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Abstract

This chapter looks at new theoretical work on abduction, with a special focus on arguments
concerning the normative status of abduction, as well as at empirical results relevant to the
question of whether theories of abduction are descriptively adequate.

Keywords: abduction; Bayes’ rule; belief change; computer simulations; explanatory reason-
ing; inference; probability.

1 Introduction

Broadly understood, abduction is the idea that explanatory considerations have confirmation-the-
oretic significance. What this means, to a first approximation, is that whenever we wonder how
much confidence to invest in a hypothesis or theory, given the available evidence, we should a/so
consider the question of how well the hypothesis or theory explains that evidence. Suppose, for
instance, that we conduct an experiment and the results allow us to eliminate a number of theories
in the relevant domain but leave still more than one contender in the running. Then if one of the
remaining theories is a clearly better explanation of our experimental results than the others are,
that is reason to put more confidence in the former than in any of the other theories; according to
some authors, it is even reason to infer that the former is correct.

Abduction is different from the more widely studied inference form of deduction, if only be-
cause an abductive inference is revisable: we may receive additional evidence, and then some other
theory may best explain our evidence, in which case we may become more confident, or infer cate-
gorically, that this other theory is correct. Abduction is also different from induction, another form
of inference that is revisable. The key difference is that induction, as commonly understood, ex-
ploits only frequency information whereas abduction relies crucially on judgments of explanation
quality (which, note, is not to exclude that these judgments may rely, at least partly, on frequency
information).

Until at least 1980, philosophers of science and epistemologists took abduction more or less for
granted. This changed with the advent of Bayesianism, which came to dominate thinking about
rationality in the 1980s and 1990s, even to the extent that any rule apart from Bayes’ rule (see be-
low for details) came to appear suspect. The most general point of critique Bayesians raised against
abduction was that whereas their position builds on a precise mathematical machinery, abduction
is no more than a slogan. And even if abduction can be made formally precise, then it could still
only be subservient to Bayes’ rule, for instance, by recruiting explanatory intuitions in order to help
determining prior probabilities, or by functioning as a heuristic shortcut to approximate probabil-
ities whose exact calculation would take more time and effort than should be spent given the use



case at issue. Any formally precise version of abduction that is more aspiring is doomed, according
to Bayesians, if not because it makes the user “Dutch-bookable” (i.e., open to engaging in sets of
bets that she is guaranteed to lose), then because it makes the user’s degrees of belief (i.e., subjective
probabilities) more inaccurate than they would be were the user a Bayesian.

In view of these criticisms, should we still care about abduction? We should, for at least two
reasons. First, there is evidence that people do reason abductively, and that they do so in ways
that lead them to violate Bayes’ rule; that makes the study of abduction worthwhile at least from a
psychologist’s standpoint. Second, there is recent work casting doubt on the Bayesian arguments
according to which abduction violates norms of good reasoning. Among other concerns raised
about these arguments, friends of abduction have countered that even if abduction has the flaws
Bayesians attribute to it, there is reason to suspect that abduction can offer benefits in return which
may more than make up for those flaws.

Section 2 looks at various ways in which authors have proposed to make the broad idea of ab-
duction precise. Section 3 presents empirical evidence bearing on abduction. Section 4 critically
discusses the main arguments that have been leveled against abduction. And Section s, finally, can-
vasses a recent defense of the idea that, in the right kind of circumstances, abduction is a rational
mode of reasoning.

2 What is abduction?

Above, abduction was characterized broad/y. In the literature, one finds various more precise state-
ments of this mode of inference. According to what is probably the most common characterization,
abduction licenses the acceptance of a hypothesis on the basis that it best explains the available evi-
dence (e.g., Psillos, 2004, 83). As various authors have pointed out, however, this characterization is
unsatisfactory for more than one reason. A first reason is that, thus conceived, abduction authorizes
an absolute judgment—accepting a hypothesis as true—on the basis of a relative one, to wit, that
the hypothesis better explains the evidence than the other avazlable candidate explanations, which
will typically not include all potential explanations of the evidence (van Fraassen, 1989, Ch. 6). A
second reason why the previous characterization has been deemed inadequate is that in cases in
which the best explanation of our evidence is still a poor one, or 7s satisfactory but hardly more
so than the second-best explanation, an inference to that best explanation would pre-theoretically
appear unwarranted.

These concerns have inspired authors to come up with more refined proposals. For instance,
Kuipers (1992) has addressed the first concern by proposing a reformulation of abduction according
to which it licenses the inference to the conclusion that the best explanation is closer to the truth
than the other available candidate explanations. And in response to the second concern, Lipton
(1993) strengthens the standard definition of abduction by adding to it the requirement that the
best explanation be both sufhiciently good and sufficiently much better than its closest rival.

A more general concern that has been raised about abduction is that it lacks precision, whether
in its standard formulation or in the versions of Kuipers and Lipton, and that thereby it contrasts
unfavorably with Bayes’ rule, which is its main contender. Admittedly, Bayes’ rule comes as a precise
mathematical formula, in comparison with which abduction can easily appear as a vague suggestion.
However, already van Fraassen (1989, Ch. 6) proposed a probabilistic version of abduction, and
recently a number of variants of that version have appeared in the literature.

According to Bayes’ rule, a rational person updates her personal (or subjective) probabilities



upon the receipt of new information £ by setting, for all propositions / expressible in her language,

Pr(H) Pr(E | H)

Prg(H) = Pr(H|E) = Pr(E) )

where Pr(-) is the person’s probability function right before she receives £ and Prg(-) her proba-
bility function immediately after that event. Pr is also referred to as the person’s prior probability
function and Prg as her posterior probability function.

Van Fraassen’s rule, which will here be called “EXPL,” is like Bayes’ rule except that it attributes
a bonus for explanatory superiority. Where {H;},<, is a set of self-consistent, mutually exclusive,
and jointly exhaustive hypotheses, a person’s new probability for H; immediately after receiving £
is in accordance with EXPL if and only if

Pr(H;) Pr(E| H;) + AH}, E)

Pr'(H;) P ’
S, (P(H)) Pr(E| H)) + AH;, E))

(EXPL)

where Pr and Pr” are the prior and posterior probability function, respectively, and fis a function
assigning a bonus ¢ (¢ > o) to the hypothesis that best explains £ and nothing to the other hypothe-
ses.

Whereas EXPL gives all credit to the best explanation, one could plausibly consider rules that
credit a number of hypotheses in proportion to how well they explain the data. So for instance, the
best explanation might get most of the credit, but the second-best explanation might also get some
credit, and might even get almost as much credit if it is almost as good, qua explanation, as the best
explanation. One could also consider giving some credit to the third-best, the fourth-best, and so
on, explanation, where then the credit attributed gets less and less, again most plausibly reflecting
the explanation quality of each individual hypothesis. Indeed, if a hypothesis would make for a
particularly poor explanation of the data, one could even assign it a malus point.

Taking this idea as a starting point, Douven (2017, 2019, 20204, 2022; also Douven & Wenmack-
ers, 2017) formulates probabilistic versions of abduction that can credit individual hypotheses sep-
arately, in accordance to their explanation quality. Specifically, the rules he proposes are instances
of the following schema:

Pr(H;) Pr(E | H;) + cPr(H,) Pr(E | H;)M(H;, E)

Pr'(H;) = ’
(H) 37 (Pr(H;) P(E | H)) + ¢ Pr(H)) Pr(E | H)MU(Hj, E))

(S)

where Pr and Pr’” are as before, Jl is a measure of explanation quality, and with again ¢ > o.

Note that, as stated here, the above schema as well as EXPL have Bayes’ rule as a limiting case,
viz., if ¢ is set to 0. One could thus say that advocates of either schema are committed to Bayesian
updating in cases in which no explanatory considerations are at play. Alternatively, one could re-
quire ¢ to be strictly greater than o, thereby leaving entirely open how to update one’s probabilities
when explanation plays no role.

In principle, 4l can be any measure of explanation quality. Douven (2022) considers two in
particular, one building on Popper’s (1959) work and the other on Good’s (1960) work. According
to Popper’s measure, hypothesis /’s power to explain evidence £ is given by

Pr(E | H) - Pr(E)
Pr(E | H) + Pr(E)’

while according to Good’s measure it is given by



In (Pf(E | H))
Pr(E) |’

Douven uses these measures (to illustrate certain normative points about abduction, to be discussed
in Sect. 4) because they had performed well in empirical research (Douven & Schupbach, 2015a,
2015b), not necessarily because he thinks they are “objectively best.”

The easiest way to think of these rules is that they first update a hypothesis’ probability accord-
ing to Bayes’ rule, calculate that hypothesis” explanatory goodness (or badness, as the case may be)
according to one of the above measures, add (or subtract) a percentage of the hypothesis’ probabil-
ity in proportion to its explanatory goodness (or badness), and then, as a final step, renormalize.

The details matter less than the general observation that there a7e precise versions of abduction,
for example, instances of EXPL or the schema of Douven (2017, 2019, 20204, 2022), and possibly
many others. But although these schemata help to address the concern of lacking precision, they
do raise a concern of their own, at least for anyone wishing to maintain the rationality of abductive
reasoning. The new concern is that there appear to be many versions of abduction, without an
indication of which of those is the 7zght one, the one to be followed in our reasoning.

Douven (2017, 2022) proposes not to sce this as a concern but rather to embrace the thought
that abduction is a general idea—that explanation has a role to play in confirmation—that not
only can be articulated in a diversity of ways but that bas to be articulated differently in different
contexts of use. Exactly how to reason abductively depends on what the reasoner’s goals are, on the
environment in which she is pursuing those goals, as well as on her capacities. Indeed, if Foley (1993)
and others are right that we sometimes reason qualitatively—in terms of what to (categorically)
believe—and sometimes quantitatively—in terms of what probabilities to assign—there may be
times when we rely on something like Kuipers’ or Lipton’s versions of abduction, referenced in the
previous section, and also times when instead we rely on EXPL or a kindred probabilistic rule.

The proposal to understand abduction as a broad idea, requiring further fleshing out depend-
ing on context and user, takes its cue from work by Gigerenzer (2000, 2002), Elqayam (2011, 2012),
Schurz and Hertwig (2019), and others, arguing for an ecological conception of rationality. This
work suggests that we must be willing to abandon the classical idea that rational reasoning is a mat-
ter of following a small number of universally valid principles and to acknowledge that the ability
to pick the right learning tools for each particular situation is an important aspect of what we gen-
erally think of as human intelligence. In light of this work, the thought that rationality may require
us to use one precisification of abduction in some contexts, another in other contexts, and perhaps
Bayes’ rule in yet other contexts, makes a lot of sense.

Nevertheless, philosophers love generality, and so they may not be easily persuadable to let
go of the one-size-fits-all solution that Bayesianism appears to offer. And then there are still the
arguments that were mentioned in the introduction, which aim to show that any deviation from
Bayesian reasoning leads to irrationality. Before turning to those, I discuss some evidence seemingly
showing that, in quite ordinary learning situations, people tend to reason abductively, by taking
explanatory factors into consideration in ways that lead them to violate Bayes’ rule. Ata minimum,
that puts some pressure on those wanting to stick to Bayesianism, given that it would require the
attribution of massive error in people’s learning practices.’

"Bayesians may be quick to point out that it is long known that people violate Bayesian principles; see the next
section. However, many Bayesians still want to maintain that, by and large, their view is descriptively adequate (e.g.,
Oaksford & Chater, 2007)—which becomes harder to maintain with every newly discovered violation.



3 Abductive reasoning: Empirical support

Bayes’ rule as well as the probabilistic versions of abduction form the core of competing accounts
of rational updating. It is not necessary for such accounts to be descriptively accurate to a tee. But
they should be at least broadly predictive of how humans update their probabilities. If not, why
think that these accounts have any bearing on human rationality, rather than being some highly
idealized form of robot epistemology? So, how do these accounts hold up against the experimental
results?

To start with Bayes’ rule, it is to be stressed that much of what is commonly advertised as evi-
dence for Bayesianism is unrelated to the question of how people update their probabilities upon
the receipt of new information and concerns probabilistic reasoning more broadly, for instance,
whether people’s static assignments of probabilities are coherent, that is, whether people’s (subjec-
tive) probabilities are truly probabilities in that they conform to the probability calculus, at least
by and large (Oaksford & Chater, 2007). Whereas there are quite a number of known results sup-
porting the thought that people do obey Bayesian prescriptions, at least approximately, there are
also reports of stark violations of these prescriptions, most famously in the work of Kahneman and
various of his collaborators (e.g., Kahneman, Slovic, & Tversky, 1982; Tversky & Kahneman, 1983).
However, Bayesians have tried to explain away such violations as being due to people’s reliance on
error-prone heuristics, or on their confusing the concept of probability with that of confirmation
(see Tentori, Crupi, & Russo, 2013, for discussion).

Support specifically for the descriptive adequacy of Bayesian #pdating is hard to find. Griffiths
and Tenenbaum (2006) present participants with random samplings from a closed interval (e.g.,
a random person’s age, or the length of a random couple’s marriage) and then ask for the upper
bound of that interval (e.g., the person’s life span, or the total duration of the marriage). They show
that their participants’ responses are close to what one would expect them to be on the assumption
that they updated on the random outcome of the sampling via Bayes’ rule. Note, though, that in
this setup, explanatory considerations nowhere enter the picture, meaning that the assumption that
the participants updated via an instance of EXPL or of the other schema discussed in the previous
section would lead to the same predictions.

Besides, there is older work on updating that also explicitly compared people’s updates with
what those updates should be according to Bayesianism and this work reported strong evidence
against Bayes’ rule (Edwards, 1968; Marks & Clarkson, 1972; Fischhoff & Lichtenstein, 1978; Schum
& Martin, 1982). Particularly worth mentioning in this regard is the research reported in Phillips
and Edwards (1966), which involved a so-called bookbags-and-poker-chips experiment. In this type
of experiment, participants are being informed about the contents of two containers (e.g., bookbags
or urns), where these containers hold two types of objects (e.g., black and red poker chips, or blue
and green balls) in different ratios. For instance, they might be told that the bag composition is
70/30 versus 50/50. The experimenters then randomly draw a number of objects from one of the
bags, without disclosing to participants which bag it is. Finally, the participants are shown the
sample and asked for their probability that the sample comes from the 70/30 bag rather than from
the so/50 bag. Using this setup, and comparing their participants’ probability estimates with the
probabilities for the two bags given the sample that were mandated by Bayes’ rule, Phillips and
Edwards found significant discrepancies between the former and the latter.

Here too, no attempt was made to contrast Bayesian updating with updating via some form of
abduction. More recently, however, Douven and Schupbach (20152) relied on basically the same
experimental paradigm with the explicit aim of investigating whether deviations from Bayes’ rule
in participants’ probability updates—if any deviations were found—could be due to the partici-



pants’ taking into account explanatory considerations. These authors were specifically interested
in three questions, to wit, first, how Bayesianism and explanationism—the normative view that
people ought to reason abductively when explanatory factors are at play—compare in terms of de-
scriptive adequacy; second, whether if judgments of explanatory goodness are found to have an
essential role in updating, probabilities still play an important role, too, in updating; and third,
what kind of explanatory judgments figure in updating, if any do.

To answer these questions, Douven and Schupbach slightly extended Phillips and Edwards’
bookbags-and-pokerchips paradigm, the extension consisting of the additional gathering of judg-
ments of explanation goodness, alongside that of probability judgments. Specifically, the proce-
dure was as follows: Participants were interviewed individually and were, at the start, presented
with two urns, labeled “urn A” and “urn B.” They were shown that each urn contained forty balls,
the composition being thirty black balls and ten white ones for urn A, and fifteen black balls and
twenty-five white ones for urn B. Participants could consult this information at any time during
the interview. Then the experimenter flipped a coin and, depending on the outcome, chose one or
the other urn, outside of the participants’ view. Next, from the chosen urn ten balls were drawn,
one after the other, and without replacement. The balls were lined up before the participant as they
were drawn. After each draw, the participant was asked the following questions:

(i) How well, in your opinion, does the hypothesis that urn A was selected explain the results
from the drawings so far?
(i) How well, in your opinion, does the hypothesis that urn B was selected explain those results?
(iif) How probable is it, in your opinion, that urn A was selected, given the results so far?

The two questions about explanatory goodness had to be answered by making a mark on a contin-
uous scale with “extremely poor explanation” and “extremely good explanation” as anchors.

In their analysis, Douven and Schupbach fitted a number of linear regression models (in fact,
so-called linear mixed-effects models; see Douven, 2022, for some background), each of which had
the collected responses to question (iii) as dependent variable and at least the objective conditional
probabilities that could be calculated for each participant and each drawing as predictor variable.
The models differed in their further predictors. In one model there were 7o further predictors
beyond objective conditional probabilities. A second one included as further predictors both the
collected responses to question (i) and the collected responses to question (ii). A third one, finally,
had besides objective conditional probabilities as a predictor also the computed differences between
the participants’ responses to question (i) and question (ii).

Adding predictors to a model tends to yield a model with better fit. Therefore, Douven and
Schupbach compared the aforementioned models using the Akaike information criterion (AIC)
and the Bayesian information criterion (BIC), which weigh model fit against model complexity.
On both criteria, the third model, with objective probabilities and difterence in judged explanatory
goodness as predictors, did best, followed by the second model, and with the first model—the one
with only objective probabilities as predictor—coming in at a very distant third place.

This result casts doubt on the claim that people update via Bayes’ rule rather than via some ver-
sion of abduction. If they updated via Bayes’ rule, the smallest model should have come out on top.*
What should make Douven and Schupbach’s (2015a) result particularly unsettling for Bayesians is
that not only were the participants’ responses out of sync with Bayesian prescriptions (which could
perhaps be explained away in terms of noise), but these deviations could be successfully accounted

%At least that is so assuming the so-called Principal Principle, according to which (roughly) subjective probabilities
should equal objective probabilities if the latter are known. But this principle is also almost generally endorsed in the
Bayesian community.



for in terms of the participants’ giving weight to explanatory considerations. This is evidence that
people factor in judgments of explanation quality when they update, at least in some contexts, and
that they do so in a way that is essentially non-Bayesian.

It does not tollow from Douven and Schupbach’s analysis that explanatory considerations have
any systematic impact on people’s updates. In particular, it does not follow that people are follow-
ing something like a probabilistic rule of abduction. This observation motivated follow-up research
specifically directed at the question left open by Douven and Schupbach (2015a). In this research,
Douven and Schupbach (2015b) used the objective probabilities from their earlier study in conjunc-
tion with Popper’s and Good’s measures of explanatory power to compute, separately for each par-
ticipant and each draw, the explanatory power of the hypotheses at play in the experiment reported
in Douven and Schupbach (2015a)—that is, that urn A had been selected, and that instead urn B
had been selected—and then used the results of those computations together with the objective
conditional probabilities as predictor variables to again regress the updates from the participants in
the experiment from Douven and Schupbach (2015a).3 In other words, where the analysis of Dou-
ven and Schupbach (20152) had used subjective judgments of explanatory goodness as a predictor,
in their new analysis, these authors fitted models that had computed explanatory goodness values as
a predictor. More exactly, one model had the values computed according to Popper’s measure as a
predictor and the other had the values computed according to Good’s measure as a predictor, while
both shared objective conditional probabilities as a predictor. It was found that both models did
considerably better in terms of AIC and BIC values than the model with only objective conditional
probabilities as a predictor. That is compelling evidence that, at least in some contexts, explanatory
considerations do play a systematic role in people’s probabilistic updates: the way they help shape
those updates can be captured by formal measures of explanatory power.

It was previously mentioned that we may not always reason quantitatively, in terms of proba-
bilities, but may also sometimes reason in terms of categorical beliefs, and that therefore qualitative
versions of abduction may have psychological reality as well. Just as there is little empirical work on
quantitative versions of abduction, there is little work on qualitative versions. To our knowledge,
the only research directly concerned with a qualitative version of abduction—specifically, Lipton’s,
as stated in the previous section—is to be found in Douven and Mirabile (2018). Recall that Lip-
ton’s version stressed the importance of the best explanation being not only good enough but also
being appreciably superior to the second-best explanation. To investigate the descriptive adequacy
of this version, Douven and Mirabile focused on the following questions:

(1) Does the quality of an explanation predict people’s willingness to accept that explanation,
and is there a quality threshold such that an explanation must be above that threshold for
people to infer to it?

(2) Will it make a difference to people’s perception of the quality of an explanation if they are
introduced to a rival explanation? Will that make a difference to their preparedness to accept
the former?

(3) If people are given two rival explanations, does it matter to their preparedness to inter to the
best of those how much the explanations differ, in terms of quality?

Douven and Mirabile (2018) describe three experiments designed to answer these questions.

The three experiments used materials deriving from six basic scenarios, each presenting a fact
alongside one (in the first experiment) or two (in the second and third experiments) possible ex-
planations of that fact. The explanations could vary in quality; where two explanations appeared,

3In fact, Douven and Schupbach (2015b) looked at some other measures of explanatory power as well, but these did
significantly worse than Popper’s and Good’s measures.



the explanations could vary in quality independently of each other. The participants were asked to
answer three questions: (i) whether they were willing to infer to one of the explanations (or to zbe ex-
planation, where only one was given); (ii) how likely, in their judgment, the explanations were; and
(iii) how good the explanations were, qua explanations. The participants in the third experiment
also always had to indicate how confident they were in their answer to question (i).

In their analysis, Douven and Mirabile found that how highly a person rates the quality of an
explanation accurately predicts how willing she is to infer to that explanation, and also that the per-
ceived quality needs to be above a certain threshold (which differed somewhat among participants)
before the person will make the inference. Importantly, whereas the probability a participant as-
signed to an explanation was also a good predictor of whether the participant was willing to infer to
that explanation, perceived explanation quality was a significantly better predictor. Furthermore,
Douven and Mirabile found that people’s willingness to infer to an explanation is reliably affected
by whether that explanation is presented on its own or is accompanied by a rival explanation, even
though their judgment of the quality of an explanation is oz affected by that. There was a further
reliable effect of the quality of the rival explanation on people’s preparedness to infer to the other
explanation. Specifically, Douven and Mirabile found that when their participants were presented
an explanation alongside a rival explanation that was more or less as good, the participants were
reliably less inclined to infer to the former explanation, whereas the effect of introducing a rival
explanation tended to be smaller when that rival was a clearly poorer explanation.* In summary,
Douven and Mirabile found positive answers to question (1), the second part of question (2), and
question (3), but a negative answer to the first part of question (2).

It was already known that, in some form or other, explanation is involved in various cognitive
processes, such as categorization (e.g., Williams & Lombrozo, 2010, 2013; Edwards et al., 2019; Vasi-
lyeva & Lombrozo, 2020), generalization (e.g., Lombrozo & Gwynne, 2014), and understanding
(Keil, 2006; Legare & Lombrozo, 2014; Walker & Lombrozo, 2017). The studies discussed in this
section are among the first to look specifically at the role of explanation in belief updating. The
outcomes of these studies should at least for psychologists be reason to take abduction in the con-
text of belief change more seriously than they have so far done. For example, it would be interesting
to have more information about the degree to which abductive reasoning depends on context, and
also to know more about the actual cognitive mechanisms underlying or involved in that type of
reasoning. But whatever the outcomes of such (hopefully) future research, is there any reason for
philosophers to care about it? Section 5 makes a case for a positive answer to this question. But
Section 4 first discusses the two main arguments commonly taken to suggest that philosophers can
safely ignore abduction.

4 Is abduction a recipe for disaster?

People are susceptible to all sorts of biased thinking. They have a strong tendency to give more
weight to information that favors their views than to information that challenges those views (the
so-called confirmation bias); they tend to discount older information in favor of more recent infor-
mation (the recency bias); they easily neglect prior probabilities in their quantitative reasoning (the
base rate fallacy); they often overestimate their own abilities (the Dunning—Kruger effect); and on
and on. Hence, the finding that people systematically attend to explanatory factors when changing
their beliefs, or their probabilities, is of little significance from a normative standpoint. After all, it
could just be one more bias, one more unfortunate but hard to unlearn cognitive habit. If, at the

#Note that this finding is in line with Douven and Schupbach’s (2015a) finding that their model with differences in
judged explanatory goodness as a predictor, next to objective probabilities, did best.



end of the day, we had to acknowledge as much, that would at most be a s/ight additional blow to
our self-esteem.

Philosophers have given two main arguments for the claim that abduction, if it has psycholog-
ical reality, is a bias indeed, and a quite detrimental one at that. Before looking at these arguments
in some detail, there are two remarks to be made. First, whereas abduction is nowadays almost gen-
erally derided, in the 1970s and 1980s it was almost equally generally considered a paradigmatically
sound form of reasoning. McMullin (1992 referred to it as “the inference that makes science,” and
Boyd (1984, 1985) argued that because (on his analysis) abduction is central to scientific reasoning
and the methods of philosophy should be continuous with those of science, abduction should be
central to philosophy as well. That the appreciation of abduction changed so dramatically has ev-
erything to do with the meteoric rise of Bayesian philosophy of science and Bayesian epistemology,
for reasons to be seen shortly.

Second, it is to be noted that the arguments to be considered in the following are strictly con-
cerned with probabilistic versions of abduction. As said, there may well be situations in which we
want to rely on Lipton’s or Kuipers’ or a similar qualitative version of abduction. The present au-
thor is not aware of any arguments against these. Naturally, hard-nosed Bayesians will regard the
fact that these versions are phrased in terms of categorical rather than graded belief as disqualifying
in itself. But the view that the two notions of belief are both to be taken seriously (rather than dis-
missing the categorical notion as somehow having no place in scientific philosophy) is increasingly
popular, and much recent work in epistemology has looked at how (in Foley’s, 1993, terms) the epis-
temology of beliefs and the epistemology of degrees of belief are connected (see, e.g., the papers in
Douven, ed., 2021). Nevertheless, from here on, the focus will be on the probabilistic versions of
abduction, on which most of the recent discussion about abduction has centered.

4.1 The dynamic Dutch book argument

According to the widely endorsed betting concept of probability, the degree to which you believe
that your favorite football team will win its next match is the price in cents at which you are willing
to take either side in a bet that pays $ 1if indeed the team will win that match and nothing if it does
not win. So suppose that you have no preference for selling that bet (you have to pay $ 1 dollar if
the proposition turns out to be true) or for buying it (you receive the dollar if the proposition turns
out to be true) for the price of ¢ 30. Then your probability for your favorite football team winning
its next match equals o.3.

Bayesians have relied on this concept to argue that any failure of our probabilities to accord
with the axioms of probability—that is, for our subjective probabilities to be probabilities properly
speaking—means you are in an irrational belief state. That is because—they argue—any such fail-
ure exposes us to a so-called Dutch book, which is the standard name in the literature for a bet or
set of bets that guarantee a negative net pay-off. For instance, according to one of the axioms of
probability theory, logical truths, like “A or not A” (with A any proposition), should be assigned a
probability of 1. According to another axiom, the probability of a disjunction of mutually incom-
patible propositions should equal the sum of the probabilities assigned to the separate disjuncts.
Now suppose you believe A to a degree of 0.4 and its negation to a degree of 0.7. Obviously, A
and its negation are mutually incompatible, so you should believe their disjunction to a degree of
0.4 + 0.7 = L.I. On the other hand, that disjunction is a logical truth, and so you should believe it
to a degree of 1. You are clearly violating the axioms of probability theory. Here is how that can be
exploited: I offer you for the price of ¢ 40 abet on A that pays $ 1 dollar if A is true and nothing if A
is false. Given the degree to which you believe A, you are willing to buy that bet. At the same time,
I offer you for the price of ¢ 70 a bet that pays $ 1 if the negation of A is true (so if A is false) and



nothing otherwise. Again given your degrees of belief, you are willing to buy that bet. Exactly one
of A and its negation will turn out to be true, so you can be sure to receive exactly $ 1 dollar from
me. Note, however, that you have already paid me $ 1.1, meaning that, whatever the future brings,
you will have a net loss of ¢ 10. Betting is risky—you can always lose money. What is different here,
however, and what—Bayesians have argued—makes this an exhibit of your irrationality, is that yox
could have seen the loss coming. Not only that; you could have figured out how to avoid it, to wit,
by making your probabilities for A and its negation align with the probability axioms.

The axioms of probability theory have nothing to say about how to change your probabilities
in response to new evidence. Bayesians proposed Bayes’ rule as an answer to that question but
it was already seen that there are alternatives to that rule, even ones which are very similar to it
except that they take explanatory factors into account, such as the instances of EXPL and S stated
in Section 2. Bayesians have complemented the above Dutch book argument, which is szatic in that
it only looks at probabilities held az the same time by a dynamic Dutch book argument, which looks
at the development of a person’s probabilities over tzme. In the typical presentation, someone who
changes her degrees of belief by a non-Bayesian rule for belief change is offered a number of bets at
different points in time. It is then argued that the bets will all appear fair to the person at the time
they are offered to her but are, if she engages in all of them, guaranteed to make her lose money in
the end.

To make this concrete, here is an example. Let is be given that a certain coin either is fair or has
a perfect bias for heads (every toss lands heads) or has a perfect bias for tails (every toss lands tails).
Suppose that, initially, each of these possibilities is equally likely. We are allowed to toss the coin,
but first a bookie offers us two bets, one that pays $ 48 if the first two tosses do 7oz both land heads,
and one that pays $ 600 if the first two tosses do both land heads and, in addition, the third toss
lands tails. In light of our prior probabilities, $ 28 and, respectively, $ 25 appear reasonable prices
for these bets. (For instance, our prior that the first two tosses land heads equals ¥/ and so our
prior that they do zot both land heads equals 7/x2, and 7/r2 X 48 equals 28; similarly for the other
bet.) Suppose the bookie agrees to sell the bets at these prices. Then so far we have spent $ 53.

Now let us start flipping the coin and update our probabilities as we watch the outcomes of
the first two tosses. Suppose at least one of them comes up tails. Then we have won the first bet
but lost the second one, which means that we receive $ 48 but still have a net loss of $ 5 (we payed
$ 53 for the bets, after all). This would be unfortunate but nothing out of the ordinary: it s in the
nature of betting that the bettor should be prepared to accept losses. But now suppose that the
first two tosses do both come up heads. We have now lost the first bet but may still win the second
one, which would allow us to pocket $ 600, thereby making a net profit of $ 547. However, before
we toss the coin a third time, the bookie approaches us again and now instead of proposing to sell
any bets proposes to buy one, viz., a bet that pays $ 600 if the third toss lands tails. For what price
should we be willing to sell it?

Here it matters which rule we use to update our probabilities for the three hypotheses of interest
(that the coin has a perfect bias for heads, that it is fair, and that it has a perfect bias for tails) on the
outcomes of the first two tosses. Suppose we use EXPL, with an explanation bonus of o.1. Then,
as can be easily verified, our probability for the third toss landing tails will be 0.08. Thus, we are
willing to sell the designated bet for $ 48 (eight hundredth of what the bet pays if the third toss
lands tails). But notice now that, whatever the outcome of the third toss, we will have lost money.
If the third toss does land tails, we will receive $ 600 but have to pay the same amount; in the other
case, we will not have to pay anything but will also not receive anything. However, whereas we have
spent $ 53 on the bets we bought, we have only made $ 48 on the bet we sold. In short, we have
again lost $ 5. Thus, we are bound to lose $ 5 no matter what.
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One equally easily verifies that updating via Bayes’ rule would not have led to this result. For
had we used that rule, our probability for the third toss landing tails after watching the first two
landing heads would have been 0.1, so that we would only have been willing to sell the bet to the
bookie had she offered to pay (at least) $ 60. And if she had bought the bet for that price, we would
have made a profit of $ 7.

This is easily generalized to any update rule deviating from Bayes’ rule, so in particular, to any
instance of EXPL or S, or indeed to any other probabilistic version of abduction. What, according
to Bayesians, makes this so damning to non-Bayesian update rules is that, again, the user can figure
out herself, before deciding to update via a non-Bayesian rule, that the threat of engaging in bets that
are bound to lose her money will always be lurking. From this, they conclude that non-Bayesian
updating betokens irrationality. Andso in particular, using some probabilistic version of abduction
betokens irrationality.

4.2 Expected error minimization

The dynamic Dutch book defense of Bayes’ rule, and the Dutch book approach to defending
Bayesianism generally, has lost much of its erstwhile popularity. Most Bayesians have come to re-
gard this approach as addressing the wrong sort of rationality. Being liable to Dutch books is a
practical problem and may therefore indicate that we fall short of meeting standards of practical
rationality, that is, the rationality concerned with our actions. But the debate about how to update
our probabilities concerns a question of epistemic rationality, that is, a question of what we can
rationally believe and to what degree.

Joyce (1998) was the first to point out this problem, and in the same paper he proposed an al-
ternative to the Dutch book approach, one in terms of error minimization. Joyce was in effect only
concerned with the “static” part of Bayesianism—the claim that rationality requires our subjec-
tive probabilities to be probabilities properly speaking—and not with updating. What he argued
was, in essence, that any person whose epistemic state is not in accordance with the static norms of
Bayesianism (i.e., whose subjective probabilities are not probabilities properly so called) falls short
of realizing our epistemic goal, which Joyce understands in terms of inaccuracy minimization. That
is to say, if a person’s subjective probabilities are not formally probabilities, the person could im-
prove the accuracy of her epistemic state just be bringing her subjective probabilities in line with
the formal requirements of probability theory.

There is a variety of ways to measure the accuracy of subjective probabilities, but by far the
most popular one is the so-called Brier scoring rule. To explain this rule, let {Hl-};l:I be a set of
self-consistent, mutually exclusive, and collectively exhaustive hypotheses, and let ;; (for 7,7 €
{r,...,n}) equal 1if 7 = ;jand equal o otherwise. Then, where H; is the true hypothesis, a per-

son who assigns subjective probabilities p = (py,...,p,) to the members of {HZ-}Z;, with p; her
probability for , incurs a Brier score of ¥» 3.7 (97 — p;)*. By way of illustration, suppose H,, H,,
and H, are self-consistent, mutually exclusive and jointly exhaustive, and your subjective probabil-
ities for these hypotheses are 0.1, 0.5, and 0.5, respectively. Suppose that of these hypotheses H, is
the truth. Then your Brier score equals ((0.1)* + (1 — 0.5)* + (0.5)*)/3 = o.17. Because your sub-
jective probabilities do not sum to 1, they are not probabilities in the formal sense. Suppose you
bring them into alignment with the probability axioms by lowering your probability for H, from
0.5 t0 0.4. Then your Brier score comes to equal ((0.1)* + (1 - 0.5)* + (0.4)*)/3 = 0.14. Naturally,
this could be a coincidence, and it is certainly not true that any way of making your subjective prob-
abilities accord with the probability axioms would lower your Brier score; for instance, if you lower
your probability for /, from 0.5 to 0.4, that will bring your subjective probabilities in line with the

probability axioms, but your Brier score would go up by more than o.03. However, Joyce’s point
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is that whenever your subjective probabilities fail to obey the probability axioms, there is a way to
lower your Brier score—and thus take a step toward realizing your epistemic goal—just by bring-
ing your subjective probabilities in line with those axioms. 7hat, and not protection against Dutch
bookies, is why conformity with the probability axioms is a rationality requirement for subjective
probability, or so Joyce argues.

While Joyce did not address the issue of the rationality of Bayes’ rule, others argued that Joyce’s
general approach could also be used to show the rationality of Bayesian updating. Most notably,
Leitgeb and Pettigrew (2010) sought to show that just as (according to Joyce) having subjective
probabilities that are not really probabilities is sub-optimal from the perspective of realizing our
epistemic goal, so is updating in ways that stray from Bayesian prescriptions sub-optimal from that
perspective. More exactly, their claim is that updating via Bayes’ rule is both necessary and sufh-
cient for minimizing the expected inaccuracy of our post-update subjective probabilities, where
the expectation is relative to our pre-update subjective probabilities, and where inaccuracy is again
measured by the Brier score. To illustrate the idea, consider again hypotheses H,, H,, and H;, to
which we assign probabilities 0.1, 0.5, and 0.4, respectively. One piece of evidence relevant to these
hypotheses that we might obtain is £. Exactly how it is relevant is specified by the following proba-

bility distribution:
Pr({wHIE}) = 0.01 Pr({wHZE}) = 0.25 Pr({wHSE}) = oI
Pr({wHIE}) = 0.09 Pr({wHZE}) = 025 Pr({ij}) =03

Here, wyy is the possible world in which both X and Yare true, and E designates the negation of E.
Note that we can get the probabilities of the various hypotheses from this simply by summing the
probabilities of the worlds in which they hold true. For example, we derive from the above that our
probability for A, is equal to Pr({wHIE}) + Pr({wH]E}) = 0.01 + 0.09, which indeed equals o.1.

If we do obtain evidence £, then, according to Bayesians, we should update on that new infor-
mation via Bayes’ rule. As one easily verifies, this would lead us to assign the following subjective
probabilities to the relevant possible worlds:

X

PrE({wHIE}) X 0.028 PrE({wHZE}) 0.694 PrE({stg}) ~ 0.278

PrE({wHIE}) = 0.0 Prf({ij}) = 0.0 PrE({wHSE}) = 0.0

Right now, before receiving the evidence, what is our expectation for the Brier score we would incur
if we updated on £? To calculate this, we consider what our score would be were , to hold, we
calculate what it would were A, to hold, calculate what it would be were A, to hold, and take the
weighted average of the three scores, the weights being our probabilities for the worlds that still be
possible after the update. This yields an expected Brier score of approximately 0.158. Remarkably,
if we minimize

0.01((1 - x)* + ¥ + 2°) + 0.25(x" + (1 - y)* + 2*) + 01(&” +y* + (1 - 2)?)

subject to the constraint that x + y + 2 = 1, we find a minimum of (approximately) o.158, and
equally remarkably, we find this minimum precisely at (0.028, 0.694, 0.278), which are our post-
update probabilities for the remaining possible worlds.

If instead of Bayes’ rule we use EXPL, again with a bonus of 0.1, to update on E, supposing we
do receive that evidence, then that would lead us to assign different probabilities to those possible
worlds. Suppose we find H, worthy of the explanation bonus. Then our probability assignment
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would become

X
X
X

PrE({wH]E}) 0.239 PrE({wHZE}) 0.543 PTE({WHZE})
PrE({wH]E}) = 0.0 Prg({wHZE}) = 0.0 PrE({wHZE}) = o.0.

And we already know that, with those probabilities, we are zor minimizing our expected inaccuracy.

0.217

Indeed, in this case, our expected Brier penalty would be approximately 0.184, so greater than the
penalty of 0.158 we would incur were we to use Bayes’ rule. Leitgeb and Pettigrew (2010) show that
nothing of this is a coincidence: any update rule that minimizes expected inaccuracy is equivalent
to Bayes’ rule.

The conclusion seems to be exactly parallel to the one Joyce drew from his argument: Bayes’
rule is rational because using it is most conducive to our epistemic goal of inaccuracy minimization
and not because it serves some practical goal (such as offering protection against dynamic Dutch

bookies).

4.3 The end of abduction?

Both of the arguments discussed in the foregoing have done much to cement the popularity of
Bayes’ rule, the inaccuracy minimization argument currently being considered the more compelling
of the two, for the reasons explained. At first blush, one could indeed wonder how these argu-
ments, and certainly the second one, leave any room for doubt about the irrationality, or at least
sub-optimality (and how could using a sub-optimal rule not be irrational if an optimal rule is avail-
able?), of any form of non-Bayesian updating, including probabilistic versions of abduction.

On closer inspection, however, the arguments leave much to be desired. Both have specific
shortcomings, and they share a general one. I'start with the shortcomings specific to each argument.
As for the dynamic Dutch book argument, we already encountered the critique that it seems unre-
lated to what is or should be at issue, to wit, epistemic rationality. Moreover, some authors have
questioned the betting concept of probability, or indeed the existence of any direct connection be-
tween probability and willingness to engage in bets, on which that argument, as any Dutch book
argument, ultimately relies (e.g., Williamson, 1998). Finally, it has been argued that we should not
think of update rules in isolation, but rather as parts of packages of further epistemic as well as
decision-theoretic principles, and that there are such packages that include EXPL or a kindred ver-
sion of abduction and that shield one from being exploited by dynamic Dutch bookies (Douven,
1999, 2022). Specifically, there are packages that will lead their users to deny that all bets oftered by
the bookie are fair, even though use of the package may also lead to violations of Bayes’ rule.

As for the more specific problems facing the inaccuracy minimization argument, first note that
it is ot quite an extension of Joyce’s argument to the dynamic case. According to Joyce, concor-
dance with the probability axioms guarantees inaccuracy minimization, not expected inaccuracy
minimization, which is what Leitgeb and Pettigrew claim obedience to Bayes’ rule guarantees. In
fact, the difference is a bit more subtle still, given that what Leitgeb and Pettigrew actually argue
for is that obedience to Bayes’ rule guarantees expected next-step inaccuracy minimization—so con-
cerning the inaccuracy of our subjective probabilities immediately after the update—not expected
inaccuracy minimization fout court. What this means is that they leave open the possibility that your
expectation of how inaccurate your subjective probabilities will be at some point in the future is
greater supposing you are committed to Bayes’ rule than if you commit to some non-Bayesian up-
date rule, like EXPL for instance. Not only that: they leave open the possibility that you will ulti-
mately end up having more accurate subjective probabilities if you update via some non-Bayesian
rule than if you update via Bayes’ rule. Their argument could still be compelling if they had given
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areason to believe that we should only, or at least first and foremost, care about expected next-step
inaccuracy minimization. But they have not, and pre-theoretically the claim appears rather implau-
sible.’

But there is a more general point to be made, which pertains to both arguments, to wit, that
still nothing follows about non-Bayesian belief change if there are monetary (as per the dynamic
Dutch book argument) or epistemic (as per the inaccuracy minimization argument) costs attached
to it. Few things in life are for free. There are costs attached to having dinner in a restaurant, but
that does not prevent you from eating out: if you pick the right restaurant, you will find the meal
you get there worth the money and will be happy to pay the bill. For some reason, Bayesians have
never even bothered asking whether non-Bayesian updating could have any benefits compared to
Bayesian updating. The next section addresses that question.

s The case for abduction

To see how abduction can be preferable over Bayes’ rule, all things considered, let us start by asking
what one may want from an update rule. We gather evidence in the hope of arriving at the truth
concerning some matter of interest. Sometimes, the evidence informs us immediately about the
truth of that matter. Is Susan in her office? We may be in the position to simply have a look and
see Susan in her office, which settles the matter to everyone’s (but the skeptic’s) satisfaction. But
often the matter is not so easily decided. Why did the dinosaurs go extinct? Piecing together var-
ious bits of evidence, we may become inclined to think that it was due to environmental changes
brought about by some catastrophic event, like the impact of an asteroid on earth. In cases like this,
instead of simply observing the truth of the matter, we try to infer the truth from the evidence, the
inference typically being uncertain to a degree. Bayesians and advocates of rules like EXPL or other
probabilistic versions of abduction agree that the inferential mechanism at play is to be thought of
as a rule that outputs new subjective probabilities on the basis of evidential input.

A number of desiderata for rules of this sort naturally flow from the idea which also underlies
the inaccuracy minimization arguments just discussed, viz., that truth is the ultimate epistemic
goal: all our epistemic efforts are geared toward becoming certain of things that are true that they
are true and of things that are false that they are false. The most general desideratum is, of course,
that we want update rules to be conducive to realizing this goal. More specific ones are suggested
by attending to the most relevant dimensions along which update rules can vary with respect to
their truth conduciveness. To begin with, we want such rules to be rel/iable in that they typically
lead us to become more confident in truths and less confident in falsehoods, and the more so the
more evidence we obtain. All else being equal, we prefer more reliable rules over less reliable rules.
In practice—especially in scientific practice—it will often be difficult to arrive exactly at the truth
and we may have to settle for getting close to the truth, or close enough for all practical purposes.
All else being equal, we prefer an update rule that leads us to spread our confidence close to the
truth over one that leads us to spread our confidence further away from the truth. A last important
desideratum stems from the fact that, again in practice, we are frequently under some time pressure
to arrive at the truth. That an update rule eventually will make us confident in the truth is not so
helpful in situations in which, for instance, becoming confident in the truth, or just becoming
more confident in the truth than in any of its false rivals, or becoming sufficiently confident in a
hypothesis close enough to the truth, is a matter of life and death. So, all else being equal, we prefer

SIndependently, the Brier score is not as obviously compelling as the proponents of the inaccuracy minimization
arguments take it to be; see Douven (2020b, 2023). And there are possible alternatives relative to which versions of
abduction, rather than Bayes’ rule, minimize expected inaccuracy; see Douven (2022, Sect. 5.2).
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an update rule that increases our confidence in the truth 7apidly over one that does so more slowly.

Ideally, an update rule makes us reliably and rapidly gain high confidence in the truth and noth-
ing but the truth. More realistically, we have to be prepared to make trade-offs. A rule that rapidly
concentrates our confidence in some small area of the space of possibilities may do so at the expense
of accuracy; it may quickly get us in the vicinity of the truth but then be quite slow in taking us ex-
actly at the truth. Other rules may be quicker in bringing us exactly at the truth though it may take
longer for them to gear up and therefore they may be actually slower in bringing us in the vicinity of
the truth. Or, one rule may often quickly take us quite close to the truth though also often make us
invest high confidence in falsehoods, whereas another rule moves us toward the truth more slowly
but also more reliably.

We cannot say in general which trade-off or trade-offs we should be prepared to make and which
we should not. In some circumstances, it may be of the utmost importance to be able to quickly
concentrate our confidence in a smallish region of the space of possibilities—for instance, it may
be important for a medical doctor to be 95 percent certain that a patient’s systolic blood pressure
is between 1o mmHg and 130 mmHg—Dbut then be further relatively unimportant to concentrate
our confidence even more (e.g., becoming highly confident that the systolic pressure is between
117 mmHg and 122 mmHg may have no further consequences for how the doctor will treat the
patient). In other circumstances, it may be more important to estimate some given parameter with
great accuracy but there may be no pressure to do so quickly. We can imagine how different update
rules serve our purposes best in the different situations.

It was mentioned previously that philosophers are strongly inclined to aim at generality, even
universality. Among other things, they have aimed to state rules of rational thinking and behavior
that apply in each and every situation. In line with this tradition, Bayesians have tried to argue that
Bayes’ rule is the rational update rule in all contexts, under any circumstances, regardless of who
is to use it. As was also mentioned, however, many researchers—especially in psychology—have
recently warmed to the idea that rationality is a context- and even agent-dependent matter, an idea
often going under the name of “ecological rationality.” While the proponents of this conception
of rationality disagree on details, they share the view that rationality is a matter of picking the right
tool in relation to whatever one’s goals and abilities happen to be in the context of use. And not
only may different people have different goals or possess different abilities in the same context, one
and the same person may have different goals or different abilities in different contexts of use.

To illustrate, consider the possibility that, in some domains, there is a strong correlation be-
tween explanatoriness and truth in the sense that hypotheses concerning matters in those domains
that strike us as being explanatorily powerful have a tendency to be true; that could be a contingent
fact about us in relation to the world we inhabit, or it could be due to the workings of some evolu-
tionary mechanisms. In other domains, there might be no such correlation, or a much weaker one.
In domains of the former type, we might be better oft using a version of abduction rather than a
rule (like Bayes’ rule) that does not take explanatory factors into account. In domains of the latter
type, it might be counterproductive to rely on any version of abduction.

This observation is the starting point for the defense of abduction to be found in Douven
(2018, 20204, 2022). Rather than seeking to show that abduction is #be rational update rule, Douven
demonstrates that there are realistic circumstances under which probabilistic versions of abduction
outperform Bayes’ rule in offering a better trade-off between speed and accuracy, that is, between
how rapidly our confidence gets concentrated in a small region of the space of possibilities and how
close that region is to where the truth is located in the space. Accordingly, in those circumstances,
it would make more sense to use any of those versions of abduction than to use Bayes’ rule.

The demonstration comes in the form of various computer simulations, pitting Bayes’ rule
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Figure 1: Examples of Weibull CDFs that give the probability of death of a patient as a function of time
after admission into an intensive care unit.

and a number of different versions of abduction—instances of the schemata labeled “EXPL” and
“S” in Section 2—against each other in contexts in which they are used to update sequentially on
pieces of evidence received over time and related to some practical problem at issue. Here, one set
of simulations will be described in detail and will also be generalized somewhat.

The simulations to be considered concern a setting in which medical doctors, working at an
intensive care unit (ICU), are tasked to diagnose the patients who are brought into the unit and
to determine, based on test results, how to treat the patient. Time is of the essence, given that the
probability that the patient will die increases as time passes, though that probability decreases if the
doctor makes the right intervention. By contrast, the probability that the patient will die zncreases
if the doctor decides upon the wrong intervention.

How the probability of death increases with time, provided no intervention is made, can be
modeled in various plausible ways. Douven (20204, 2022) considers two options, one of which
models this probability by the cumulative density function (CDF) of some Weibull distribution,
and the other of which models that probability by the CDF of some Gamma distribution. Here,
only the former will be described. Also, most of the formal details of Weibull distributions are
skipped; it is only noted that they are characterized by a shape parameter and a scale parameter.
Figure 1 shows five examples of a Weibull distribution, all having a shape parameter of 1 but hav-
ing different scale parameters. In the simulations to be considered, the probability of death for a
given patient brought into the ICU is assumed to be modeled by some Weibull distribution, where
the shape parameter is, for each patient individually, chosen randomly and uniformly from the
[0.5, 5] interval and the scale parameter is, also per patient, chosen randomly and uniformly from
the [50, 250] interval.

In Douven’s simulations, patients are further characterized by two parameters indicating how
the right and, respectively, wrong intervention will impact the probability that the patient will die.
Again skipping the formal details (for those, see Douven, 20204, 2022), the idea is that making the
right intervention lowers the probability of death by a certain percentage while making the wrong
intervention increases that probability, the magnitude of the impact depending both on the patient
and on the time of intervention. Figure 2 illustrates these effects for a specific parameter setting and
a specific Weibull distribution.

Finally, what is wrong with a patient is, rather abstractly, taken to be a matter of the value a
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Effect of intervention: Weibull(1, 50)
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Figure 2: Examples of the effect of right and wrong interventions for a Weibull distribution, where the
orange graph is the probability of death of the patient over time if no intervention is performed; the green
graph gives, for every point in time, the probability of death of the patient if at that point in time a wrong
intervention is performed; and the blue graph does the same for the correct intervention.

a assumes for her, the idea being that, as the patient enters the ICU, his medical status is know
except for the value of this parameter. It is given, however, that this parameter can take a value in
{o,.1,.2,...,1} only, that the doctor knows this, and that she initially deems each of these values
equally likely. The doctor receives one new test result per unit of time, on the basis of which she
is to estimate the value of «, the results being either “positive” or “negative,” and the tests being
probabilistically independent of each other, with the same (unknown) probability of being positive.
The hypothesis that « = x states that the probability for any given test turning up positive is x.

Doctors are fully characterized by the update rule they use to accommodate the test results.
Some doctors are Bayesian updaters, others use an instance of EXPL, still other doctors use a version
of “Popper’s rule,” which is an instance of S with Jl being Popper’s measure of explanation quality,
and yet other doctors use a version of “Good’s rule,” with Jll being Good’s measure of explanation
quality; in the case of the versions of abduction, different doctors can assume different explanation
bonuses. The simulations assume that a doctor must be sufficiently certain about a hypothesis
before she intervenes, where “sufficiently certain” was understood as having a subjective probability
greater than 0.9 in the hypothesis. They further assume that a doctor will perform the correct
intervention only if she becomes sufficiently certain about the true hypothesis; else, she will make
an incorrect intervention, where it is stipulated that all incorrect interventions will have an equally
big negative impact on the patient’s survival chances.

The question the simulations then seek to answer is this: Given (as we may assume) that each
doctor has the goal of saving her patients’ lives, which update rule should she use to accommodate
the test results she receives? Rather than just summarize the simulations reported in Douven’s
work, we would like to rerun them, adding a slight twist to them. The twist concerns the fact that,
in Douven’s simulations, there is a fixed decision threshold of 0.9. The choice of this value was
not entirely arbitrary: in the literature on the connection between categorical belief (or acceptance)
and subjective probability, many authors have proposed 0.9 as the threshold for belief. Needless
to say, however, this is at best an idealization. It is more realistic to assume that different people
have different (possibly context dependent) thresholds for belief. Indeed, in Douven’s simulations,
should the real question not have been which combination of update rule and decision threshold
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serves best the doctors’ shared goal of saving as many lives as possible?®

As Douven (20201, 2022) explains, this question can be thought of as a constrained optimiza-
tion problem, the constraint coming from the fact that our choice of update rules is limited to the
ones mentioned previously. There appears to be no closed form of the objective function (i.e., the
function to be optimized), due to which analytical methods are not going to be of much help in
solving the problem. For that reason, Douven recruits a form of evolutionary computation, which
is a well-known optimization technique. As the name suggests, this technique seeks to exploit the
basic principles at work in the process of natural selection, where instead of organisms struggling
for survival the units of selection are different solutions to a given problem, which can differ in their
“fitness,” the criterion of fitness being determined by the problem at hand. The algorithm starts by
selecting from a pool of randomly generated solutions the “fittest” solutions to be retained and
then typically lets the selected solutions “reproduce” in some specific way. The retained solutions
together with their “children” form the pool for the next round of computations, in which the
competition for survival and reproduction starts again. This is repeated either for a predetermined
number of times or until a fixed point is reached at which all solutions are the same or at least are
equally good (Barbati, Bruno, & Genovese, 2012).

As in the simulations documented in Douven (20204, 2022), our procedure starts with a pool
of 200 “medical doctors” (the first generation of solutions), with fifty doctors using Bayes’ rule,
fifty using an instance of EXPL, fifty using an instance of Good’s rule, and fifty using an instance
of Popper’s rule. For all but the first of these groups, the value of the explanation bonus ¢ is, for
each doctor individually, chosen randomly and uniformly from the [0, 0.25] interval. In addition
to what was done in Douven’s simulations, where each doctor had the same fixed threshold for
belief of 0.9, here a threshold value is picked for each doctor separately, where this value is chosen
randomly and uniformly from the [o.s, 1] interval.” Each doctor treats one hundred patients, whose
relevant characteristics (probability of survival, how that probability is aftected by right and wrong
interventions, and value of z) are chosen randomly and separately per patient, in the way specified
previously.

The doctor can spend 100 units of time on the treatment of each patient, where at each mo-
ment, until the doctor decides to intervene (if at all), the doctor receives the outcome of a single test,
which is positive with a probability determined by the value of « that was randomly picked for the
agent. At start time, the doctor has the same subjective probability in all of the eleven hypotheses
about the value of @. These probabilities are updated sequentially, as the test results come in, one
per time step, and using the update rule associated with the doctor. As soon as the probability for
one hypothesis exceeds the threshold associated with the given doctor, she intervenes. If that prob-
ability is assigned to the z7ue hypothesis, the doctor receives a score determined by the probability
of death associated with the 7ght intervention at the time the probability crossed the threshold; if
the doctor assigns a probability above the threshold to a fa/se hypothesis, her score is determined by
the probability of death associated with the wrong intervention at the time the probability crosses
the threshold; and if 720 hypothesis is assigned a probability above the threshold during the 100 time
steps, the doctor receives the score of 1 minus the probability of death at the 100-th time step.

Afteradoctor has treated 100 patients, her overall score is simply the mean of the scores received
for each patient, which can be interpreted as the average patient survival rate for that doctor. Then
the 100 “fittests” doctors—the doctors with the highest average patient survival rate—are selected
to go on to the next generation, which they form together with a copy of themselves (so that this

©This question was raised independently by Paul Thorn and Zina Ward.
7It would make no sense to allow for values below 0.5, as such a value would mean that the doctor can believe things
she deems less likely than their negation.
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Figure 3: Counts of doctor types per generation for a randomly chosen simulation.

generation again consists of 200 doctors). This is repeated for 250 generations, after which the
simulation terminates.

Fifty of these simulations were run. As an illustration, Figure 3 shows for one of those simula-
tions how the pool of doctors evolved in the optimization process, with the generations represented
on the x-axis and the count of doctors belonging to a certain group, characterized by the type of
update rule they use, represented on the y-axis. Itis seen that, in this simulation, Bayesians held up
quite well for a while, but in the end the doctors updating via some instance of Popper’s rule wiped
out the competition entirely.

It is more informative to look at all simulations and consider the average number of doctors of
the types at issue to be found in the 250 generations. These averages are shown in Figure 4. It is
already somewhat clear from this figure that the simulation shown in Figure 3 is rather representa-
tive: Popperians were, overall, the clear winners, with Bayesians being a distant second. The first
is very much in line with the findings reported in Douven (2020a, 2022), but Bayesians do in fact
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Figure 4: Percentages of doctor types per generation, averaged over the fifty simulations. Shaded areas
indicate 95 percent confidence bands.
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Figure s: Log plot of average threshold value per generation, with 95 percent confidence band.

markedly better than in the previous simulations, where they ended up doing worse than the EXPL
users, which is not the case here.

Hence, there 75 an effect of “unfixing” the threshold for intervention, albeit not one which
changes our view that, in the present context, it is more advisable to use Popper’s rule than any of the
other rules, including Bayes’ rule. Of course, threshold values were also subjected to evolutionary
pressures in the new simulations. How did these impact them? The answer is highly surprising. As
already seen in Figure 5, the mean threshold value converged to a value close to 0.9. To be precise, the
average threshold value of the doctors in the last generation was 0.91 (+ 0.02). As said, the choice of
0.9 as a threshold value in the previous simulations was not entirely arbitrary. However, it almost
looks too good to be true that, when we make the threshold a parameter that can be optimized
in the evolutionary process, we do find that this process drives this threshold to have an average of
basically 0.9, with the vast majority of doctors having thresholds very close to that value. The author
has been unable to find any bug in the code for the simulations that might account for this finding,
though interested readers are invited to inspect the Julia code that was used for the simulations.®

In connection with these simulations, it is worth reiterating some of the observations already
made in Douven (20204, 2022). First, as noted there, whereas the evolutionary algorithm used in
the simulations first and foremost serves as an optimization method, it can in the case at hand also
be conceived as showing how evolution may have favored agents good at selecting the right up-
date rule for the right environment. Second, a plausible explanation of why an explanation-based
update rule is, in the context considered, preferable to Bayes’ rule is that it allows for adaptive learn-
ing (by letting users increase or decrease the bonus for explanatory goodness), which Bayes’ rule in
itself does not do. Indeed, this point is reinforced by comparing the outcomes of the new simula-
tions with those reported in Douven (20204, 2022). In the former, Bayesians have acquired some
flexibility—because of the flexible thresholds—that they did not have in the previous simulations.”

Most importantly, neither the new simulations nor the ones reported in Douven (20204, 2022)

8The code is publicly available at this repository: https://github.com/IgorDouven/Abduction-Theory-and-Evidence git.

?But then why do EXPL users and users of Good’s rule do worse than Bayesians in the simulations, given that
Bayesians still do not have as much flexibility as those other agents? As explained in Douven (2022), that has to do with
the fact that EXPL users and users of Good’s rule are unable to bring the explanation bonus quickly enough close enough
to what the optimal value for that bonus would be for them. For Popperians, the bonus value is, on average, already from
the beginning of the evolutionary process quite close to what the optimal value for them is.
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aim to show that it is always more rational to update via abduction (in some form) than via Bayes’
rule. Rather, their point is to help counter the claim made by Bayesians that it is zever rational to
update via abduction. Everything said in the foregoing is consistent with the insights of Elgayam,
Gigerenzer, and others who have worked on ecological rationality, which imply that there is no one-
size-fits-all norm of rationality and that instead different update rules may be called for in different
contexts for different persons. In light of the work on ecological rationality, specifying a realistic
type of situation in which we are better off by relying on a version of abduction is all a defense of
this type of reasoning requires.

Finally, much ink has been spilled over the question of whether abduction is compatible with
Bayesianism. The foregoing suggests that the answer is a resounding yes if we are willing to let go of
the imperialist ideas that have traditionally accompanied defenses of both Bayes’ rule and abduction.
As was shown, there can be contexts in which abduction trumps Bayesian updating in all respects
that matter in that context. But it is by no means ruled out that there are contexts in which one is
better off using Bayes’ rule. So itis not only the case that Bayesians and explanationists can be friends
(as Lipton, 2004, Ch. 7, argues); we can all in good conscience be Bayesians and explanationists, just
not at the same time.

6 Conclusion

The evidence showing that explanatory considerations play a role in how people adapt their sub-
jective probabilities on the receipt of new information is not necessarily evidence that people are
irrational. The arguments purporting to show otherwise—the dynamic Dutch book argument
and the expected inaccuracy minimization argument—were defused. What is most fundamentally
wrong with these arguments is that they only look at costs and not at possible benefits that might be
worth the costs (granting that the costs are real, which we are under no obligation to do). Starting
from an ecological conception of rationality, it was possible to go beyond defusing the criticisms
leveled at abduction and to make a positive case for this mode of reasoning. The conclusion is not
that abduction is a universally rational mode of reasoning, but rather that there are situations in
which rationality recommends its use, leaving open the possibility that there are other situations in
which one does better to rely on some other form of reasoning.”
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