp‖e(u)‖L2(q′′k,j)

‖ap,i − ak,j‖L2(qk,j∩qp,i) . δ
1+ 1

4
p ‖e(u)‖L2(q′′k,j∪q

′′
p,i)
,

where we also used the fact that δp and δk differ from at most a factor 2. And so we obtain
with the same computations as the previous point that
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(7.22)

∥∥∥∥∥∥
∑
k,j

∇ϕk,j � wk,j

∥∥∥∥∥∥
2

L2(qp,i)

≤
∑

qk,j∩qp,i 6=∅

‖e(u)‖2L2(q′′k,j∪q
′′
p,i)
.

Gathering (7.21) and (7.22), and in view of the choice of r which satisfies (7.3), we deduce∥∥∥∥∥∥
∑
k,j

∇ϕk,j � wk,j

∥∥∥∥∥∥
2

L2(Qr)

≤
∑
p,i

∥∥∥∥∥∥
∑
k,j

∇ϕk,j � wk,j

∥∥∥∥∥∥
2

L2(qp,i)

. δ
1
2 ‖e(u)‖2L2(Qr1 ) + ‖e(u)‖2L2(Qr\Qr−2 ) . δ

1
2 ‖e(u)‖2L2(Q1).

(7.23)

Coming back to (7.18), in view of (7.19) and (7.23) we deduce that∥∥∥∥∥∥e(w)−
∑
k,j

ϕk,jρδk ∗ e(u)

∥∥∥∥∥∥
L2(Qr)

. δ
1
6 ‖e(u)‖L2(Q1),

so that claim (7.11) follows.
In particular we get also that w ∈ H1(Qr). Claim (7.12) concerning the traces follows by the

construction which involves convolutions whose radius becomes finer and finer as we approach ∂Qr as
detailed in [16]. Finally we deduce that w ∈ SBD(Q1), and that claim (7.10) holds true.

�

In the proof of Proposition 7.2 we made use of the following lemma due to Nečas ( see [6, Theorem
IV.3.1], or also [4]).

Lemma 7.3. Let Ω be a bounded, connected open set with Lipschitz boundary, and let L2
0(Ω) be the

set of zero-average L2-functions. Then there is a continuous linear map Φ : L2
0(Ω)→ H1

0 (Ω;Rd) such
that div ◦ Φ = IdL2

0(Ω).

7.2. Regularity for quasi minimizers of the Griffith energy. Let Ω ⊆ R2 be an open set. In all
the following, we will consider the Griffith functional

G(J, u,B) :=

∫
B
|e(u)|2 dx+H1(J ∩B),

where B ⊆ Ω is a Borel set.
We consider the following (very weak) notion of local minimality.

Definition 7.4 (Quasi minimizers). Let Λ, r > 0. We say that (J, u) ∈ V(Ω) (recall Definition 7.1)
is a (Λ, r) quasi minimizer of G on V(Ω) if G(J, u, ω) < +∞ for any open set ω b Ω, and for any
square Qx,r b Ω with r ∈ (0, r), H0(J ∩ ∂Qx,r) = 0 and

lim sup
s→0+

1

s
H1 (J ∩ (Qx,r \Qx,r−s)) < 1,

and for any function v ∈ H1(Qx,r;R2) with div v = 0 and v = u on ∂Qx,r, we have

(7.24)

∫
Qx,r

|e(u)|2 dx+H1(J ∩Qx,r) ≤
∫
Qx,r

|e(v)|2 dx+ Λr2.

Remark 7.5. Notice that under the assumption of the previous definition, we have (J\Qx,r, v) ∈ V(Ω),
where we extended v to the entire Ω by setting v = u in Ω\Qx,r, and inequality (7.24) may be written
as

G(J, u,Qx,r) ≤ G(J \Qx,r, v,Qx,r) + Λr2.
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The local minimality property involves thus a comparison between (J, u) and very special competi-
tors: the Sobolev function v is obtained by “smoothing out” the jumps of u inside suitable squares Qx,r,
so that it can be paired with the rectifiable set J \Qx,r, yielding the admissible pair (J \Qx,r, v). Such
competitors are provided by the Smoothing Lemma 7.2, for which the dimension two is essential. A
somehow related weak notion of minimality involving Sobolev competitors, still in dimension two, has
been investigated in [10] (minimality with respect to its own jump set) for the (scalar) Mumford-Shah
functional.

Remark 7.6. The notion of minimality is weak enough to include any local minimizer of a functional
of the form

F (u,A) :=

∫
A
|e(u)|2 dx+

∫
Ju∩A

Θ(νu, u
+, u−)dH1

where Θ is a measurable function such that inf(Θ) ≥ 1 (or, inf(Θ) > 0 up to scaling).

The following result is the key ingredient for obtaining regularity.

Proposition 7.7 (Decay estimate). Let Λ > 0. There exists a universal constant τ ∈ (0, 1) such
that for every τ ∈ (0, τ̄) there exist ε = ε(τ) and r̄ = r̄(τ) with the property that for any (Λ, r)-quasi
minimizer (J, u) of G on V(Ω), if for r < r̄

G(J, u,Qr) ≥ r3/2 and H1(J ∩Qr) ≤ εr,

then

G(J, u,Qτr) ≤ τ3/2G(J, u,Qr).

Proof. By contradiction assume that for τ sufficiently small there exist εn → 0, r̄n → 0, 0 < rn < r̄n,
and a sequence (Kn, wn) of (Λ, rn)-minimizers for such that for every n

G(Kn, wn, Qrn) ≥ r3/2
n , H1(Kn ∩Qrn) ≤ εnrn, and G(Kn, wn, Qτrn) > τ3/2G(Kn, wn, Qrn).

Let

gn := G(Kn, wn, Qrn), Jn :=
Kn

rn
and un(x) :=

wn(rnx)
√
gn

.

Then (Jn, un) is a (Λ
√
rn, 1)-minimizer of Gn(·, ·, Q1), where

Gn(J, u,A) :=

∫
A
|e(u)|2 dx+

rn
gn
H1(J ∩A),

with

(7.25) Gn(Jn, un, Q1) = 1, Gn(Jn, un, Qτ ) > τ3/2 and H1(Jn ∩Q1) = εn.

Let us apply the Smoothing Lemma 7.2: if δn = ε
1
2
n , let Qsn with 1− δ

1
2
n < sn < 1 be the square on

which the jumps of un are smoothed out giving raise to the function vn, associated to an admissible
pair (J \Qsn , vn) ∈ V(Q1). In particular

(7.26) ‖e(vn)‖L2(Q1) ≤ (1 + Cδ
1
6
n )‖e(un)‖L2(Q1) with ‖e(un)‖L2(Q1) ≤ 1,

and

(7.27) ‖e(vn)− ϕnρδn ∗ e(u)‖L2(Qsn ) ≤ Cδ
1
6
n ‖e(un)‖L2(Q1),

where C > 0 is independent of n and ϕn ∈ C∞(Qsn , [0, 1]) is such that ϕn = 0 on Qsn \Qsn−δn , ϕn = 1
on Qsn−4δn . Since vn is divergence free and Sobolev on Qsn we have

(7.28)

∫
∂Qsn

vn · ν dH1 = 0.
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By the classical Korn inequality on Qsn there is an antisymmetric affine function an such that∫
Qsn

(vn − an) dx = 0 and ∫
Qsn

|∇(vn − an)|2 dx ≤ C1

∫
Qsn

|e(vn)|2 dx

for some C1 > 0 independent of n. We infer that (vn − an) is bounded in H1(Qsn). Since sn → 1, we
can assume, up to extracting a further subsequence,

(7.29) vn − an ⇀ w weakly in H1
loc(Q1;R2)

for some w ∈ H1(Q1). Since every vn−an has zero divergence, then so does w. Moreover ‖e(w)‖L2(Q1) ≤
1.

Let ψ ∈ C∞c (Q1;R2) have zero divergence, and let η ∈ C∞c (Q1, [0, 1]) be a cut-off function such that
{ψ 6= 0} b {η = 1}. Let us consider

zn :=

{
PQsn

[
(1− η)vn + η(an + w + ψ)

]
in Qsn

un in Q1 \Qsn ,

where PQsn denotes the projection on divergence free H1(Qsn) vector fields which preserves the trace
obtained according to Lemma 7.3 by considering

PQsn (u) := u− ΦQsn (div u)

for any u ∈ H1(Qsn ;R2) with a zero mean divergence. Note that zn is well defined as

(1− η)vn + η(an + w + ψ) = vn on ∂Qsn

for n large enough, and so its divergence has zero mean thanks to (7.28).
Since (Jn \ ∂Qsn , zn) is an admissible competitor for (Jn, un) according to Definition 7.4, we obtain

Gn(Jn, un, Qsn)

≤
∥∥∥e(PQsn[(1− η)vn + η(an + w + ψ)

])∥∥∥2

L2(Qsn )
+ Λ
√
rn

≤
(
‖e ((1− η)vn + η(an + w + ψ)) ‖L2(Qsn ) + C‖div((1− η)vn + η(an + w + ψ))‖L2(Qsn )

)2
+ Λ
√
rn

≤
(
‖e ((1− η)vn + η(an + w + ψ)) ‖L2(Qsn ) + C‖∇η · (w + an − vn)‖L2(Qsn )

)2
+ Λ
√
rn.

Since
‖∇η · (w + an − vn)‖L2(Qsn ) → 0

and (recall that {ψ 6= 0} b {η = 1})
‖e ((1− η)vn + η(an + w + ψ)) ‖L2(Qsn ) = ‖(1− η)e(vn) + ηe(w + ψ) +∇η � (w + an − vn)‖L2(Qsn )

≤ ‖(1− η)e(vn) + ηe(w + ψ)‖L2(Qsn ) + on

where on → 0, we infer thanks to (7.26) (and since e(an) = 0)

(7.30) Gn(Jn, un, Qsn) ≤ ‖(1− η)e(vn − an) + ηe(w + ψ)‖2L2(Qsn ) + on.

Now, still using (7.26) we may write∫
Qsn

|e(vn − an)|2 dx ≤ (1 + Cδ
1
6
n )2

∫
Qsn

|e(un)|2 dx ≤ (1 + Cδ
1
6
n )2Gn(Jn, un, Qsn) + on,

and so coming back to (7.30) we deduce

‖e(vn − an)‖2L2(Qsn ) ≤ ‖(1− η)e(vn − an) + ηe(w + ψ)‖2L2(Qsn ) + on.
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This yields∫
Qsn

(
1− (1− η)2

)
|e(vn − an)|2 dx ≤

∫
Qsn

(
2η(1− η)e(vn − an) : e(w) + η2|e(w + ψ)|2

)
dx+ on

so that in view of (7.29)∫
Q1

(
1− (1− η)2

)
|e(w)|2 dx ≤ lim sup

n→∞

∫
Q1

(
1− (1− η)2

)
|e(vn − an)|2 dx

≤
∫
Q1

(
2η(1− η)e(w) : e(w) + η2|e(w + ψ)|2

)
dx.

Notice that by choosing ψ = 0 and letting η localize on characteristic functions of open sets, we infer
that

(7.31) e(vn − an)→ e(w) strongly in L2
loc(Q1;M2×2

sym).

In particular we get ∫
Q1

|e(w)|2 dx ≤
∫
Q1

|e(w + ψ)|2 dx,

which means that w is a local minimizer of the energy z 7→ ‖e(z)‖2L2(Q1) on H1 functions with zero

divergence. This yields ∆w = ∇p for some p ∈ L2(Q1). Using the Lemma 7.8 below, we have∫
Qτ

|e(w)|2 dx ≤ 1

2
τ

3
2

∫
Q1

|e(w)|2 dx ≤ 1

2
τ

3
2 .

Taking into account (7.31) we deduce

(7.32) ‖e(vn)‖2L2(Qτ+δn ) ≤
1

2
τ

3
2 + on.

By minimality we have

G(un, Jn, Qsn) ≤ ‖e(vn)‖2L2(Qsn ) + Λ
√
rn = ‖e(vn)‖2L2(Qτ+δn ) + ‖e(vn)‖2L2(Qsn\Qτ+δn ) + Λ

√
rn

while thanks to (7.27)

‖e(vn)‖L2(Qsn\Qτ+δn ) ≤ ‖e(vn)− ϕnρδn ∗ e(un)‖L2(Qsn\Qτ+δn)
+ ‖ϕnρδn ∗ e(un)‖L2(Qsn\Qτ+δn )

≤ on + ‖ρδn ∗ e(un)‖L2(Qsn−δn\Qτ+δn ) ≤ on + ‖e(un)‖L2(Qsn\Qτ ).

In view of (7.32) we infer

G(un, Jn, Qsn) ≤ ‖e(vn)‖2L2(Qτ+δn )+[on+‖e(un)‖L2(Qsn\Qτ )]
2+Λ
√
rn ≤

1

2
τ

3
2 +õn+‖e(un)‖2L2(Qsn\Qτ )

so that

G(un, Jn, Qτ ) ≤ 1

2
τ

3
2 + õn.

In conclusion, taking into account (7.25), if n is large enough we get

τ
3
2 < G(un, Jn, Qτ ) ≤ 1

2
τ

3
2 + õn,

which is a contradiction.
�

In the preceding proof, we made use of the following result.
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Lemma 7.8. There exists a constant C0 > 0 such that for any divergence-free vector field u ∈
H1(Q1;R2) such that ∆u = ∇p for some pressure p ∈ L2(Q1), we have

∀τ ∈ (0, 1/2] :

∫
Qτ

|e(u)|2 dx ≤ C0τ
2

∫
Q1

|e(u)|2 dx.

In particular, for any 0 < τ ≤ τ := 1
4C2

0
∧ 1

2 we have∫
Qτ

|e(u)|2 dx ≤ 1

2
τ3/2

∫
Q1

|e(u)|2 dx.

Proof. Notice that e(u) is invariant by the addition of an asymmetric affine function a. Up to a
translation by such a function, Korn’s inequality tells us that∫

Q1

u2 dx ≤ C
∫
Q1

|e(u)|2 dx.

The equations verified by u are equivalent to the existence of ϕ ∈ H2(Q1) such that ϕ(0) = 0, u = ∇⊥ϕ,
and ∆2ϕ = 0. By elliptic regularity there is a constant C ′ such that

sup
Q1/2

∣∣∇2ϕ
∣∣2 ≤ C ′ ∫

Q1

|∇ϕ|2 dx

and so for any τ ≤ 1/2,∫
Qτ

|e(u)|2 dx ≤ 4|Qτ | sup
Q1/2

∣∣∇2ϕ
∣∣2 ≤ 4CC ′|Q1|τ2

∫
Q1

|e(u)|2 dx.

�

The decay estimate can be iterated as follows.

Lemma 7.9 (Iteration of the decay). Let Λ > 0 and, according to Proposition 7.7, let τ0 be small
enough such that the decay estimate applies with ε0 = ε(τ0) and r̄0 = r̄(τ0), and let τ1 ∈ (0, ε2

0) be
small enough that the decay property applies with ε1, r̄1. Finally, let

r̄ := min

(
r̄0, r̄1, ε

2
0τ

2
1 ,
ε2

0τ
3
0

τ1

)
.

Suppose that (J, u) is a (Λ, r̄)-quasi minimizer of G on V(Ω) and G(J, u,Qx,r) ≤ ε1r for some r ∈ (0, r̄).
Then for all k ∈ N,

G(J, u,Qx,τk0 τ1r
) ≤ ε0τ

3
2
k

0 τ1r.

Proof. Let us prove the statement by induction on k. In the following, we write g(r) = G(J, u,Qx,r),
so that we need to check that if g(r) ≤ ε1r, then for every k ∈ N

(7.33) g(τk0 τ1r) ≤ ε0τ
3
2
k

0 τ1r.

The inequality is true for k = 0. Indeed we have the following alternatives:

(a) If g(r) > r3/2 then g(τ1r) ≤ τ3/2
1 g(r) ≤ √τ1τ1ε1r ≤ ε0τ1r by definition of τ1.

(b) If g(r) ≤ r3/2, then g(τ1r) ≤ g(r) ≤ r3/2 ≤ ε0τ1r by definition of r̄.

Assume now that (7.33) holds. Notice that by definition of G we have (since τ0 < 1)

H1(J ∩Qτk0 τ1r) ≤ g(τk0 τ1r) ≤ ε0τ
3
2
k

0 τ1r ≤ ε0τ
k
0 τ1r,

so the decay property of Proposition 7.7 may be applied. Again we have two alternatives.



36 D. BUCUR, A. CHAMBOLLE, A. GIACOMINI, AND M. NAHON

(a) If g(τk0 τ1r) > (τk0 τ1r)
3/2, by the decay property we have, using (7.33),

g(τk+1
0 τ1r) ≤ τ3/2

0 g(τk0 τ1r) ≤ ε0τ
3
2

(k+1)

0 τ1r.

(b) If g(τk0 τ1r) ≤ (τk0 τ1r)
3/2 then by the definition of r̄

g(τk+1
0 τ1r) ≤ g(τk0 τ1r) ≤

√
τ1r

ε2
0τ

3
0

ε0τ
3
2

(k+1)

0 τ1r ≤ ε0τ
3
2

(k+1)

0 τ1r.

In both cases, (7.33) follows for the choice k + 1, so that the induction step is proved. �

If we want to draw some conclusions on the regularity of quasi minimizers (J, u), we need somehow to
bound the freedom connected to the choice of J : notice indeed that any pair (J∆N, u) with H1(N) = 0
is essentially equivalent to (J, u), where A∆B denotes the symmetric difference of sets.

We set

(7.34) J+ :=

{
x ∈ Ω : lim sup

r→0

H1(J ∩Qx,r)
r

> 0

}
.

J+ is a sort of normalized version of J , where points of density zero have been erased.
By standard properties of rectifiable sets we have

H1(J∆J+) = 0.

As a consequence if (J, u) ∈ V(Ω), then also (J+, u) ∈ V(Ω) with G(J, u,A) = G(J+, u, A) for every
Borel set A ⊆ Ω.

Proposition 7.10. Given Λ > 0, there exist ε, r̄ > 0 such that of any (Λ, r)-quasi minimizer (J, u) of
G on V(Ω), if G(J, u,Qx,r) ≤ εr for some Qx,r b Ω with r < r̄, then J+ ∩Qx, r

2
= ∅.

Proof. Let ε0, ε1, τ1, τ2, r̄ be given according to Lemma 7.9. Notice that if G(J, u,Qx,r) ≤ ε1r with
r < r̄, then for any ρ ∈ (0, r)

(7.35) G(J, u,Qx,ρ) ≤ C0r
− 1

2 ρ
3
2 where C0 := max

{
ε1τ
− 3

2
1 , ε0τ

− 1
2

0 τ
− 1

2
1

}
.

Let us set ε := 1
2ε1, and assume G(J, u,Qx,r) ≤ εr. Notice that for any y ∈ Qx, r

2
, we have

G(J, u,Qy, r
2
) ≤ G(J, u,Qx,r) ≤ εr = ε1

r

2

so that from (7.35)

0 = lim
ρ→0+

G(J, u,Qy,ρ)

ρ
≥ lim sup

ρ→0+

H1(J ∩Qy,ρ)
ρ

,

which yields J+ ∩Qx, r
2

= ∅.
�

Proposition 7.11 (Regularity for quasi minimizers). Let Λ, r > 0. Then for any (Λ, r)-quasi
minimizer (J, u) of G on V(Ω) we have that J+ (see (7.34)) is essentially closed in Ω, i.e.,

H1
(

Ω ∩ (J+ \ J+)
)

= 0,

while u ∈ C∞(Ω \ J+).

Proof. Since the functional G coincides with a volume integral outside J , there exists a H1-negligible
set N ⊂ Ω \ J such that for every x ∈ Ω \ (J ∪N) we have

lim
ρ→0

G(J, u,Qx,ρ)

ρ
= 0.
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Thanks to Proposition 7.10 we infer

Ω ∩ J+ ⊂ J ∪N ⊂ J+ ∪ (J \ J+) ∪N.

Since the last two sets are H1-negligible, we infer H1(Ω ∩ (J+ \ J+)) = 0.
Since

H1(Ju \ J+) ≤ H1(J \ J+) = 0,

we get that u is locally H1 on Ω \ J+ (thanks to Korn’s inequality): smoothness then follows from the
regularity theory for solutions to Stokes equation (see e.g. [6, Theorem IV.5.8]).

�

7.3. Proof of Theorem 4.10. We are now in a position to prove the regularity result given by
Theorem 4.10.

Let (E, u) be a minimizer of J and let us set

Λ := 4Lip(f) and J := Ju ∪ ∂∗E.

We also assume (up to multiplying u by c−
1
2 ) that the constant c of (4.2) is 1.

We first prove that (J, u) is a (Λ, 1) quasi minimizer of the Griffith functional G on V(Ω) according
to Definition 7.4. Indeed, let Qx,r b Ω with r < 1 be a square as in Definition 7.4, with associated
competitor (J \Qx,r, v). We claim that either

(7.36) H1(∂Qx,r \ E(1)) = 0 or H1(∂Qx,r \ E(0)) = 0.

In the first case, from the minimality inequality

J (E, u) ≤ J (E, u1Ω\Qx,r)

we deduce u = 0 a.e. on Qx,r and H1(∂∗E ∩ Qx,r) = 0, so that the inequality to check for quasi
minimality is trivially satisfied. Notice that admissibility of (E, u1Ω\Qx,r) for the main problem follows
from the fact that the trace of u on ∂Qx,r is zero, being that boundary composed of points of density
one of the set E on which u vanishes.

If the second possibility in (7.36) holds true, then the relations (see [29, Theorem 16.3] and recall
that H0(∂Qx,r ∩ ∂∗E) = 0 by the properties of Qx,r)

J (E, u) ≤ J (E \Qx,r, v) and ∂∗(E \Qx,r) = ∂∗E \Qx,r = ∂∗E \Qx,r
yield in particular ∫

Qx,r

|e(u)|2 dx+H1(J ∩Qx,r) ≤
∫
Qx,r

|e(v)|2 dx+ Λr2,

so that the quasi minimality of (J, u) follows.
By Proposition 7.11, we get that the normalized set J+ (see (7.34)) is essentially closed in Ω, i.e.,

H1(Ω ∩ (J+ \ J+)) = 0,

and u is smooth on Ω \ J+, so that

Ω ∩ Ju ⊆ J+.

On the other hand, in view of the general properties of the reduced boundary of sets of finite perime-
ter (see [1, Theorem 3.59] or [29, Theorem 15.5]) we have ∂∗E ⊆ J+. Taking into account that
H1(J+∆J) = 0 (where ∆ denotes the symmetric difference of sets) we infer

H1(Ω ∩ Ju ∪ ∂∗E \ (Ju ∪ ∂∗E)) ≤ H1(Ω ∩ J+ \ J) ≤ H1(Ω ∩ J+ \ J+) +H1(J+ \ J) = 0

so that the conclusion follows.
In order to complete the proof, we need to check claim (7.36).
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Assume by contradiction that the claim is false. Then there exists p ∈ E(1)∩∂Qx,r and q ∈ E(0)∩∂Qx,r
that are not in one of the corners. Without loss of generality we suppose p, q ∈ {x− re2 + Re1} with
p1 < q1, the case when both are in different sides being analog. We let for s > 0 small

• Cp := p+ [−s, 0]× [0, s] and Cq := q + [0, s]2,
• gs : [p1 − s, q1 + s] → [0, 1] be zero at the extremes, affine on [p1 − s, p1] and [q1, q1 + s] and

equal to 1 on [p1, q1],
• fs ∈ C1

c (]0, s[) with 0 ≤ fs ≤ 1,
• ϕs(x) = gs(x1)fs(x2 + r).

Then

H1(J ∩ (Qx,r \Qx,r−s)) ≥
∫
∂∗E

ϕs(νE)1 dH1 =

∫
E
∂1ϕs dH1

=
1

s

∫
E∩Cp

fs(y2 + r)dy − 1

s

∫
E∩Cq

fs(y2 + r)dy

so that, letting fs ↗ 1 we get

H1(J ∩ (Qx,r \Qx,r−s))
s

≥ |E ∩ Cp|
|Cp|

− |E ∩ Cq|
|Cq|

.

Since as s→ 0+, by assumption on the density properties of p and q, we have

|E ∩ Cp|
|Cp|

→ 1 and
|E ∩ Cq|
|Cq|

→ 0,

we infer

lim sup
s→0

H1(J ∩ (Qx,r \Qx,r−s))
s

≥ 1

which is against the assumption on r in Definition 7.4 of quasi minimality. The proof is thus concluded.

7.4. Some remarks on a “strong” formulation of the problem. In this section we elaborate on
a different relaxation of the drag minimization problem which involves topologically closed (but not
necessarily regular) obstacles F in the channel Ω and velocity vector fields which are H1

loc on Ω \ F .

Within this perspective, given Ω ⊂ Rd open and bounded, it is natural to start with pairs (F, u)
such that

(7.37) F ⊆ Ω is relatively closed, Ω ∩ ∂F is rectifiable, Hd−1(Ω ∩ ∂F ) < +∞
and

(7.38) u ∈ H1
loc(Ω \ F ;Rd), divu = 0 in Ω \ F , e(u) ∈ L2(Ω \ F ;Md×d

sym).

Notice that, as for the relaxation studied in the previous sections, ∂F may contain “lower dimensional”
parts. The set Ω \ F is open, so that the space H1

loc(Ω \ F ;Rd) is well defined.
It is not clear how to talk about traces on ∂(Ω\F ), which are fundamental to formulate the tangency

constraint, as the set is in general not regular. It turns out that velocities admit a well defined trace
on Hd−1 almost every point ∂F even if this set is not assumed to be only rectifiable and not regular.
This is a consequence of the following result which involves the space GSBD of Generalised Functions
of Bounded Deformations introduced in [21]. Let us set

(7.39) ũ :=

{
u in Ω \ F
0 in F.

Lemma 7.12. Let Ω ⊆ Rd be a bounded open set, and assume that the pair (F, u) satisfies (7.37) and
(7.38). Then ũ ∈ GSBD(Ω) with Hd−1(Jũ \ ∂F ) = 0.
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Proof. Since Hd−1(Ω ∩ ∂F ) < ∞, for every ε > 0 we may find some covering of ∂F through a finite
union of balls of radius less than ε, denoted (Bε

i )1≤i≤Nε , such that

Nε∑
i=1

(
diam(Bε

i )

2

)d−1

≤ C

for some C > 0 that does not depend on ε. Let Bε be the union of these balls - which is a Lipschitz
set up to a small perturbation of the radii - and let uε := u1Ω\Bε . Then uε ∈ SBD(Ω) with

Euε = e(u) dxb(Ω \ (F ∪Bε)) + uHd−1b∂Bε.

Moreover
uε → ũ a.e. in Ω

with

lim sup
ε→0

∫
Ω
|e(uε)|2 dx+Hd−1(Juε) < +∞.

We apply [17, Theorem 1.1] to (uε): since ũ is finite almost everywhere, we directly identify ũ with the
limit that is obtained, and we infer ũ ∈ GSBD(Ω); moreover up to a Hd−1-negligible set, Jũ ⊂ ∂F by
construction, and the result follows. �

Coming back to configurations (F, u) satisfying (7.37) and (7.38), up to a choice of orientation of
the rectifiable set Ω ∩ ∂F , there is no ambiguity in defining the traces u±|∂F of u on Hd−1-almost all

points of Ω ∩ ∂F .
In addition to the previous items, we thus require also for (F, u) the non-penetration condition

(7.40) u±|∂F · ν∂F = 0 Hd−1-a.e. on Ω ∩ ∂F .

Given an admissible configuration (F, u), we can consider the following energy (all the constants
have been normalized to 1)

J(F, u) :=

∫
Ω\F
|e(u)|2 dx+

∫
Ω∩∂eF

|u+|2 dHd−1 +

∫
Ω∩F (0)∩F

[|u+|2 + |u−|2] dHd−1

+Hd−1(Ω ∩ ∂eF ) + 2Hd−1(Ω ∩ F (0) ∩ F ) + f(|F |),
where ∂eF denotes the measure theoretical boundary of F , and f is the penalization function introduced
in the previous sections (see (4.1)).

Configuration with finite energy are linked to admissible configurations of our main relaxed problem
by the following result.

Lemma 7.13. Let Ω ⊆ Rd be open and bounded, and let (F, u) satisfy (7.37) and (7.38) with J(F, u) <
+∞. Then the function ũ defined in (7.39) is such that ũ ∈ SBD(Ω).

Proof. It suffices to note that for every direction ξ ∈ Sd−1 we have

J(F, u) ≥
∫
ξ⊥

∫
Ωξy

|(ũξy)′(t)|2dt+
∑
t∈J

ũ
ξ
y

(
1 + |(ũξy)+(t)|2 + |(ũξy)−(t)|2

) dH1(y).

�

Dealing with boundary conditions yields to the same problem highlighted in our main relaxation.
Assume Ω has a Lipschitz boundary, and let us write simply u in place of ũ. We have that u ∈ SBD(Ω)
so that the trace on ∂Ω is well defined. Given a divergence free vector field V ∈ C1(Rd;Rd), we can
deal with the relaxation of the boundary condition by considering the set

Γu,V := {x ∈ ∂Ω : u(x) 6= V (x)},
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and enforcing the non-penetration constraint leading to

(7.41) u · ν∂Ω = 0 and V · ν∂Ω = 0 Hd−1-a.e. on ΓV,∂Ω.

So for a configuration (F, u) satisfying (7.37), (7.38), (7.40) and (7.41), we can consider the energy

J strong(F, u) := J(F, u) + 2Hd−1(Γu,V ) +

∫
Γu,V

[|V |2 + |u|2] dHd−1.

The minimization of J strong on admissible configurations is a different possible relaxation of the original
drag minimization problem. We clearly have

min
(E,u)∈AV (Ω)

J (E, u) ≤ inf
(F,u)
J strong(F, u).

Equality is reached in dimension two thanks to the regularity result given by Theorem 4.10. Indeed,
if (E, u) is a minimizer for J , we know that ∂∗E ∪ Ju is essentially closed, so that an admissible
relatively closed set F arises by considering the complement of the union of the connected components
of Ω \ ∂∗E ∪ Ju on which u does not vanish identically. The function u is smooth outside F , so that
the pair (F, u) is strongly admissible with J strong(F, u) = J (E, u). As a consequence, in dimension
two the relaxed problem

min
(F,u)
J strong(F, u)

is indeed well posed.
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