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Abstract

We study the long time behaviour of solutions of semi-linear parabolic equation

of the following type ∂tu − ∆u + a0(x)uq = 0 where a0(x) ≥ d0 exp
(
−ω(|x|)

|x|2

)
,

d0 > 0, 1 > q > 0 and ω a positive continuous radial function. We give a Dini-
like condition on the function ω by two different method which implies that any
solution of the above equation vanishes in a finite time. The first one is a variant
of a local energy method and the second one is derived from semi-classical limits
of some Schrödinger operators.
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MSC 35B40 35K20 35P15

1 Introduction

Let Ω ⊂ RN , N ≥ 1, be a bounded domain with C1-boundary, 0 ∈ Ω. The aim of this
paper is to investigate the time vanishing properties of generalized (energy) solutions
of initial-boundary problem to a wide class of quasilinear parabolic equations with the
model representative:

ut −∆u+ a0(x)|u|q−1u = 0 in Ω× (0,∞),
∂u
∂n = 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x) on Ω,

(1.1)
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where 0 < q < 1, a0(x) ≥ 0 and u0 ∈ L2(Ω). It is easy to see that if a0(x) ≥ ε > 0, then
the comparison with the solution of corresponding ordinary equation ϕt+ε|ϕ|q−1ϕ = 0
implies that the solution u(x, t) of (1.1) vanishes for t ≥ T0 = ε−1(1−q)−1‖u0‖1−qL∞

. The
property that any solution of problem (1.1) becomes identically zero for t large enough
is called the time compact support property (TCS-property). On the opposite, if
a0(x) ≡ 0 for any x from some connected open subset ω ⊂ Ω, then any solution u(x, t)
of problem (1.1) is bounded from below by σ exp(−tλω)ϕω(x) on ω × (0,∞), where
σ = ess infω u0 > 0, λω and ϕω are first eigenvalue and corresponding eigenfunction
of −∆ in W 1,2

0 (ω). It was Kondratiev and Veron [1] who first proposed a method
of investigation of conditions of appearance of TCS-property in the case of general
potential a0 ≥ 0. They introduced the fundamental states of the associated Schrödinger
operator

(1.2) µn = inf

{∫
Ω

(|∇ψ|2+2na0(x)ψ2) dx : ψ ∈W 1,2(Ω),

∫
Ω
ψ2dx = 1

}
, n ∈ N,

and proved that, if

(1.3)
∞∑
n=0

µ−1
n ln(µn) <∞,

then (1.1) possesses the TCS-property. Starting from condition (1.3) in [2] an explicit
conditions of appearance of TCS-property in terms of potential a0(x) was obtained.
The analysis in [2] was based on the so-called semiclassical analysis [9], which uses
sharp estimates of the spectrum of the Schrödinger operator [6,10,11]. Particularly, in
the case of existence of the radially symmetric minorant

(1.4) a0(x) ≥ d0 exp
(
− ω(|x|)
|x|2

)
:= a(|x|) ∀x ∈ Ω, d0 > 0

the following statements was obtained in [2]:

Proposition 1.1 (Th. 4.5 from [2]) In equation (1.1) let a0(x) = a(|x|), where a(r)
is defined by (1.4). Let u0(x) ≥ ν > 0 ∀x ⊆ Ω and ω(r)→∞ as r → 0. Then arbitrary
solution u of problem (1.1) never vanishes on Ω.

Proposition 1.2 (Corollary of Th. 3.1 in [2]) If in assumption (1.4)
a0(x) = a(|x|) and ω(r) = rα with 0 < α < 2 then an arbitrary solution of (1.1) enjoys
the TCS-property.

Thus, an open problem is to find sharp border which distinguish two different decay
properties of solutions, described in Proposition 1.1 and Proposition 1.2. Moreover, the
method of investigations used in [1,2] exploits essentially some regularity properties of
solutions under consideration, particularly, sharp upper estimates of ‖u(x, t)‖L∞(Ω)

with respect to t. Such an estimate is difficult to obtain or is unknown for solutions of
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equations of more general structure than (1.1). Particularly, it is absolutely impossible
to have any information about such a behaviour for higher order parabolic equations.
We propose here some new energy method of investigations, which deals with energy
norms of solutions u(x, t) only and, therefore, may be applied, particularly, for higher
order equations, too.

We suppose that function ω(s) from condition (1.4) satisfies the conditions:

(A1) ω(r) is continuous and nondecreasing function ∀ r ≥ 0,

(A2) ω(0) = 0, ω(r) > 0 ∀ r > 0.

(A3) ω(s) ≤ ω0 <∞ ∀ s ∈ R1
+

Our main result reads as follows

Theorem 1.1 Let u0(x) be an arbitrary function from L2(B1), let function ω(r) from
(1.4) satisfy assumptions (A1), (A2), (A3) and the following main condition:

(1.5)

c∫
0

ω(s)

s
ds <∞ (Dini like condition).

Suppose also that ω(r) satisfies the following technical condition

(1.6)
sω′(s)

ω(s)
≤ 2− δ ∀ s ∈ (0, s0), s0 > 0, 2 > δ > 0.

Then an arbitrary energy solution u(x, t) of the problem (1.1) vanishes on Ω in some
finite time T <∞.

In the sequel of the paper we show that the sufficiency of the Dini condition (1.5) for
the validity of TCS-property can be proved also by the methods from [1,2] if one uses
L∞ estimates of solution u(x, t) of problem (1.1). This leads to the following result.

Proposition 1.3 The assertion of Theorem 1.1 holds if the function ω(s) satisfies con-
ditions (A1)–(A3), the Dini condition (1.5) and the following similar to (1.6) technical
conditions:

(1.7) ω(s) ≥ s2−δ ∀ s ∈ (0, s0), s0 > 0, 2 > δ > 0,

(1.8) the function
ω(s)

s2
is decreasing on (0, s0).

Remark 1.1 It is easy to check that the function ω(s) = (ln s−1)−β satisfies all the
conditions of Theorem 1.1 and Proposition 1.3 for arbitrary β > 1.
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2 The proof of main result

The proof of Theorem 1.1 is based on some variant of the local energy method, which
was developed, particularly in [3, 4]. First, we introduce the following families of sub-
domains:

Ω(τ) = Ω ∩ {|x| > τ}, Q(T )
s (τ) = Ω(τ)× (s, T ), T <∞.

Definition 2.1 An energy solution of problem (1.1) is the function u(x, t) ∈ L2(0, T ;W 1
2 (Ω)):

∂u
∂t ∈ L2(0, T ; (W 1

2 (Ω))∗), u(x, 0) = u0, satisfying the following integral identity:

(2.1)

∫ T

0
〈ut, ϕ〉dt+

∫
Ω×(0,T )

(∇xu,∇xϕ) dxdt+

∫
Ω×(0,T )

a0(x)|u|q−1uϕdxdt = 0

for arbitrary ϕ ∈ L2(0, T ;W 1
2 (Ω)) ∀T <∞.

Lemma 2.1 An arbitrary energy solution u of the problem (1.1) satisfies the following
global a priory estimate

(2.2)

∫
Ω
|u(x, t̂)|2 dx+

∫
Q

(t̂)
0 (0)

(|∇xu|2 + a(|x|)|u|q+1) dxdt

≤
∫

Ω
|u0|2 dx := y0, ∀ t̂ > 0.

Testing integral identity (2.1) by ϕ(x, t) = u(x, t)ξ(x), where ξ(x) is arbitrary C1-
function, due to formula of integration by parts [8], we derive the following equality:

(2.3) 2−1

∫
Ω
|u(x, t̂)|2ξ dx+

∫
Ω×(s,t̂)

(|∇xu|2ξ + (∇xu,∇xξ)u) dxdt

+

∫
Ω×(s,t̂)

a0ξ|u|q+1 dxdt = 2−1

∫
Ω
|u(x, s)|2ξ dx, 0 ≤ s < t̂ <∞.

Let η(r) ∈ C1(R1) be such that 0 ≤ η(r) ≤ 1 ∀ r ∈ R1, η(r) = 0 if r ≤ 0, η(r) = 1 if
r > 1. Fix arbitrary numbers τ > 0, ν > 0 and test (2.3) by

ξ(x) = ξτ,ν(|x|) := η
( |x| − τ

ν

)
.

Then passing to the limit ν → 0 we obtain

(2.4) 2−1

∫
Ω(τ)
|u(x, t̂)|2 dx+

∫ t̂

s

∫
Ω(τ)

(|∇xu|2 + a0(x)|u|q+1) dxdt

= 2−1

∫
Ω(τ)
|u(x, s)|2 dx+

∫ t̂

s

∫
|x|=τ

u
∂u

∂n
dσdt ∀ t̂ : s < t̂ <∞.
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From (2.4) with τ = 0, s = 0 the necessary global estimate (2.2) follows. Further we
will denote by c, ci different positive constants which depend on known parameters of
the problem (1.1) only. Let us introduce the energy functions related to a fixed energy
solution u of problem (1.1):

(2.5) H(t, τ) =

∫
Ω(τ)
|u(x, t)|2 dx, I(v)

s (τ) =

∫
Q

(v)
s (τ)

(|∇xu|2 + a(|x|)|u|q+1) dxdt

E(t, τ) =

∫
Ω(τ)

(|∇xu(x, t)|2 + a(|x|)|u(x, t)|q+1) dx,

J (v)
s (τ) =

∫ v

s

∫
|x|=τ

|∇xu|2 dxdt.

Lemma 2.2 Energy functions (2.5) related to arbitrary solution u of problem (1.1)
satisfy the following relationship:

(2.6) H(T, τ) + I(T )
s (τ) ≤ c a(τ)

− 2(1−θ2)
2−(1−θ2)(1−q)E(s, τ)

2
2−(1−θ2)(1−q)

+ c1 a(τ)
− 2
q+1E(s, τ)

2
q+1 + c a(τ)

− 2
q+1J (T )

s (τ)
2
q+1

+ c a(τ)
− 2(1−θ1)

2−(1−θ1)(1−q)J (T )
s (τ)

2
2−(1−θ1)(1−q) ,

0 < θ1 = (q+1)+n(1−q)
2(q+1)+n(1−q) < 1, θ2 = n(1−q)

2(q+1)+n(1−q) .

Let us estimate the second term in right hand side of (2.4). By interpolation (see, for
example, [7]) we have:

(2.7)

∫
|x|=τ

|u|2 dσ ≤ d1

(∫
Ω(τ)
|∇xu|2 dx

)θ1(∫
Ω(τ)
|u|q+1 dx

) 2(1−θ1)
q+1

+ d2

(∫
Ω(τ)
|u|q+1 dx

) 2
q+1

∀ τ > 0, θ1 is from (2.6).

Using (2.7) we easily arrive at

(2.8)

∫
|x|=τ

|u||∇xu| dσ ≤ c
(∫
|x|=τ

|∇xu|2 dσ
)1/2

(∫
Ω(τ)
|∇xu|2 dx

) θ1
2

×
(∫

Ω(τ)
|u|q+1

) 1−θ1
q+1

+

(∫
Ω(τ)
|u|q+1 dx

) 1
q+1

 = c

(∫
|x|=τ

|∇xu|2 dσ
)1/2

×
(∫

Ω(τ)
|∇xu|2 dx

) θ1
2
(∫

Ω(τ)
|u|q+1 dx

) 1−θ1
2

(∫
Ω(τ)
|u|q+1 dx

) (1−q)(1−θ1)
2(q+1)
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+ c

(∫
|x|=τ

|∇xu|2 dσ
)1/2(∫

Ω(τ)
|u|q+1 dx

)1/2(∫
Ω(τ)
|u|q+1 dx

) 1−q
2(q+1)

.

From condition (1.6) the monotonicity of function a(s) from (1.4) follows easily. There-
fore we can continue estimating (2.8) as follows:

(2.9)

∫
|x|=τ

|u||∇xu| dσ ≤ c1

(∫
|x|=τ

|∇xu|2 dσ
)1/2

×
(∫

Ω(τ)
|u|2 dx

) (1−q)(1−θ1)
4

a(τ)−
1−θ1

2

(∫
Ω(τ)

(|∇xu|2 + a(|x|)|uq+1|) dx
)1/2

+ c1a(τ)−1/2

(∫
Ω(τ)
|u|2 dx

) 1−q
4
(∫
|x|=τ

|∇xu|2 dσ
)1/2(∫

Ω(τ)
a(|x|)|u|q+1 dx

)1/2

.

Integrating (2.9) in t and using the Young inequality with “ε” we obtain:

(2.10)

∫ v

s

∫
|x|=τ

|u||∇u| dσdt ≤ ε
∫
Q

(v)
s (τ)

(|∇xu|2 + a(|x|)|u|q+1) dxdt

+ c(ε)a(τ)−(1−θ1) sup
s<t<v

(∫
Ω(τ)
|u(x, t)|2 dx

) (1−q)(1−θ1)
2

∫ v

s

∫
|x|=τ

|∇xu|2 dσdt

+ c(ε) a(τ)−1 sup
s<t<v

(∫
Ω(τ)
|u(x, t)|2 dx

) 1−q
2
∫ v

s

∫
|x|=τ

|∇xu|2 dσdt

with arbitrary v : s < v ≤ T . Let us fix now v = v̄ = v̄(τ, s) such that the following
inequality holds:

(2.11)

∫
Ω(τ)
|u(x, v̄)|2 dx ≥ 2−1 sup

s≤t≤T

∫
Ω(τ)
|u(x, t)|2 dx

Inserting inequality (2.10) with v = v̄ into (2.4) with t̂ = v̄ and fixing “ε” small enough
we have:

(2.12) H(v̄, τ) + I(v̄)
s (τ) ≤ H(s, τ) + c a(τ)−(1−θ1)H(v̄, τ)

(1−q)(1−θ1)
2 J (v̄)

s (τ)

+ c a(τ)−1H(v̄, τ)
1−q
2 J (v̄)

s (τ),

where J
(v)
s (τ) is from (2.5). Using the Young inequality again we deduce from (2.12):

(2.13) H(v̄, τ) + I(v̄)
s (τ) ≤ 2H(s, τ) + c a(τ)

− 2(1−θ1)
2−(1−θ1)(1−q) (J (v̄)

s (τ))
2

2−(1−θ1)(1−q)

+ c a(τ)
− 2

1+q (J (v̄)
s (τ))

2
1+q .
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Fixing now v = T in (2.10) and using property (2.11) we obtain the inequality:

(2.14)

∫ T

s

∫
|x|=τ

|u||∇xu| dσdt ≤ ε I(T )
s (τ) + c(ε) a(τ)−(1−θ1)H(v̄, τ)

(1−q)(1−θ1)
2 J (T )

s (τ)

+ c(ε) a(τ)−1H(v̄, τ)
1−q
2 J (T )

s (τ).

By t̂ = T it follows from (2.4) due to (2.14) with ε = 1
2 :

(2.15) H(T, τ) + I(T )
s (τ) ≤ H(s, τ) + c a(τ)−(1−θ1)H(v̄, τ)

(1−q)(1−θ)
2 J (T )

s (τ)

+ c a(τ)−1H(v̄, τ)
1−q
2 J (T )

s (τ).

From (2.13) we have

(2.16) H(v̄, τ)ν ≤ cH(s, τ)ν + c a(τ)
− 2(1−θ1)ν

2−(1−θ1)(1−q) (J (v̄)
s (τ))

2ν
2−(1−θ1)(1−q)

+ c a(τ)
− 2ν

1+q (J (v̄)
s (τ))

2ν
1+q ∀ ν > 0.

Using this estimate with ν1 = (1−q)(1−θ1)
2 and ν2 = 1−q

2 from (2.15) we deduce that

(2.17) H(T, τ) + I(T )
s (τ) ≤ H(s, τ) + c a(τ)−(1−θ1)H(s, τ)ν1 J (T )

s (τ)

+ c a(τ)−1H(s, τ)ν2 J (T )
s (τ) + c a(τ)

−(1−θ1)
(

1+
2ν1

2−(1−θ1)(1−q)

)
× (J (T )

s (τ))
1+

2ν1
2−(1−θ1)(1−q) + c a(τ)

−(1−θ1)− 2ν1
1+q (J (T )

s (τ))
1+

2ν1
1+q

+ c a(τ)
−1− 2(1−θ1)ν2

2−(1−θ1)(1−q) (J (T )
s (τ))

1+
2ν2

2−(1−θ1)(1−q)

+ c a(τ)
−1− 2ν2

1+q (J (T )
s (τ))

1+
2ν2
1+q .

Using the Young inequality we infer from (2.17)

(2.18) H(T, τ) + I(T )
s (τ) ≤ 2H(s, τ) + c a(τ)

− 2
1+q (J (T )

s (τ))
2

1+q

+ c a(τ)
− 2(1−θ1)

2−(1−θ1)(1−q) (J (T )
s (τ))

2
2−(1−θ1)(1−q) .

Now we have to estimate from above the term H(s, τ) in right hand side of (2.18). Due
to the Gagliardo-Nirenberg interpolation inequality we have

(2.19)

∫
Ω(τ)
|u(x, s)|2 dx ≤ d3

(∫
Ω(τ)
|∇xu(x, s)|2 dx

)θ2(∫
Ω(τ)
|u(x, s)|q+1

) 2(1−θ2)
q+1

+ d4

(∫
Ω(τ)
|u(x, s)|q+1 dx

) 2
q+1

, θ2 is from (2.6),
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and constants d3 > 0, d4 > 0 do not depend on τ as τ → 0. Taking into account the
monotonicity of function a(τ) we deduce from (2.19)

∫
Ω(τ)
|u(x, s)|2 dx ≤ d3

(∫
Ω(τ)
|∇xu(x, s)|2dx

)θ2(∫
Ω(τ)

a(|x|)|u(x, s)|q+1dx

)1−θ2

× a(τ)−(1−θ2)

(∫
Ω(τ)
|u(x, s)|q+1 dx

) (1−θ2)(1−q)
1+q

+ d4 a(τ)
− 2
q+1

(∫
Ω(τ)

a(|x|)|u(x, s)|q+1 dx

) 2
q+1

≤ c a(τ)−(1−θ2)

∫
Ω(τ)

(|∇xu|2 + a(|x|)|u(x, s)|q+1) dx

×
(∫

Ω(τ)
|u(x, s)|2 dx

) (1−θ2)(1−q)
2

+ d4 a(τ)
− 2
q+1

(∫
Ω(τ)

a(|x|)|u(x, s)|q+1 dx

) 2
q+1

.

Estimating the first term in the right hand side by the Young inequality with “ε”, we
have

(2.20)

∫
Ω(τ)

u2(x, s) dx ≤ c1 a(τ)
− 2
q+1

(∫
Ω(τ)

a(|x|)|u(x, s)|q+1 dx

) 2
q+1

+ c a(τ)
− 2(1−θ2)

2−(1−θ2)(1−q)

(∫
Ω(τ)

(|∇xu|2 + a(|x|)|u(x, s)|q+1) dx

) 2
2−(1−θ2)(1−q)

.

Using (2.20) in (2.18) we obtain the required (2.6).
Let us introduce the positive nondecreasing function

(2.21) s(τ) = τ4ω(τ)−1,

where ω(τ) > 0 is from (1.2). Define the energy function

(2.22) y(τ) = I
(T )
s(τ)(τ), where I(T )

s (τ) is from (2.5).

Lemma 2.3 The energy function y(τ) from (2.22) is the solution of the following
Cauchy problem for the ordinary differential inequality:

(2.23) y(τ) ≤ c0

2∑
i=0

(
− y
′(τ)

ψi(τ)

)1+λi
∀ τ > 0,

(2.24) y(0) ≤ y0, y0 is from (2.2),
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where

ψ0(τ) = a(τ)s′(τ), ψ1(τ) = a(τ)1−θ1 , ψ2(τ) = a(τ)1−θ2s′(τ),

λ0 =
1− q
1 + q

> λ2 =
(1− θ2)(1− q)

2− (1− θ2)(1− q)
> λ1 =

(1− θ1)(1− q)
2− (1− θ1)(1− q)

> 0.

It is easy to verify the following equality

(2.25)
d

dτ
I

(T )
s(τ)(τ) = −

∫ T

s(τ)

∫
{|x|=τ}

(|∇xu|2 + a(|x|)|u(x, s(τ))|q+1) dσdt

− s′(τ)

∫
Ω(τ)

(|∇xu(x, s(τ))|2 + a(|x|)|u(x, s(τ))|q+1) dx

Since s′(τ) ≥ 0, from (2.25) it follows that

(2.26)

∫ T

s(τ)

∫
{|x|=τ}

|∇xu|2 dσ dt = J
(T )
s(τ)(τ) ≤ − d

dτ
I

(T )
s(τ)(τ),

(2.27)∫
Ω(τ)

(
|∇xu(x, s(τ))|2+a(|x|)|u(x, s(τ))|q+1

)
dx=E(s(τ), τ)≤−(s′(τ))−1 d

dτ
I

(T )
s(τ)(τ).

Inserting these estimates in (2.6) and using additionally that s′(τ)→ 0 as τ → 0 after
simple calculations we obtain ODI (2.23) and the initial condition (2.24).

Now we will study the asymptotic behavior of an arbitrary solution y(τ) of system
(2.23), (2.24). We have to prove the existence of a continuous function τ̄ = τ̄(y0) such
that y(τ) ≤ 0 for arbitrary τ ≥ τ̄(y0). Moreover, we have to find the sharp upper
estimate for the function τ̄(y) as y → 0. It is related to the optimal choice of the
function s(τ), defined by (2.21). Consider the following auxiliary Cauchy problem:

(2.28) Y (τ) = 3c0 max
0≤i≤2

{(
−Y

′(τ)

ψi(τ)

)1+λi}
, Y (0) = y0 > 0,

where c0 > 0 is from (2.23). It is easy to check the following comparison property:

(2.29) y(τ) ≤ Y (τ) ∀ τ > 0,

where y(τ) is arbitrary solution of the Cauchy problem (2.23), (2.24).

Lemma 2.4 Let Y (τ) be an arbitrary solution of the Cauchy problem (2.28). Then
there exists a function τ̄(r) <∞ ∀ r > 0 such that Y (τ) ≤ 0 ∀ τ > τ̄(y0).

Let us consider the following additional ordinary differential equations (ODE):

(2.30) Yi(τ) = 3c0

(
−Y

′
i (τ)

ψi(τ)

)1+λi
, i = 0, 1, 2,

9



or, equivalently:

(2.31) Y ′i (τ) = −ψi(τ)
(Yi(τ)

3c0

) 1
1+λi := −Fi(τ, Yi(τ)).

Let us define the following subdomains Ωi i = 0, 1, 2,

Ω0 =
{

(τ, y) ∈ R2
+ := {τ > 0, y > 0} : F0(τ, y) = min

0≤i≤2
{Fi(τ, y)}

}
,

Ω1 =
{

(τ, y) ∈ R2
+ : F1(τ, y) = min

0≤i≤2
{Fi(τ, y)}

}
,

Ω2 =
{

(τ, y) ∈ R2
+ : F2(τ, y) = min

0≤i≤2
{Fi(τ, y)}

}
.

It is easy to see that
Ω0 ∪ Ω1 ∪ Ω2 = R2

+.

Due to (2.28), (2.30), (2.31) it is easy to see that arbitrary solution Y (τ) of the problem
(2.28) has the following structure:

(2.32) Y (τ) =
{
Yi(τ) ∀ (τ, Y ) ∈ Ωi, i = 0, 1, 2

}
,

where Yi(τ) is solution of equation (2.30) (or (2.31)). It is easy to check that

Ω0 =
{

(τ, y) : y ≥ 3c0a(τ)
2

1−q
}
,

Ω1 =
{

(τ, y) : y ≤ 3c0a(τ)
2

1−q s′(τ)
2

(1−q)(θ1−θ2)
}
, s′(τ) =

ds(τ)

dτ
,

Ω2 =
{

(τ, y) : 3c0a(τ)
2

1−q s′(τ)
2

(1−q)(θ1−θ2) ≤ y ≤ 3c0a(τ)
2

1−q
}
.

Therefore the solution Y (τ) of the Cauchy problem (2.28) is dominated by the following
curve:

(2.33) Ỹ (τ) =


y0, if 0 ≤ τ ≤ τ ′

Ỹ2(τ), if τ ′ ≤ τ ≤ τ ′′

Ỹ1(τ), if τ ′′ ≤ τ ≤ τ ′′′,

where τ ′ is defined by equality y0 = 3c0a(τ ′)
2

1−q ⇒

(2.34)
τ ′2

ω(τ ′)
=

2

1− q
(ln(3c0)− ln y0)−1,

Ỹ2(τ) is the solution of the Cauchy problem:

(2.35) Y ′2(τ) = −ψ2(τ)
(Y2(τ)

3c0

) 1
1+λ2 , Y2(τ ′) = y0,
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τ ′′ is defined by the equality:

(2.36) Ỹ2(τ ′′) = 3c0a(τ ′′)
2

1−q s′(τ ′′)
2

(1−q)(θ1−θ2) .

Finally, Ỹ1(τ) is the solution of the Cauchy problem:

(2.37) Y ′1(τ) = −ψ1(τ)
(Y1(τ)

3c0

) 1
1+λ1 , Y1(τ ′′) = Ỹ2(τ ′′),

and τ ′′′ is such that Ỹ1(τ) ≤ 0 ∀ τ ≥ τ ′′′. It is easy to check that the solution of (2.35)
is

(2.38) Ỹ2(τ) =

[
y

λ2
1+λ2
0 − λ2

(1 + λ2)(3c0)
1

1+λ0

∫ τ

τ ′
ψ2(r) dr

] 1+λ2
λ2

=

[
y

(1−θ2)(1−q)
2

0 − (1− θ2)(1− q)

2(3c0)
1

1+λ0

∫ τ

τ ′
a(r)1−θ2s′(r) dr

] 2
(1−θ2)(1−q)

.

Equation (2.36) for τ ′′ then yields:

(2.39) y
(1−θ2)(1−q)

2
0 − (1− θ1)(1− q)

2(3c0)
1

1+λ2

∫ τ ′′

τ ′
a(r)1−θ2s′(r) dr

= (3c0)
(1−θ2)(1−q)

2 a(τ ′′)1−θ2s′(τ ′′)2, ( since 1−θ2
θ1−θ2 = 2).

We will say that a(τ) ≈ b(τ), if there exist constant C, which does not depend on τ ,
such that

0 < C−1a(τ) ≤ b(τ) ≤ Ca(τ) ∀ τ : 0 < τ < τ0.

Due to condition (1.6) it follows easily too:

(2.40) (2 + δ)
τ3

ω(τ)
≤ s′(τ) ≤ 4τ3

ω(τ)
∀ τ > 0.

From definition (2.21) of s(r) by virtue of (2.40) and Lemma A.1 we deduce

(2.41)

∫ τ

0
a(r)1−θ2s′(r) dr ≈

∫ τ

0
exp

(
− (1− θ2)ω(r)

r2

)
r3ω(r)−1 dr

≈ τ6ω(τ)−2 exp
(
− (1− θ2)ω(τ)

τ2

)
≈ a(τ)1−θ2(s′(τ))2 ∀ τ : 0 < τ < τ0 <∞.

Thus, from (2.39) due to (2.41) one obtains the following estimate for τ ′′

(2.42) c1y
(1−θ2)(1−q)

2
0 ≤ a(τ ′′)1−θ2s′(τ ′′)2 ≤ c2y

(1−θ2)(1−q)
2

0 ,
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where positive constants c1, c2 does not depend on y0. Now, the solution of the Cauchy
problem (2.37) is:

(2.43) Ỹ1(τ) =

[
Ỹ2(τ ′′)

(1−θ1)(1−q)
2 − (1− θ1)(1− q)

2(3c0)
1

1+λ1

∫ τ

τ ′′
a(r)1−θ1 dr

] 2
(1−θ1)(1−q)

.

Thus, τ ′′′ is defined by the equation:

(2.44) Ỹ2(τ ′′)
(1−θ1)(1−q)

2 − (1− θ1)(1− q)

2(3c0)
1

1+λ1

∫ τ ′′′

τ ′′
a(r)1−θ1 dr.

Due to Lemma A.1 we have

(2.45)

(∫ τ

0
a(r)1−θ1 dr

)2

≈
(∫ τ

0
exp

(
− βω(r)

r2

)
dr

)2

≈
(

τ3

ω(τ)
exp
(
−βω(τ)

τ2

))2

≈ s′(τ)2a(τ)1−θ2 ∀ τ > 0,

where 1− θ1 = β = q+1
2(q+1)+u(1−q) = 1−θ2

2 . It is easy to see that∫ τ

0
a(r)1−θ1 dr ≈

∫ τ

τ
2

a(r)1−θ1 dr if τ → 0.

Therefore due to (2.44) the following inequalities are sufficient conditions for τ ′′′:

a(τ ′′′)1−θ2s′(τ ′′′)2 ≤ c3Ỹ2(τ ′′)
(1−θ2)(1−q)

2 , τ ′′′ > 2τ ′′.

Finally, by virtue of (2.38) we obtain the following unique sufficient condition which
defines τ ′′′:

(2.46) a(τ ′′′)1−θ2s′(τ ′′′)2 ≤ c4y
(1−θ2)(1−q)

2
0 ,

Condition (2.46) can be rewritten in the form:

(2.47)
exp
(
− (1−θ2)(1−ν)ω(τ ′′′)

(τ ′′′)2

)
· exp

(
−(1− θ2)ν ω(τ ′′′)

(τ ′′′)2

)
ω(τ ′′′)(ω(τ ′′′)

(τ ′′′)2

)3 ≤ c5y
(1−θ2)(1−q)

2
0

with arbitrary 1 > ν > 0. It is obviously, that the following is a sufficient condition for
(2.47)

exp
(
−(1− θ2)(1− ν)ω(τ ′′′)

(τ ′′′)2

)
≤ c6y

(1−θ2)(1−q)
2

0 , c6 = c6(ν, ω0, c5)

or,

(2.48)
(τ ′′′)2

ω(τ ′′′)
≤ c7(ln y−1

0 )−1, c7 = c7(c6, ν, ω0), ω0 is from (A3).
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Thus, the assertion of Lemma 2.4 holds with τ̄(r) defined by:

(2.49)
τ̄(r)2

ω(τ̄(r))
= c7(ln r−1)−1 ∀ r > 0.

Proof of Theorem 1.1. Due to Lemma A.3 from Appendix we can suppose that

(2.50) y0 � 1 and τ̄(y0) < 1.

From definition (2.23) of function y(τ) due to Lemma 2.4 and property (2.29) it follows
that

I
(T )
s(τ̄(y0))(τ̄(y0)) = 0 for arbitrary T <∞.

Therefore our solution u(x, t) has the following property:

(2.51) u(x, t) ≡ 0 ∀ (x, t) ∈
{
|x| ≥ τ1, t ≥ s(τ1)

}
, τ1 = τ̄(y0).

From identity (2.4) with τ = 0 we deduce that

(2.52)
d

dt

∫
Ω
|u(x, t)|2 dx+

∫
Ω

(|∇xu(x, t)|2 + a0(x)|u|q+1) dx ≤ 0 ∀ t ∈ (s(τ1), T ).

Due to (2.51) and the Poincaré inequality it follows from (2.52):

(2.53) H ′(t) +
c̄

τ2
1

H(t) ≤ 0 ∀ t > s(τ1), c̄ = const > 0,

where H(t) := H(t, 0), H(t, τ) is defined by (2.9), constant c̄ > 0 does not depend on
t. Integrating ODI (2.53) we deduce the following relationship easily:

H(t+ s(τ1)) ≤ H(s(τ1)) exp
(
− c̄t
τ2

1

)
∀ t > 0.

Using additionally estimate (2.2) with t̂ = s(τ1) we deduce:

(2.54) H(t+ s(τ1)) ≤ y0 exp
(
− c̄t
τ2

1

)
∀ t > 0.

Define t1 > 0 by

(2.55) y0 exp
(
− c̄t1
τ2

1

)
= y1+γ

0 ⇔ t1 =
γ ln y−1

0

c̄
τ2

1 , γ = const > 0.

Due to (2.49) from (2.55) it follows that

(2.56) t1 =
γc7
c̄
ω(τ1).
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Thus, we have:

(2.57) H(t1 + s(τ1)) =

∫
Ω
|u(x, t1 + s(τ1))|2 dx ≤ y1+γ

0 , γ > 0.

So, we finished first round of computations. For the second round we will consider
our initial-boundary problem (1.1) in the domain Ω× (t1 + s(τ1),∞) with initial data
(2.57) instead of (2.2). Repeating all previous computations we deduce the following
analogue of estimate (2.57)

(2.58) H(t2 + s(τ2) + t1 + s(τ1)) ≤ y(1+γ)2

0 ,

where as in (2.49) and (2.55)

(2.59) τ2
2 = c7ω(τ2)(ln y

−(1+γ)
0 )−1 =

c7

1 + γ
ω(τ2)(ln y−1

0 )−1, τ2 = τ̄(y1+γ
0 ).

Analogously to (2.56) we have also:

(2.60) t2 =
γ ln y

−(1+γ)
0

c̄
τ2

2 =
γc7
c̄
ω(τ2).

Now using estimate (2.58) as a starting point for next round of computations we find
τ3, t3 and so on. As result, after j rounds we get

(2.61) H

( j∑
i=1

ti +

j∑
i=1

s(τi)

)
≤ y(1+γ)j

0 → 0 as j → 0,

where

(2.62) τ2
i ≤

c7ω(τi)

(1 + γ)i−1
(ln y−1

0 )−1

Due to condition (A3) it follows from (2.62):

τ2
i ≤

c7ω0(ln y−1
0 )−1

(1 + γ)i−1

From definition (2.21) of function s(τ) due to condition (1.6) it follows the estimate

s(τ) ≤ τ2
0ω(τ0)−1τ2 ∀ τ0 > 0, ∀ τ > 0.

Therefore inequality (2.62) yields:

(2.63)

∞∑
i=1

s(τi) < c̃ <∞.
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Obviously, we have also: ti = γc7
c̄ ω(τi). Therefore, due to (2.62) we have:

(2.64)

j∑
i=1

ti =
γc7
c̄

j∑
i=1

ω(τi) ≤ C
j∑
i=1

ω(C1λ
i),

where C = γc7
c̄ , C1 =

(
c7ω0

ln y−1
0 (1+γ)

)1/2
, λ = (1 + γ)−1/2 < 1. In virtue of condition

(1.5) it is easy to check that

(2.65)

j∑
i=1

ω(C1λ
i) ≈ lnλ−1

∫ C1

C1λj

ω(s)

s
ds < c <∞ ∀ j ∈ N.

From (2.61) due to (2.63), (2.65) and condition (1.5) it follows that

H(R) = 0, R =

∞∑
i=1

ti +

∞∑
i=1

s(τi) <∞,

which completes the proof of Theorem 1.1. \

3 Dini condition (1.5) of extinction in finite time via semi-
classical limit of Schrödinger operator

Here we prove Proposition 1.3. We recall the definition of λ1(h) and µ(α) for h > 0
and α > 0 :

λ1(h) = inf

{∫
B1

|∇v|2 + h−2a(|x|)|v|2 dx : v ∈W 1,2(B1), ||v||L2(B1) = 1

}
,

and
µ(α) = λ1(α

1−q
2 ).

We define r(z) = a−1(z) or equivalently z = a(r(z)) and ρ(z) = z(r(z))2 for z small
enough. We will use the following technical statement

Lemma 3.1 (Corollaries 2.23, 2.31 in [5]) Under assumptions (A1)− (A3)
and (1.8), there exist four positives constants C1, C2, C3 and C4 such that for h small
enough,

C1h
−2ρ−1(C2h

2) ≤ λ1(h) ≤ C3h
−2ρ−1(C4h

2).

Our main starting point in the proof of Proposition 1.3 is the following

Theorem A (Th. 2.2 in [2]). Under assumptions (A1) − (A3), if there exists a de-
creasing sequence (αn) of positive real numbers such that

+∞∑
n=0

1

µ(αn)

(
ln(µ(αn)) + ln

(
αn
αn+1

)
+ 1

)
< +∞,
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then problem (1.1) satisfies the TCS-property.

The first step in the proof of Proposition 1.3 is the estimation of ρ−1 in a neigh-
bourhood of zero.

Lemma 3.2 Under assumptions (A1)− (A3) with (1.7) there holds

(3.1)
s

(1 + α)
ln

(
1

s

)
1

ω

((
ω0(1+α)

ln( 1
s )

) 1
2

) ≤ ρ−1(s) ≤ s ln

(
1

s

)
1

ω

((
1

ln( 1
s )

) 1
δ

) ,
for arbitrary α > 0, for all s > 0 small enough.

First of all, we prove the following estimate for ρ(z):

ρ(z) ln

(
1

z

)ω
( ω0

ln
(

1
z

)) 1
2

−1

≤ z ≤ ρ(z) ln

(
1

z

)[
ω

((
1

ln
(

1
z

)) 1
δ

)]−1

.(3.2)

Starting with r > 0 small enough, we have from (1.7) the relationship
r2−δ ≤ ω(r) ≤ ω0 and since for z > 0 small enough,

(r(z))2 ln

(
1

z

)
= ω(r(z)) =⇒ r(z)2−δ ≤ (r(z))2 ln

(
1

z

)
≤ ω0.

Therefore, we obtain (
1

ln
(

1
z

)) 1
δ

≤ r(z) ≤

(
ω0

ln
(

1
z

)) 1
2

.(3.3)

Since ω is a non decreasing function,

ω

( 1

ln
(

1
z

)) 1
δ

 ≤ ω(r(z)) ≤ ω

( ω0

ln
(

1
z

)) 1
2

 .

Substituting the definition of ω(r),

ω

( 1

ln
(

1
z

)) 1
δ

 ≤ (r(z))2 ln

(
1

z

)
≤ ω

( ω0

ln
(

1
z

)) 1
2

 .

It follows the estimate for ρ(z).

z
1

ln
(

1
z

)ω
( 1

ln
(

1
z

)) 1
δ

 ≤ ρ(z) ≤ z 1

ln
(

1
z

)ω
( ω0

ln
(

1
z

)) 1
2

 .(3.4)
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By an easy calculation, we have (3.2).

Here and further, z = ρ−1(s). By using (3.3) and ρ(z) = z(r(z))2,

ρ(z) ≥ z

(
1

ln
(

1
z

)) 2
δ

⇐⇒ 1

ρ(z)
≤ 1

z

(
ln

(
1

z

)) 2
δ

,

or equivalently,

ln

(
1

ρ(z)

)
≤ ln

(
1

z

)
+

2

δ
ln

(
ln

(
1

z

))
.

Let α > 0. Then for z small enough, since ln(ln(z−1)) << ln z−1,

ln

(
1

ρ(z)

)
≤ (1 + α) ln

(
1

z

)
⇐⇒ ρ(z) ≥ z1+α =⇒ ρ−1(s) ≤ s

1
1+α .(3.5)

Substituting z = ρ−1(s) in (3.2) yields

s ln

(
1

ρ−1(s)

)ω(( ω0

ln
(

1
ρ−1(s)

)) 1
2

)−1

≤ ρ−1(s),

and due to (3.5),

s

(1 + α)
ln

(
1

s

)[
ω

((
ω0(1 + α)

ln
(

1
s

) ) 1
2

)]−1

≤ ρ−1(s),

since ω is a nondecreasing function.
For the right-hand side of (3.1), we substitute z = ρ−1(s) in (3.2).

ρ−1(s) ≤ s ln

(
1

ρ−1(s)

)ω(( 1

ln
(

1
ρ−1(s)

)) 1
δ

)−1

.

But from (3.3), r(z)→ z so we have for z small enough, ρ(z) ≤ z, which gives ρ−1(s) ≥
s. Consequently,

ρ−1(s) ≤ s ln

(
1

s

)[
ω

((
1

ln
(

1
s

)) 1
δ

)]−1

,

which completes the proof.

Lemma 3.3 Under (A1)− (A3) with (1.7) and (1.8), if

(3.6)

+∞∑
n=n0

ω

(
1

(n lnn)
1
2

)
n

< +∞,
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then all solutions of (1.1) vanish in a finite time. Moreover,

(3.7)
+∞∑
n=n0

ω

(
1

(n lnn)
1
2

)
n

< +∞ ⇐⇒
∫ c

0

ω(x)

x
dx < +∞.

From Lemma 3.3 and Lemma 3.1 we get

K1 ln

(
1

h

)
ω

 K2(
ln
(

1
h

)) 1
2

 ≤ λ1(h) ≤ K3 ln

(
1

h

)ω
 K4(

ln
(

1
h

)) 1
δ

−1

,

and since ω(r) ≥ rθ for r small enough, we have

K1 ln

(
1

h

)ω( K2(
ln
(

1
h

)) 1
2

)−1

≤ λ1(h) ≤ K ′3 ln

(
1

h

)1+ 2−δ
δ

,

which leads to

C ′1 ln

(
1

h

)ω
 C ′2(

ln
(

1
h

)) 1
2

−1

≤ λ1(h) ≤ C ′3 ln

(
1

h

) 2
δ

.(3.8)

The real number α is defined by h = α
1−q
2 and thus,

C ′′1 ln

(
1

α

)ω( C ′′2(
ln
(

1
α

)) 1
2

)−1

≤ µ(α) ≤ C ′′3 ln

(
1

α

) 2
δ

.

From Theorem A, if (αn) is a decreasing sequence of positive real numbers and

+∞∑
n=n0

ω

 C′′2(
ln
(

1
αn

)) 1
2


ln
(

1
αn

) [
ln

(
ln

(
1

αn

))
+ ln

(
αn
αn+1

)
+ 1

]
< +∞,

then all the solutions of (1.1) vanish in a finite time.
The main point is the sequence (αn). In [2], they set αn = 2−n. A better choice is

αn = n−Kn for some K > 0 since ln

(
ln

(
1

αn

))
∼ ln

(
αn
αn+1

)
which leads to (3.6).

Now, we have to show that

+∞∑
n=n0

ω

(
1

(n lnn)
1
2

)
n

< +∞ ⇐⇒
∫ c

0

ω(x)

x
dx < +∞.
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The series is finite if and only if

∫ +∞

n0

ω

(
1

(x lnx)
1
2

)
x

dx =

∫ 1/n0

0

ω

((
x
− lnx

) 1
2

)
x

dx is

finite. The following inequalities hold for c > 0 small enough:

∫ c

0

ω(x)

x
dx ≤

∫ c

0

ω

((
x
− lnx

) 1
2

)
x

dx ≤
∫ c

0

ω(x
1
2 )

x
dx = 2

∫ √c
0

ω(x)

x
dx,

which completes the proof of Proposition 1.3.

4 Appendix

Lemma A.1 Let the nonnegative nondecreasing function ω(s), s ≥ 0, satisfy condition
(1.6). Then for any m ∈ R1, l ∈ R1, A > 0, one has

(4.1)

∫ τ

0
sm−2ω(s)l+1 exp

(
−Aω(s)

s2

)
ds ≈ τm+1ω(τ)l exp

(
−Aω(τ)

τ2

)
as τ → 0.

It is easy to check the following equality

(4.2)
d

ds

(
sm+1ω(s)l exp

(
− Aω(s)

s2

))
= smω(s)l exp

(
− Aω(s)

s2

)
×
[
(m+ 1) + l

sω′(s)

ω(s)
+
Aω(s)

s2

(
2− sω

′(s)

ω(s)

)]
≡ smω(s)l exp

(
− Aω(s)

s2

)
[I1 + I2 + I3].

Integrating condition (1.6) we get:

(4.3) ω(s) ≥ s2−δ ∀ s ∈ (0, s0),

and, as a consequence, ω(s)
s2
→∞ as s→ 0. Now due to (1.6) it follows that

I3 � |I1|, I3 � |I2| as s→ 0.

Therefore, integrating (4.2) we obtain (4.1).

Lemma A.2 Let Ω be a domain from problem (1.1), let Ω0 be a subdomain of Ω :
Ω0 ⊂ Ω. Then the following interpolation inequality holds

(4.4)

(∫
Ω
v2(x) dx

)1/2

≤ c1

(∫
Ω
|∇xv|2 dx

)1/2

+ c2

(∫
Ω0

|v|λ dx
)1/λ

∀ v ∈W 1
2 (Ω),

where λ : 1 < λ ≤ 2, positive constants c1, c2 does not depend on v.
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We start from the standard interpolation inequality

(4.5)

(∫
Ω
v2(x) dx

)1/2

< c1

(∫
Ω
|∇xv|2 dx

)1/2

+ c2

(∫
Ω
|v|λ dx

)1/λ

∀ v ∈W 1
2 (Ω),

It is clear that

(4.6)

(∫
Ω
|v|λ dx

)1/λ

≤
(∫

Ω0

|v|λ dx
)1/λ

+

(∫
Ω\Ω0

|v|λ dx
)1/λ

.

Let Ω′0 be a subdomain of Ω0 such that Ω′0 ⊂ Ω0. let ξ(x) ≥ 0 be C1-smooth function
such that

(4.7) ξ(x) = 0 ∀x ∈ Ω′0, ξ(x) = 1 ∀x ∈ Ω \ Ω0.

Then we have due to the Poincaré inequality:

(4.8)

(∫
Ω\Ω0

|v|λ dx
)1/λ

≤
(∫

Ω\Ω′0
|vξ|λ de

)1/λ

≤ c
(∫

Ω\Ω′0
|∇x(bξ)|λ dx

)1/λ

≤ c
(∫

Ω\Ω′0
|∇v|λ dx

)1/λ

+ c

(∫
Ω0\Ω′0

|∇ξ|λ|v|λ dx
)1/λ

≤ c1

(∫
Ω\Ω′0

|∇v|2 dx
)1/2

+ c2

(∫
Ω0\Ω′0

|v|λ dx
)1/λ

.

From (4.5) due to (4.6)–(4.8) one obtains (4.4). Lemma A.2 is proved.

Lemma A.3 Let u(x, t) be an arbitrary energy solution of problem (1.1). Then H(t) =∫
Ω |u(x, t)|2 dx→ 0 as t→∞.

It is clear that there exists a constant a0 > 0 and a subdomain Ω0 ⊂ Ω such that
a(x) ≥ a0 > 0 for all x ∈ Ω0. From (2.54) it follows that

(4.9)
d

dt

∫
Ω
|u(x, t)|2 dx+

∫
Ω
|∇xu(x, t)|2 dx+ a0

∫
Ω0

|u(x, t)|q+1 dx ≤ 0.

Due to Lemma A.2 we have

(4.10) ε

∫
Ω
|u|2 dx ≤ εc1

∫
Ω
|∇xu|2 dx+ εc2

(∫
Ω0

|u|q+1 dx

) 2
1+q

∀ ε > 0.

Adding (4.9) and (4.10) we get

(4.11)
d

dt

∫
Ω
|u(x, t)|2 dx+ ε

∫
Ω
|u(x, t)|2 dx+ (1− εc1)

∫
Ω
|∇xu|2 dx

+ a0

∫
Ω0

|u|q+1 dx− c2ε

(∫
Ω0

|u|q+1 dx

) 2
q+1

≤ 0.
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From (4.9) it follows that

(4.12)

∫
Ω
|u(x, t)|1+q dx ≤ (mes Ω)

1−q
2

(∫
Ω
|u(x, t)|2 dx

) q+1
2

≤ (mes Ω)
1−q
2

(∫
Ω
|u0(x)|2 dx

) q+1
2

= (mes Ω)
1−q
2 y

q+1
2

0 = C̃ = const ∀ t > 0.

Now due to (4.12) we have

(4.13) a0

∫
Ω0

|u(x, t)|q+1 dx− c2ε

(∫
Ω0

|u(x, t)|q+1 dx

) 2
q+1

=

∫
Ω
|u(x, t)|q+1 dx

(
a0 − c2ε

(∫
Ω0

|u(x, t)|q+1 dx

) 1−q
1+q
)

≥
∫

Ω
|u(x, t)|q+1 dx

(
a0 − c2εC̃

1−q
1+q
)
≥ 0

if ε is small enough, namely,

(4.14) ε ≤ a0

c2C̃
1−q
1+q

.

Thus, if ε satisfies (4.14), then from (4.11) it follows that

d

dt

∫
Ω
|u(x, t)|2 dx+ ε

∫
Ω
|u(x, t)|2 dx ≤ 0 ∀ t > 0.

The last inequality implies the assertion of Lemma A.3.
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