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Abstract Progressive aneurysmal dilatation is a well-recognized com-

plication in patients with chronic type B aortic dissection (cTBAD), which may 

lead to a delayed rupture and create a life-threatening condition. However, our 

understanding of such aortic expansion in cTBAD remains weak. In the pre-

sent paper, we propose to use numerical simulations to study the role of growth 

and remodeling (G&R) in aneurysmal dilatation after cTBAD. We set up a 3D 

finite-element model of G&R for aortic dissection within an open-source code. 

Constitutive equations, momentum balance equations, and equations related 

to the mechanobiology of the artery were formulated based on the homoge-

nized constrained mixture theory. The model was first applied to idealized aor-

tic geometries with cylindrical and toric shapes to demonstrate its feasibility 

and efficiency. The model was then applied to a patient-specific aortic segment 

to show its potential in more relevant and complex patient-specific clinical ap-

plications. It was found that the G&R tends to naturally trigger the aneurys-

mal dilatation after dissection, in order to restore its tensional equilibrium. 

Our results indicated that the value of the gain parameter, related to collagen 

G&R, plays an important role in the stability of aortic expansion after cTBAD. 

A small gain parameter will induce an excessive aneurysmal degeneration 

whilst a large gain parameter helps to recover a stabilized state of the artery 

after dissection. Finally, it was found that other mechanobiology-related pa-

rameters, such as the circumferential length of the dissection, as well as the 

pressure in the false lumen, may also be determinant for the stability of aneu-

rysmal dilatation after cTBAD. Both a wide tear and an elevated false lumen 

pressure favor an unstable development of aortic expansion after cTBAD. As 

future work, the present model will be validated through predictions of aneu-

rysmal dilatation in patient-specific clinical cases, in comparison with datasets 

followed over a significant period of time. 
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I. INTRODUCTION 
 

Chronic type B aortic dissection (cTBAD) is defined when a tear originates in 

the descending aorta and remains 3 months after its onset [1]. Patients with uncom-

plicated cTBAD are preferentially treated medically with periodic clinical and im-

aging surveillance, regarding the acceptable survival rate generally observed in a 

short-term follow-up [2], [3]. However, the long-term outcome of such conservative 

management remains questionable mainly due to the progressive aneurysmal dila-

tation [4]. Invasive surgical interventions, such as endovascular repair or open sur-

gery are then needed [5]. Up to now, little is known about the aneurysmal dilatation 

after cTBAD, either it is stable with a moderated progression rate or there is an 

excessive aneurysmal degeneration. It is yet of crucial importance for surgeons to 

be able to assess the risk of aortic expansions in patients with early-stage cTBAD 

to choose the optimal treatment approach. Patients identified at high risk for aortic 

enlargement may therefore benefit from early surgical interventions and reduce 

mortality from delayed aneurysm ruptures. 

Published studies on this topic remain scarce. It has been widely accepted that 

the presence of an excessive aortic diameter, typically greater than 40 mm, and a 

patent false lumen are two high-risk factors for late aneurysm development after 

cTBAD [6]-[8]. Besides, older age and elevated mean blood pressure were also 

found to promote aneurysmal degeneration in cTBAD [6]. Tsai et al. reported that 

the size, the number, as well as location of tears have significant impacts on the 

pressure in the false lumen, and therefore influencing the false lumen expansion [9]. 

Recently, Trimarchi et al. revealed that there are many other factors that may affect 

aneurysmal dilatation after cTBAD, including demographic, clinical, pharmaco-

logic, and radiologic variables, such as connective tissues disorders, gender, the 

presence of thrombus in the false lumen, etc [10]. However, all the above researches 

were based on observational studies or clinical trials with data collected over a long 

follow-up period.  

Considering the recent advances in computational mechanics of arteries [11], 

[12] and more specifically the growth and remodeling (G&R) models [13]-[17], 

numerical models can be an interesting alternative option for studying these influ-

encing factors. However, to the author’s best knowledge, G&R after cTBAD has 

never been modeled so far. There is still an important potential for G&R models to 

understand vascular adaptation in chronic type B aortic dissection, where the patient 

can undergo a long-term process of G&R after breaking the initial mechanical equi-

librium due to tear opening. 

In this specific context, we developed a 3D finite-element model of vascular ad-

aptation to study the aneurysmal dilatation after cTBAD, within an open-source 

code written in python and C++ [18], [19]. The G&R model of the arterial wall is 

based on the homogenized constrained mixture theory (CMT) and the aortic dissec-

tion is modeled through an original two-continuum arterial wall concept. We also 

performed a sensitivity analysis to evaluate the influence of several selected mech-

anobiological parameters on the aneurysmal dilatation after cTBAD. 
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Details of the model are given in this book chapter, by first introducing the math-

ematical framework of the CMT method for G&R with respect to cTBAD, then 

describing the two-continuum aortic dissection model, and finally showing poten-

tials of the model, from a simple validation test case to academic applications with 

idealized geometries, until a more relevant patient-specific application. 

II. Material and Methods 

A. Constitutive and balance equations 
The CMT was first proposed by Humphrey and Rajagopal as a hybrid method to 

describe mechano-regulated G&R of arteries [20]. It was then largely used for mod-

eling aneurysm formation [13]-[17]. In this work, we employ the homogenized 

CMT [17] to model arterial G&R after cTBAD. Basic equations formulated under 

the homogenized CMT framework are briefly introduced in this section. Readers 

can refer to reference publications for more detailed mathematical formulations and 

their interpretations [15], [17], [20]. 

First, we assume that the arterial wall can be modeled as an homogenized mixture 

made up by a matrix containing a network of elastic fibers, passive reinforcements 

represented by 4 collagen fiber families (respectively oriented in circumferential, 

axial and diagonal (+/- 45°) direction) and active reinforcements accounting for the 

contractility of smooth muscle cells (SMCs) in the circumferential direction. Let 

Ω𝑅 ⊂  ℝ3 and Ω𝑡 ⊂  ℝ3 denote, respectively, the initial traction-free reference con-

figuration at time 𝑡 = 0 and current deformed configuration at time 𝑡 > 0 of the ar-

terial wall. According to homogenized CMT, we assume that all constituents in the 

arterial wall deform together with a same deformation gradient 𝐅: 

𝐅 =
𝜕𝒙

𝜕𝑿
 (1) 

where 𝑿 represents a material point in Ω𝑅  and 𝒙 represents the associated spatial 

point in Ω𝑡. Moreover, based on the theory of Rodriguez and Hoger [21], this de-

formation gradient tensor 𝐅 can be split into an elastic part and an inelastic part for 

each constituent 𝑖 ∈ [𝑒, 𝑐𝑗 , 𝑚], such as 

𝐅 = 𝐅𝑒𝑙
𝑖 𝐅𝑔𝑟

𝑖  (2) 

where 𝑒, 𝑐𝑗 , 𝑚 represents respectively the elastic matrix, the 𝑗𝑡ℎ collagen fiber fam-

ily and smooth muscle cells. More precisely, 𝐅𝑒𝑙
𝑖  represents the elastic deformation 

tensor related to stresses that balance external mechanical loads over the arterial 

wall, while 𝐅𝑔𝑟
𝑖  represents the inelastic deformation tensor related to G&R, i.e. re-

lated to the continuous mass turnover of each constituent. Besides, we assume that 

G&R is a fully stress-mediated process. Other non-mechanical effects related to the 

mass turnover, such as immune-mediated chemical remodeling, damage, or me-

chanical fatigue, are neglected in this work. Therefore, the temporal homogenized 

mass deposition or degradation rate of each constituent can be expressed as 
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𝜌̇𝑅
𝑖 = 𝜌𝑅

𝑖 𝑘𝜎
𝑖

𝜎𝑖 − 𝜎ℎ
𝑖

𝜎ℎ
𝑖

 (3) 

where 𝜌𝑅
𝑖  is the reference mass density of constituent 𝑖, related to the reference con-

figuration of the arterial wall. The right-hand side term of Equation 3 describes the 

mass turnover due to the stress difference between the current stress 𝜎𝑖 and the ho-

meostatic stress 𝜎ℎ
𝑖 , where 𝑘𝜎

𝑖  is a regularization parameter (named gain parameter) 

with respect to each constituent.  

The homogenized CMT consists in the decomposition of the inelastic defor-

mation gradient 𝐅𝑔𝑟
𝑖  through two sub-gradient tensors 

𝐅𝑔𝑟
𝑖 = 𝐅𝑔

𝑖 𝐅𝑟
𝑖 (4) 

where 𝐅𝑔
𝑖  is the growth-related tensor describing volume changes to due mass turn-

over, and 𝐅𝑟
𝑖  is the remodeling-related tensor describing how the prestretch of each 

constituent is updated through continuous extant mass degradation and new mass 

production. As suggested by Braeu et al. [15], we assume that the growth defor-

mation is the same for all constituents in the arterial wall, such as 

𝐅𝑔
𝑖 = 𝐅𝑔 = 𝐈 +

𝜌𝑅

𝜌𝑅0

𝒂0
⊥ ⊗ 𝒂0

⊥ − 𝒂0
⊥ ⊗ 𝒂0

⊥ (5) 

where 𝜌𝑅 is the current reference mass density, 𝜌𝑅0 is the initial reference mass den-

sity (at time 𝑡 = 0), 𝐈 is the second order identity and 𝒂0
⊥ the growth direction [17]. 

The remodeling process of elastin can be generally neglected (𝐅𝑟
𝑒 = 𝐈) considering 

its slow mass degradation rate (typically several decades for elastin half-life time). 

We assume that the remodeling process of collagen fibers and SMCs occurs at a 

constant volume and along the fiber direction, which can be expressed as [22] 

𝐅𝑟
𝑖 = 𝜆𝑟

𝑖 𝒂0
𝑖 ⊗ 𝒂0

𝑖 +
1

√𝜆𝑟
𝑖

(𝐈 − 𝒂0
𝑖 ⊗ 𝒂0

𝑖 ) (6) 

where 𝜆𝑟
𝑖  is the respective remodeling stretch of fiber 𝑖 ∈ [𝑐𝑗 , 𝑚] along its fiber di-

rection 𝒂0
𝑖  with its time evolution 𝜆̇𝑟

𝑖  given by [13] 

𝜆̇𝑟
𝑖 = (

𝜌̇𝑅
𝑖

𝜌𝑅
𝑖

+
1

𝑇𝑖
)

𝜆𝑖

(𝜆𝑒𝑙
𝑖 )

2 (
𝜕𝜎𝑖

𝜕𝜆𝑒𝑙
𝑖

)

−1

× (𝜎𝑖 − 𝜎ℎ
𝑖 ) (7) 

where 𝑇𝑖 is the average mass turnover time during which old mass increment is 

degraded and replaced by a new mass increment. 𝜆𝑒𝑙
𝑖  is the elastic stretch of fiber 𝑖 

defined as 𝜆𝑒𝑙
𝑖 = √(𝐅𝑒𝑙

𝑖 )
𝑡
𝐅𝑒𝑙

𝑖 ∶ 𝒂0
𝑖 ⊗ 𝒂0

𝑖  and 𝜆𝑖  is the total stretch of fiber 𝑖 defined 

as 𝜆𝑖 = √(𝐅)𝑡𝐅 ∶ 𝒂0
𝑖 ⊗ 𝒂0

𝑖  

Finally, considering that the homeostatic configuration of the arterial wall is 

achieved at time 𝑡 = 𝑡0 and defining the initial traction-free geometry of the arterial 

wall at time 𝑡 = 0 as the same geometry as its homeostatic configuration, the initial 
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elastic prestretch of each constituent 𝐆ℎ
𝑖  corresponding to the homeostatic configu-

ration at time 𝑡0 can simply satisfy 

𝐅𝑟
𝑖(𝑡0) = (𝐆ℎ

𝑖 )
−1

 (8) 

due to the fact that 𝐈 = 𝐅(𝑡0) = 𝐅𝑒
𝑖(𝑡0)𝐅𝑔

𝑖 (𝑡0)𝐅𝑟
𝑖(𝑡0) = 𝐆ℎ

𝑖 𝐅𝑔
𝑖 (𝑡0)𝐅𝑟

𝑖(𝑡0) =

𝐆ℎ
𝑖 𝐅𝑟

𝑖(𝑡0). The detailed expressions of 𝐆ℎ
𝑖  are hereby given for each constituent 𝑖 ∈

[𝑒, 𝑐𝑗 , 𝑚] , with respect to a cylindrical coordinate system 

𝐆ℎ
𝑒 = 𝐝𝐢𝐚𝐠 (

1

𝜆𝜃
𝑒 𝜆𝑧

𝑒
,   𝜆𝜃

𝑒 ,   𝜆𝑧
𝑒) (9) 

𝑮ℎ
𝑐𝑖 = 𝜆ℎ

𝑐𝑖𝒂0
𝑐𝑖 ⊗ 𝒂0

𝑐𝑖 +
1

√𝜆ℎ

𝑐𝑖

(𝑰 − 𝒂0
𝑐𝑖 ⊗ 𝒂0

𝑐𝑖) 
(10) 

𝑮ℎ
𝑚 = 𝜆ℎ

𝑚𝒂0
𝑚 ⊗ 𝒂0

𝑚 +
1

√𝜆ℎ
𝑚

(𝑰 − 𝒂0
𝑚 ⊗ 𝒂0

𝑚) 
(11) 

where 𝜆𝜃
𝑒  and 𝜆𝑧

𝑒  are the initial deposition stretches of elastin, respectively in the 

circumferential and axial direction, uniform over the whole arterial wall. 𝜆ℎ
𝑐𝑖  and 𝜆ℎ

𝑚 

are respectively the initial deposition stretches of collagen fibers (same deposition 

stretch for all four directions) and SMCs. 

Based on CMT, the strain energy density function of the arterial wall can be 

given by 

𝛹 = 𝜌𝑅
𝑒𝑊𝑒 + ∑ 𝜌𝑅

𝑐𝑗
𝑊𝑐𝑗

4

𝑗=1

+ 𝜌𝑅
𝑚𝑊𝑚 (12) 

where 𝜌𝑅
𝑒 , 𝜌𝑅

𝑐𝑗
and 𝜌𝑅

𝑚 are respectively the reference mass densities of the elastic ma-

trix, of the 𝑗𝑡ℎ collagen fiber family and of SMCs, and 𝑊𝑒 , 𝑊𝑐𝑗  and 𝑊𝑚 are the 

specific strain energy density functions with respect to each constituent. Moreover, 

the strain energy density function 𝑊𝑖 of each constituent 𝑖 ∈ [𝑒, 𝑐𝑗 , 𝑚], can be ex-

pressed as a function of its elastic deformation tensor 𝐅𝑒𝑙
𝑖 , or equivalently, its elastic 

right Cauchy-Green tensor 𝐂𝑒𝑙
𝑖 , defined as 𝐂𝑒𝑙

𝑖 = (𝐅𝑒𝑙
𝑖 )

𝑡
𝐅𝑒𝑙

𝑖 . In the present work, the 

elastic matrix is considered as a quasi-incompressible Neo-Hookean hyperelastic 

material with its specific strain energy density function 𝑊𝑒 given by 

𝑊𝑒 =
𝜇𝑒

2
(tr(𝐂̅𝑒𝑙

𝑒 ) − 3) + 𝜅(|𝐅𝑒𝑙
𝑒 | − 1)2 (13) 

where 𝜇𝑒 is a material parameter characterizing the shear stiffness of elastin and 𝜅 

is an arbitrary but sufficiently high penalty parameter ensuring quasi incompressi-

bility. 𝐂̅𝑒𝑙
𝑒  is the isochoric elastic right Cauchy-Green tensor of elastin, defined as 

𝐂̅𝑒𝑙
𝑒 = (𝐅̅𝑒𝑙

𝑒 )𝑡𝐅̅𝑒𝑙
𝑒  and 𝐅̅𝑒𝑙

𝑒 = 𝐅𝑒𝑙
𝑒 |𝐅𝑒𝑙

𝑒 |1/3⁄ . The specific strain energy density function 
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of collagen fiber families is modeled by an anisotropic Fung-type exponential func-

tion,  

𝑊𝑐𝑗 =
𝑘1

𝑐𝑗

2𝑘2

𝑐𝑗
(𝑒𝑘2

𝑐𝑗
(𝐼4𝑒𝑙

𝑐𝑗
−1)

2

− 1) (14) 

We also use the same anisotropic Fung-type exponential function to model the 

passive behavior of SMCs [15], while an additional term is added for the active tone 

contribution such as, 

𝑊𝑚 =
𝑘1

𝑚

2𝑘2
𝑚 (𝒆𝑘2

𝑚(𝐼4𝑒𝑙
𝑚−1)

2

− 1) +
𝜎𝑚𝑎𝑥

𝜌𝑅0

(𝜆𝑎𝑐𝑡 +
1

3

(𝜆𝑚𝑎𝑥
𝑚 − 𝜆𝑎𝑐𝑡)3

(𝜆𝑚𝑎𝑥
𝑚 − 𝜆0

𝑚)2
) (15) 

where 𝑘1

𝑐𝑗
and  𝑘1

𝑚  are stress-like material parameters, and 𝑘2

𝑐𝑗
 and 𝑘2

𝑚 are dimen-

sionless material parameters. 𝐼4𝑒𝑙

𝑐𝑗
 and 𝐼4𝑒𝑙

𝑚  are pseudo-invariants, which are addi-

tional invariants defined in case of anisotropic materials such as 𝜆𝑒𝑙
𝑖 = 𝐂𝑒𝑙

𝑖 ∶ 𝒂0
𝑖 ⊗

𝒂0
𝑖  with 𝑖 ∈ [𝑐𝑗 , 𝑚] [23]. 𝜆𝑎𝑐𝑡  is the active stretch in the circumferential direction, 

𝜎𝑚𝑎𝑥  is the maximum active Cauchy stress, 𝜌𝑅0 is the reference total mass density 

of the arterial wall at time 𝑡 = 0, and 𝜆𝑚𝑎𝑥
𝑚  and 𝜆0

𝑚 are the active stretches respec-

tively at maximum and zero active stress for SMCs. 

The second Piola-Kirchhoff stress tensor 𝐒 and the fourth order elasticity tensor 

of the arterial wall ℂ are then deduced by performing the first and second deriva-

tives of the strain energy function 𝛹 with respect to the total Green-Lagrange strain 

𝐄 

𝐒 =
𝜕𝛹

𝜕𝐄
= 𝜑𝑒𝐒𝑒 + ∑ 𝜑𝑐𝑗𝐒𝑐𝑗

𝑖

+ 𝜑𝑚𝐒𝑚 (16) 

ℂ =
𝜕2𝐒

𝜕𝐄𝜕𝐄
= 𝜑𝑒ℂ𝑒 + ∑ 𝜑𝑐𝑗ℂ𝑐𝑗

𝑖

+ 𝜑𝑚ℂ𝑚 (17) 

where 𝜑𝑖, 𝐒𝑖 and ℂ𝑖 are the mass fraction, second Piola-Kirchhoff stress and forth 

order elasticity tensor with respect to each constituent 𝑖 ∈ [𝑒, 𝑐𝑗 , 𝑚] in the arterial 

wall, defined as 

𝜑𝑖 =
𝜌𝑅

𝑖

𝜌𝑅

 (18) 

𝐒𝑖 = 𝜌𝑅

𝜕𝑊𝑖

𝜕𝐄
 (19) 

ℂ𝑖 = 𝜌𝑅

𝜕2𝑊𝑖

𝜕𝐄𝜕𝐄
 (20) 

with 𝜌𝑅 = 𝜌𝑅
𝑒 + 𝜌𝑅

𝑐𝑗
+ 𝜌𝑅

𝑚 the reference total mass density of the arterial wall. Fi-

nally, assuming that the G&R occurs at a slow time scale and can be considered as 

a quasi-static process, the dynamics effects such as inertia or viscoelasticity of the 
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arterial wall can be neglected. Therefore, the momentum balance equations of the 

arterial wall can be simply written as 

∇ ∙ 𝝈 + 𝜌𝒃 = 𝟎 (21) 

𝜌 is the spatial density of the arterial wall, related to its reference density 𝜌𝑅, as 𝜌 =
𝜌𝑅 |𝐅|⁄ , 𝒃 is the body force vector given in the spatial configuration, 𝝈 is the Cau-

chy stress derived from the previous second Piola-Kirchoff stress as  

𝝈 =
𝟏

|𝐅|
𝐅𝐒𝐅𝑡 (22) 

The boundary conditions applied on the arterial wall can be Dirichlet boundary 

conditions, assigning the predefined displacement field over the mesh nodes or 

Robin boundary conditions, which are applied over the mesh surface, such as 

𝝈 ∙ 𝒏 = 𝑃𝑇𝐿𝒏 + 𝒑𝑑𝑖𝑠𝑠𝑒𝑐𝑡𝑖𝑜𝑛 + 𝑭𝑠𝑝𝑟𝑖𝑛𝑔 (23) 

where 𝑃𝑇𝐿 denotes the true luminal pressure of the artery due to blood flow, applied 

on the inner surface of the media layer. 𝒏 is the outward pointing unit vector normal 

to the arterial inner media surface. 𝒑𝑑𝑖𝑠𝑠𝑒𝑐𝑡𝑖𝑜𝑛  is the pressure in the false lumen after 

cTBAD. 𝑭𝑠𝑝𝑟𝑖𝑛𝑔 is an additional spring-based elastic force, related to the two-con-

tinnumm arterial wall concept proposed in this work. Details of the two-continuum 

arterial wall concept, as well as, 𝑭𝑠𝑝𝑟𝑖𝑛𝑔, 𝒑𝑑𝑖𝑠𝑠𝑒𝑐𝑡𝑖𝑜𝑛, will be given in the next sec-

tion. 

 

B. Dissection model 
In this section, we will firstly present the two-continuum arterial wall concept, 

dedicated to the modeling of G&R in the case of cTBAD. It is worth noting that the 

mechanism of the initial tear formation or the subsequent tear progression is cur-

rently not of primary interest in this paper. Under this specific context, we propose 

to model the initial healthy arterial wall without dissection with two continuum bod-

ies. As shown in Figure 1a, the arterial wall is made up of two layers, respectively 

the inner media layer and the outer adventitia layer. The two layers are perfectly 

connected by high stiffness elastic springs. More precisely, each spring connects 

two adjacent mesh surfaces 𝑆𝑎 and 𝑆𝑚, respectively at the inner surface of the ad-

ventitia and the outer surface of media. The force applied on each surface is com-

puted on the relative displacement of the two connecting surfaces, as given in Equa-

tion (24) 

𝑭𝑑𝑖𝑠𝑠𝑒𝑐𝑡𝑖𝑜𝑛 =  {
−𝑘𝑠𝑝𝑟𝑖𝑛𝑔(𝑑𝑆𝑎 − 𝑑𝑆𝑚)𝒏𝑆𝑎 , 𝑎𝑑𝑣𝑒𝑛𝑡𝑖𝑡𝑖𝑎

𝑘𝑠𝑝𝑟𝑖𝑛𝑔(𝑑𝑆𝑎 − 𝑑𝑆𝑚)𝒏𝑆𝑚 , 𝑚𝑒𝑑𝑖𝑎
 (24) 

where 𝑘𝑠𝑝𝑟𝑖𝑛𝑔 is the stiffness of the interfacial spring. 𝑑𝑆𝑎  and 𝑑𝑆𝑚 the nodal-aver-

aged displacement of the mesh surface located respectively in the inner adventitia 
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and outer media surfaces. 𝒏𝑆𝑎 and 𝒏𝑆𝑚 are the outward pointing unit vectors nor-

mal to the respective mesh. It is worth noting that displacement of one layer is trans-

mitted to the other layer with low distortions due to the high stiffness of the springs. 

Finally, we assume that this initial configuration of the arterial wall is at its home-

ostatic state with a reference luminal pressure 𝑃𝑇𝐿. To validate this new concept, a 

simple validation test case has been proposed in this work, in comparison with the 

conventional arterial wall model with a single continuum body [13], [15], [16], [17]. 

 

       

Figure 1 - (a) Illustration of the two-continuum arterial wall model, with the adventitia layer 

and the media layer connected by high stiffness elastic springs, representing a healthy arterial 

wall under its homeostatic state. (b) Initial configuration of the arterial wall after cTBAD. The 

false lumen is created by breaking interfacial elastic springs in a selected region between the 

media and adventitia layers.  
 

Based on this new concept of a two-continuum arterial wall, the initial configu-

ration of cTBAD with false lumen can be obtained by simply vanishing interfacial 

springs. As shown in Figure 1b, the false lumen (FL), as well as the free surfaces 

(i.e. inner side of adventitia layer and outer side of media layer), is created by break-

ing springs in a selected region where tears are assumed to be present. The force 

induced by the pressure in the false lumen is then applied on each mesh surface, 
𝑆𝑑𝑖𝑠𝑠𝑒𝑐𝑡𝑖𝑜𝑛, of the newly created free surfaces 

𝒑𝑑𝑖𝑠𝑠𝑒𝑐𝑡𝑖𝑜𝑛 =  𝑃𝐹𝐿𝒏𝑆𝑑𝑖𝑠𝑠𝑒𝑐𝑡𝑖𝑜𝑛 (25) 

where 𝑃𝐹𝐿 is the constant pressure in the false lumen and 𝒏𝑆𝑑𝑖𝑠𝑠𝑒𝑐𝑡𝑖𝑜𝑛 is the outward 

pointing unit vector normal to the free mesh surfaces in the false lumen. Finally, it 

is worth noting that the presence of such pressurized false lumen will break the 

mechanical equilibrium of the arterial initial homeostatic state, and therefore trig-

ging the G&R of the arterial wall over a long period of time in case of cTBAD, until 

the achievement of a new preferred mechanical state or eventually an excessive an-

eurysmal degeneration. 
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C. Finite element implementation 
The proposed model was implemented within an open-source finite element 

code, written in Python and C++ [18], [19]. Three different steps, are defined in the 

model: 

 1st step: Computation of the healthy arterial wall at homeostasis. The ini-

tial arterial wall is loaded with a constant luminal pressure, 𝑃𝑇𝐿, on its en-

tire inner surface of media.  

 2nd step: Opening of the arterial wall. Interfacial springs are removed in 

a selected region between the adventitia layer and media layer, creating the 

initial dissection tear of cTBAD. The same luminal pressure in the true 

lumen, 𝑃𝑇𝐿 , is maintained as in the previous step, applied on the entire in-

ner surface of the media. In the meantime, the false lumen will be loaded 

with a constant pressure, 𝑃𝐹𝐿 , applied on the newly created surfaces related 

to the tear-open region.  

 3rd step: Adaptation of the arterial wall with G&R after cTBAD, i.e., after 

the creation of a pressurized false lumen. 

Note that there is only one time increment in the first two steps while the third 

step is composed of several time increments to obtain relevant results of a long-term 

arterial wall adaptation after cTBAD. For each time increment, the same set of mo-

mentum balance and constitutive equations is solved with the Newton-Raphson 

method. Finally, at the end of each time increment, we obtain the displacement field 

and the associated stress-strain information on each mesh node of the arterial wall. 

III. Numerical applications 
 

In order to show the potentials of the present dissection model, four different 

simulations were performed in this paper:  

 Validation test case: It consists of a simple test case to validate the 

spring-connected two-continuum arterial wall concept proposed in this 

work. The validation was achieved through the comparison with refer-

ence results in the literature [13], [15], [16], [17] where the conventional 

single continuum arterial wall model was employed to simulate the an-

eurysm formation in response to external stimuli. 

 Application to a cylindrical artery: The second application is to study 

the G&R after cTBAD in the case of an idealized cylindrical artery.  

 Application to a toric artery: In this third application, the dissection 

model is applied to an idealized toric artery. 

 Application to a patient-specific artery: In this last application, we 

demonstrate the feasibility of our dissection model for further more 

complex and relevant clinical patient-specific applications, by model-

ing the G&R on a dissected patient-specific human descending aortic 

segment. 
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A. Validation test case 

An idealized two-layered cylindrical artery is considered. The geometry was the 

same as that has been used in the work of Braeu et al. [15], with an inner arterial 

radius of 10 mm and a constant arterial thickness of 1.41 mm. Besides, we assume 

that each layer of the arterial wall, i.e. adventitia layer and media layer, has the same 

thickness of 0.705 mm. Moreover, it should be mentioned that a constant gap of 

0.01 mm is defined between the two layers, allowing the presence of interfacial 

connecting springs with respect to the two-continuum arterial wall concept. The 

mesh was hexahedral and composed of 6 × 40 × 25 elements (thickness × circum-

ferential × length). Finally, the whole geometry is assumed to be at a homeostatic 

state, related to a reference luminal pressure of 13.3 kPa.  

Following Braeu et al. [15], we apply a sudden degradation of the elastic matrix 

such as  

𝐷̇𝑒 =  −
𝜌𝑅

𝑒

𝑇𝑒
−

𝐷𝑑𝑎𝑚

𝑡𝑑𝑎𝑚

𝜌𝑅0
𝑒 𝑒

−0.5(
𝑧

𝐿𝑑𝑎𝑚
)

2
−

𝑡
𝑡𝑑𝑎𝑚 (26) 

where 𝐿𝑑𝑎𝑚 and 𝑡𝑑𝑎𝑚 are respectively the spatial and the temporal damage spread 

parameter, 𝐷𝑑𝑎𝑚  is the maximum damage, 𝜌𝑅0
𝑒  is the initial reference mass density 

of elastin, 𝑧 is the axial position of the cylinder. Noting that due to the symmetry of 

the problem, only half of the cylinder is modeled in this simulation with 𝑧 varying 

from 0 mm to 90 mm. The first term at the right-hand side (RHS) of Equation 26 

describes the natural elastin degradation by aging effect. The second term of the 

RHS is related to sudden external stimuli, causing a maximum elastin degradation 

at the center of the cylinder, i.e. 𝑧 = 0 mm. Material properties used in this valida-

tion test case are taken from the 3D model of Braeu et al. [15] and are summarized 

in Table 1 together with other simulation parameters. The simulation results ob-

tained in this simulation are compared to the reference results in the literature [13], 

by using three different values of collagen gain parameter 𝑘𝜎
𝑐𝑖 . 

Table 1. Material properties used in the validation test case. 

Symbol Value Unit 

𝜇𝑒 72 J ∙ kg−1 

𝜅 720 J ∙ kg−1 

𝑘1

𝑐𝑗
 568 J ∙ kg−1 

𝑘2

𝑐𝑗
 11.2 − 

𝑘1
𝑚  7.6 J ∙ kg−1 

𝑘2
𝑚  11.4 − 

𝜌𝑅0
𝑒  241.5 kg ∙ m−3 
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𝜌𝑅0
𝑐1 = 𝜌𝑅0

𝑐2  65.1 kg ∙ m−3 

𝜌𝑅0
𝑐3 = 𝜌𝑅0

𝑐4  260.4 kg ∙ m−3 

𝜌𝑅0
𝑚  157.5 kg ∙ m−3 

𝜆𝑧
𝑒 1.25 − 

𝜆𝜃
𝑒  1.34 − 

𝜆ℎ

𝑐𝑗
 1.062 − 

𝜆ℎ
𝑚 1.1 − 

𝑇𝑒 101. 16 𝑦ears 

𝑇𝑐𝑗  101 days 

𝑇𝑚 101 days 

𝐿𝑑𝑎𝑚 8 mm 

𝑡𝑑𝑎𝑚 40 days 

𝐷𝑚𝑎𝑥 0.5 − 

𝜎𝑎𝑐𝑡𝑚𝑎𝑥 54 kPa 

𝜆0 0.8 − 

𝜆𝑚 1.4 − 

𝑘𝑠𝑝𝑟𝑖𝑛𝑔 1000  kPa ∙ mm−1 

 

B. Application to a cylindrical artery 
After the validation of the two-continuum arterial wall model, we first apply the 

G&R after cTBAD in the case of an idealized two-layered cylindrical artery as 

shown in Figure 2. The same geometry as in the previous validation case was used, 

except that the length of the artery is reduced from 90 mm to 50 mm. The mesh was 

hexahedral and composed of 6 × 60 × 20 elements (thickness × circumferential × 

length). Similarly, we assume that this geometry was related to a homeostatic state 

under an inner true lumen pressure of 100 mmHg. The initial tear of the dissection 

is created by breaking springs in regions where 𝑥 ≤ 10 and 𝑧 ≤ 50, to model a rep-

resentative initial tear of cTBAD. A pure sliding boundary condition is assigned on 

the cross-section at two extremities. The outer surface of the adventitia is free. The 

reference pressure in the false lumen is assumed to be the same as in the true lumen. 

The same material properties as reported in Table 1 has been used, considering ad-

ditionally the layered distribution of different material constituents as suggested by 

Mousavi et al. [16] for human ascending thoracic aorta, i.e., the media has 97% of 
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the total elastin, 15% of the total axial and diagonal collagen fibers, and 100% of 

the total SMCs, while the adventitia has 3% of the total elastin, 85% of the total 

axial and diagonal collagen and 100 % of the total circumferential collagen.  

 

 

Figure 2 – Schematic representation of the idealized cylindrical artery on which the presented 

dissection model is applied for modeling G&R after cTBAD. 
 

C. Application to a toric artery 
In order to further verify the applicability of the present dissection model, we 

employed here an idealized toric geometry, as shown in Figure 3, to simulate the 

arterial G&R after cTBAD.  

 

 

Figure 3 - Schematic representation of the idealized toric artery on which the present dissection 

model was applied for modeling G&R after cTBAD. 
 

The geometry was a fourth of a torus with an arch radius of 65 mm, similar to 

the ones already used in the literature [16], [24]. The arterial section is defined with 

an inner radius of 18 mm and an outer radius of 20.38 mm. The thickness of the 

artery is 2.38 mm, including a constant gap of 0.01 mm between two equal-thick-

ness adventitia and media layers. The mesh was hexahedral and composed of 6 × 

60 × 20 elements (thickness × circumferential × length). Once again, we assume 

that this geometry was related to a homeostatic state, under a constant inner true 

lumen pressure of 80 mmHg. Similarly, a pure sliding boundary condition is as-

signed to cross-sections at the two extremities while the outer surface of the adven-

titia is let free. Mechanical parameters, as well as simulation parameters, are re-

ported in Table 2, based on Laubrie et al. [25]. The initial tear of the dissection is 
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created by breaking springs in the regions defined by √𝑥2 + 𝑦2 ≥ 70 and 

𝑎𝑟𝑐𝑡𝑎𝑛(𝑥 𝑦⁄ ) ≤ 60°, to model a representative initial tear of cTBAD. 

Table 2. Material properties and simulation parameters used for the toric artery simulation. 

Symbol Value Unit 

𝜇𝑒 80 J ∙ kg−1 

𝜅 800 J ∙ kg−1 

𝑘1

𝑐𝑗
 292.0 J ∙ kg−1 

𝑘2

𝑐𝑗
 5.6 − 

𝑘1
𝑚 13.8 J ∙ kg−1 

𝑘2
𝑚 6.0 − 

𝜌𝑅0
𝑒  (media) 169.0 kg ∙ m−3 

𝜌𝑅0
𝑐1 = 𝜌𝑅0

𝑐2  (media) 14.6 kg ∙ m−3 

𝜌𝑅0
𝑐3 = 𝜌𝑅0

𝑐4  (media) 58.4 kg ∙ m−3 

𝜌𝑅0
𝑚  (media) 735.0 kg ∙ m−3 

𝜌𝑅0
𝑒  (adventitia) 565.0 kg ∙ m−3 

𝜌𝑅0
𝑐1 = 𝜌𝑅0

𝑐2  (adventitia) 48.5 kg ∙ m−3 

𝜌𝑅0
𝑐3 = 𝜌𝑅0

𝑐4  (adventitia) 194.0 kg ∙ m−3 

𝜌𝑅0
𝑚  (adventitia) 0.0 kg ∙ m−3 

𝜆
ℎ

𝑐𝑗
 11 − 

𝜆ℎ
𝑚 1.1 − 

𝑇𝑒 101. 16 𝑦ears 

𝑇𝑐𝑗  101 days 

𝑇𝑚 101 days 

𝜎𝑎𝑐𝑡𝑚𝑎𝑥 54 kPa 

𝜆0 0.8 − 

𝜆𝑚 1.4 − 

𝑘𝑠𝑝𝑟𝑖𝑛𝑔 1000 kPa ∙ mm−1 
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D. Application to a patient-specific artery 

In this last test case, our dissection model was applied to a patient-specific human 

descending thoracic aortic segment, as shown in Figure 4a. It was taken from a pa-

tient-specific aortic arch geometry, reconstructed from a patient's CT scan [16], as 

shown in Figure 4b. The exact location of the modeled aortic segment is shown in 

Figure 4b with the blue mesh. The thickness of the adventitia and media was as-

sumed to be equal. Besides, the two layers were separated with a constant gap of 

0.01 mm. The mesh was hexahedral and composed of 6 × 48 × 42 elements (thick-

ness × circumferential × length).  Similar to previous test cases, we assumed that 

this initial geometry was related to a homeostatic state, with an inner true lumen 

pressure of 80 mmHg. The reference pressure in the false lumen was assumed to be 

the same as in the true lumen. However, this value may change as a sensitivity study 

was performed on the false lumen pressure in this patient-specific case test, which 

is detailed in the results section. Moreover, it should be mentioned that the pure 

sliding boundary condition was applied on the cross-section at the two extremities 

and the outer surface of the adventitia was let free. The same material properties 

and simulation parameters as summarized in Table 2. Finally, it is worth noting that 

the non-uniform prestretches were used in this patient-specific artery, which was 

computed based on an iterative method previously developed by Laubrie et al. [25].  

 

 

Figure 4 - (a) Schematic representation of the patient-specific human descending thoracic aor-

tic segment on which the presented dissection model was applied for modeling G&R after 

cTBAD. (b) Illustration of the modeled aortic segment location, i.e., regions covered by the 

blue mesh, with respect to the whole patient-specific aortic arch.  
 

In order to better describe the initial dissection tear of cTBAD, we introduce a 

numerical parameter, 𝛼, for each circumferential cross-section of the arterial seg-

ment, as shown in Figure 5. Note that the unit vector normal to this cross-section is 

computed from the arterial centerline points. The unit vertical direction of the cross-

section is approximately defined as the averaged projection vector of this section on 

the xy plane. After the definition of directions, we define 𝛼 for each interfacial con-

necting spring  

α =
𝑙

𝐷
 (27) 
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where 𝑙 is the length of averaged spring positions, projected on the cross-section's 

vertical direction. The tear opening criterion is thus defined as 𝛼 ≥ 𝛼𝑚𝑖𝑛 . Therefore, 

with 𝛼𝑚𝑖𝑛 = 0, all interfacial springs between the adventitia and media layers will 

be broken, creating a full separation of the two layers. While if 𝛼𝑚𝑖𝑛 is equal to 1, 

no interfacial springs will be broken and thus no presence of the tear. In this patient-

specific simulation, the effect of the tear opening length to the G&R after cTBAD 

was considered, by varying the values of 𝛼𝑚𝑖𝑛 from 0.8 (a narrow tear) to 0.5 (a 

wide tear).  

 

Figure 5 - Description of the initial tear opening criteria defined on each circumferential cross-

section of the aortic segment. 

 

E. Computational details 
  

All simulations were performed on a Macbook Pro with Intel Core i5 and 8 Go 

of memory. The computation time for each simulation takes around 2 hours. The 

low computation resources prove the computational efficiency of our dissection 

model. 

IV. Results 

A. Validation test case 
Results of the validation test case are shown in Figure 6, illustrating the aneurys-

mal expansion of the arterial wall due to elastin loss. The evolution of the maximum 

inner radius of the aneurysm is shown, in comparison with the reference results [13], 

over a period of 10 years. The results indicated that the current two-continuum ar-

terial wall model is in good agreement with the conventional single continuum ar-

terial wall model. The aneurysmal expansion tends to recover its stability with a 

large gain parameter while a small gain parameter promotes an uncontrolled expan-

sion of the aneurysm. With this validation test case, we justified the use of such a 

two-continuum arterial wall concept for G&R problems.  



16  

 

Figure 6 - Evolution of the maximum arterial inner radius over 10 years in response to an initial 

sudden elastin loss for both the two-continuum arterial wall model (solid lines) and the refer-

ence single-continuum arterial wall model (dash lines), with three different values of gain pa-

rameter related to collagen G&R [13].  

 

B. Application to a cylindrical artery 
We first show the reference simulation results in the case of a cylindrical artery, 

as illustrated in Figure 7, with respect to a reference value of gain parameter 𝑘𝜎

𝑐𝑗
=

𝑘𝜎
𝑚 = 0.05. It can be seen that the dissected part of the artery, especially the outer 

adventitia layer, continues to dilate due to the effect of G&R after the initial tear 

opening. This aneurysmal dilatation tends to be unstable, with an increasing growth 

rate over time. Besides, the maximum stress, which is located at the vicinity of the 

tear edge, also increases rapidly over time.  

Previous studies on G&R, which modeled aneurysm progression but disregarded 

effects of the dissection, reported that gain parameters have a determinant effect on 

the stability of aneurysmal dilatation[15], [16]. To investigate the effect of this gain 

parameter in the specific context of cTBAD, we considered three different values 

of gain parameters, ranging between 0.05 and 0.15, with results illustrated in Fig-

ure 8, showing the temporal evolution of the maximum outer diameter of the dis-

sected cylindrical artery. It can be seen that the same tendency as previously re-

ported in the literature has been observed for G&R after cTBAD. A small gain 

parameter tends to induce an unstable aneurysmal degeneration while a large gain 

parameter tends to favor the stability of aneurysmal dilatation. 
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Figure 7 - Reference results of the cylindrical artery with respect to a reference value of gain 

parameter 𝑘𝜎

𝑐𝑗
= 𝑘𝜎

𝑚 = 0.05, showing geometrical and equivalent von Mises stress evolutions 

after cTBAD over 9 years. 

 

 

 

Figure 8 - Influence of the gain parameter to aneurysmal dilatation after cTBAD, showing the 

temporal evolution of the maximum outer diameter of the dissected cylindrical artery. 
 

C. Application to a toric artery 
Reference simulation results in the case of a toric artery, with a reference value 

of gain parameter 𝑘𝜎

𝑐𝑗
= 𝑘𝜎

𝑚 = 0.05, are shown in Figure 9. Similarly, the dissected 

part of the artery undergoes an unstable aneurysmal dilatation over 6 years after the 

initial tear opening. The maximum stress also increases over time. Besides, it is 

interesting to note that for this toric artery case, the stress seems to increase over the 

whole dissected adventitia layer, and is not limited to the vicinity of the tear edge 

as observed in the previous cylindrical artery case.  

The effect of the gain parameter has also been investigated in this dissected toric 

artery. The temporal evolution of the maximum outer diameter of the dissected toric 
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artery is shown in Figure 10. It can be seen that the results obtained are also in 

agreement with previous findings of the gain parameter: a large gain parameter fa-

vors a stable growth of aneurysm while a small gain parameter promotes an exces-

sive enlargement of aneurysm after cTBAD. 

 

 

Figure 9 - Reference results of the toric artery with respect to a reference value of gain parameter 

𝑘𝜎

𝑐𝑗
= 𝑘𝜎

𝑚 = 0.05, showing geometrical and equivalent von Mises stress evolutions after 

cTBAD over 6 years. 
 

 

Figure 10 - Influence of the gain parameter to aneurysmal dilatation after cTBAD, showing the 

temporal evolution of the maximum outer diameter of the dissected toric artery. 

 

D. Application to a patient-specific artery 
The reference simulation results in the case of a patient-specific artery, more 

precisely, a patient-specific human descending aortic segment, are shown in Figure 

11, with respect to a reference value of gain parameter 𝑘𝜎

𝑐𝑗
= 𝑘𝜎

𝑚 = 0.05. The re-

sults illustrate the geometrical and stress evolutions of the aortic segment, and also 
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the circumferential cross-section at its dissected extremity. We found that the dis-

sected aortic segment undergoes continuous aneurysmal dilatation overtime after 

the initial tear opening. Besides, it can be seen that there is a significant increase of 

stress over time, mostly on the dissected part of the outer adventitia layer. 

 

 

Figure 11 - Reference results of the patient-specific artery with respect to a reference value of 

gain parameter 𝑘𝜎

𝑐𝑗
= 𝑘𝜎

𝑚 = 0.05, showing geometrical and equivalent von Mises stress evolu-

tions after cTBAD over 6 years, as well as the dilated circumferential cross-section at its dis-

sected maximum extremity, respectively at (a) 0 year of G&R, (b) 3 year of G&R and 6 year 

of G&R.  
 

Similarly, the effect of the gain parameter on aneurysmal dilatation after cTBAD 

was investigated.  Results obtained confirm the same tendency as observed in pre-

vious test cases: a large gain parameter tends to stabilize the aneurysmal dilatation 

of the dissected artery while a small gain parameter promotes an excessive aneurys-

mal degeneration after cTBAD. 

 

Figure 12 - Influence of the gain parameter to the aneurysmal dilatation after cTBAD, show-

ing the temporal evolution of the maximum outer diameter of the dissected patient-specific 

artery. 



20  

Apart from the gain parameter, it has also been reported in the literature that the 

tear size may have a significant influence on aneurysmal dilatation after cTBAD 

[9], [26]. Being aware that effects of the tear size is very complex, which depend 

not only on the position of the tear but also on its irregular shape, involving gener-

ally measures in three dimensions. In this paper, note that we try to study only the 

cicumferential length of the tear, with four different values of 𝛼𝑚𝑖𝑛 ranging from 

0.8 to 0.5, i.e., from narrow circumferential tear to wide circumferential tear. Re-

sults obtained are shown in Figure 13, describing the temporal evolution of the max-

imum outer diameter of the dissected artery. It can be seen that a wider tear pro-

motes an uncontrolled aneurysmal dilatation after cTBAD, while a narrow tear 

tends to favor a stable aneurysmal dilatation with a moderate growth rate. 

 

 

Figure 13 - Influence of the initial circumferential opening length of dissecting tear to the an-

eurysmal dilatation after cTBAD, showing the temporal evolution of the maximum outer di-

ameter of the dissected patient-specific artery. 

 

Finally, in this patient-specific simulation, we also investigated the effect of the 

pressure as it has been identified as a high-risk factor in cTBAD, especially in the 

false lumen where the pressure may impact directly on the stress distribution of the 

most weakened outer adventitia layer [6], [27], [28]. In order to evaluate the effect 

of the pressure in the false lumen, three different values of false lumen pressure are 

considered, respectively higher than the true lumen pressure (𝑝𝐹𝐿 𝑝𝑇𝐿⁄ > 1), equal 

to the true lumen pressure (𝑝𝐹𝐿 𝑝𝑇𝐿⁄ = 1), and lower than the true lumen pressure 

(𝑝𝐹𝐿 𝑝𝑇𝐿⁄ < 1). Note that pressure in the true lumen is assumed to be constant. Re-

sults are shown in Figure 14, showing the temporal evolution of the maximum outer 

diameter of the dissected artery. It can be seen that a higher pressure promotes an-

eurysmal dilatation after cTBAD. More precisely, regarding the aneurysmal dilata-

tion rate at 3 years, a 10% pressure increase in the false lumen induces an "enlarg-

ing" growth of the dissected artery (≥ 3mm/year) while for false lumen pressure 

equal or below the true lumen pressure, aneurysmal dilatation can be considered as 

"stable" (< 3mm/year) [1]. 
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Figure 14 - Influence of the pressure in the false lumen to the aneurysmal dilatation after 

cTBAD, showing the temporal evolution of the maximum outer diameter of the dissected pa-

tient-specific artery. 

V. Discussion 
 

cTBAD is associated with poor long term outcomes, mainly as a result of exces-

sive aneurysmal dilatations. By consequence, a considerable part of patients with 

cTBAD will require ultimately surgical interventions such as endovascular repair 

or open surgery [29], [30].  However, there is a serious lack of risk assessment tools 

because our current understanding of the aneurysmal dilatation mechanism after 

cTBAD remains weak.  

In this chapter, we proposed a numerical approach to study the role of G&R in 

aneurysmal dilatation in cTBAD. We found that the G&R process triggers naturally 

the aneurysmal dilatation. Moreover, it was found that with a large gain parameter 

related to collagen G&R, the aneurysmal dilatation tends to be stable while with a 

small gain parameter, there would be an excessive aneurysmal degeneration. It is 

interesting to note that the results obtained are in agreement with clinical evidence 

reported by Juvonen et al. [6], where older patients present a higher risk of aneurys-

mal rupture in case of cTBAD. In fact, this gain parameter describes the capacity of 

arteries to restore its tensional equilibrium state in case of a disturbance of its mech-

anobiological equilibrium [14] and it has been reported that age may affect this gain 

parameter with older patients generally having an impaired stress-regulated repair 

mechanism compared to young patients [31].  

 Based on sensitivity analysis performed on patient-specific simulations, we 

found that the circumferential tear length also has a significant influence on the 

G&R process after cTBAD. A wide tear promotes an unstable development of an-

eurysmal dilatation while a narrow tear reduces the risk of uncontrolled aneurysmal 

dilatation. The reason could be twofold. First, a wide initial opening tear means 
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naturally a larger initial dissected arterial diameter once the false lumen is pressur-

ized compared to a narrow initial tear. Secondly, the consequence of a larger initial 

dissected arterial diameter is that the deformation and stress will be much higher, 

especially in the dissected outer adventitia layer, accelerating the G&R process of 

the artery. Indeed, the results remained very limited, considering the irregular three-

dimensional tear shape and other complex mechanobiological phenomena ne-

glected. However, it provides a mechanical proof that the tear size is also an im-

portant influencing factor that needs to be considered in the risk assessment of pa-

tients with cTBAD.  

Finally, our results indicated that the pressure in the false lumen has a determi-

nant role in the aneurysmal progression rate of the dissected artery. We found that 

a relative 10% increase of pressure in the false lumen, compared to that of the true 

lumen, is sufficient to promote an "unstable" growth of the dissecting aneurysm. 

This can be critical for patients, as surgical interventions are usually recommended 

for such situations [1]. 

Despite the above promising results obtained, the current model still has some 

shortcomings that could be addressed in the future. First, in the present model, the 

tear configuration remains fixed after its initial creation. However, with the contin-

uous aneurysmal dilatation and accumulation of stress especially near the edge of 

the tear, the initial tear may propagate due to high-stress concentration and thus alter 

the G&R process. Therefore, integration of the tear propagation models, such as 

that reported in the literature [32]-[35], could be an essential step to build a more 

reliable dissection model for evaluating the G&R effect to aneurysmal dilatation 

after cTBAD. 

Secondly, the dissection model is relatively simplified. Intraluminal thrombus, 

which was often reported to have an important role in dissecting aneurysm pathol-

ogies and rupture [36], [37], was literally neglected in this work. Besides, the effects 

of surrounding tissues have also been neglected although it has already been re-

ported in the literature that the surrounding connective tissues or vertebral column 

may impact regional adaptation of aortic walls by changing the local wall stress 

distribution or even more directly the aneurysmal aortic shape [38], [39]. Moreover, 

potential dynamic effects of the blood flow inside the arterial wall are currently not 

taken into consideration, despite its non-negligible effect directly on the wall stress 

distribution, as reported in the literature [26], [40].  

Finally, the initial tear configuration was restricted to its circumferential length. 

Location of the tear, number of the tears or other dimensions related to the tears are 

currently neglected. For further patient-specific simulations, these parameters 

should be carefully considered as they may directly impact the pressure in both the 

false lumen and the true lumen [9].  

 

VI. Conclusions 
 



23 

In summary, we introduced an efficient 3D finite-element model, based on an 

open-source in-house code, to model the aneurysmal dilatation due to G&R after 

cTBAD. We showed the potential of this dissection model to simulate G&R process 

after cTBAD, from simple test cases with idealized arterial geometries to a more 

relevant case with a patient-specific geometry. The effects of different parameters 

on aneurysmal dilatation were assessed through a comprehensive sensitivity analy-

sis. It was found that the gain parameter related to collagen G&R as well as the 

circumferential initial tear length, has an undeniable impact on the stability of the 

dissecting aneurysm. Moreover, our results indicated that the stability of the dis-

secting aneurysm is very sensitive to the intraluminal false lumen pressure. A rela-

tive pressure increase of 10% in the false lumen may induce an excessive aneurys-

mal degeneration in patients with cTBAD. 

Future work is twofold. The first one is coupling the present dissection model 

with tear propagation models, for applications to more reliable patient-specific sim-

ulations. The second one is to account for a more accurate configuration of opening 

tears while considering the potential dynamic effects of the blood flow inside the 

dissected arteries. 
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