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Abstract

The Fourier Transform method is used to solve frequency dependent heat

transfer problems. The periodic Lippmann-Schwinger (LS) integral equation

in Fourier space with source term is first formulated using discrete Green

operators and modified wavevectors which can then be solved by iteration

schemes. The objective is to solve the local problem involving strong con-

trast heterogeneous conductive material, with application to gas-filled porous

media with both perfect and imperfect Kapitza boundary conditions at the

bi-material interface. The effective parameters such as the dynamic conduc-

tivity and the thermal permeability in the acoustics of porous media are also

derived from the cell solution. Numerical examples show that the schemes

converge fast and yield accurate results when compared with analytical solu-

tion for benchmark problems. The formulation of the method is built using

static or dynamic Green operators and can be applied to pixelized microstruc-

ture issued from tomography images.
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1. Introduction

Determining the overall behavior of heterogeneous media is the main focus

of homogenization theory (Milton, 2002; Torquato, 2001; Nemat-Nasser and

Hori, 2013). Based on the local boundary value problem on a Representative

Volume Element (RVE), average quantities can be obtained to establish the

macroscoscopic relations for the equivalent homogenized material. By con-

struction, the distribution of the heterogeneous materials in the RVE can be

either random or periodic.

The homogenization of periodic materials can be addressed by double scale

asymptotic procedures (Bensoussan et al., 1978). By developing the local

problem with respect to the scale separation ratio ε, a large number of

macroscopic models can be derived, whose form can be different from the

local constitutive behavior. Considering the heat transfer problem under

harmonic excitation at a given frequency ω, Auriault (1983) showed that

for large contrasts of thermal conductivity, the constitutive equation is fre-

quency dependent, resulting in a memory kernel for the transient behavior.

It is worthwhile noticing that the local cell problem is of the same type as

the one related to ”dynamic thermal permeability” that appears in the com-

putation of the dynamic compressibility of a gas within a porous medium

(Lafarge et al., 1997).

The main objective of the present work is to address the frequency depen-

dent heat transfer problem in a periodic cell. With the increasing capa-

bilities of computing power, solving problems on realistic microstructures

becomes more accessible. Numerical methods are developed to handle both

tomographic or computer generated images. Compared with other methods

such as Finite Element Method or Random Walk, methods based on Fourier

Transform benefit from serious advantages. The methods rely directly on

pixelization of the simulation domain and the robustness of the Fast Fourier
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Transform algorithm when dealing with periodicity. Additionally, the reso-

lution based on iterative schemes is fast and yields accurate overall properties.

Although the Lippmann-Schwinger (LS) integral equations had been de-

rived previously (Brown Jr, 1955; Kröner, 1977) for micromechanics prob-

lems, Moulinec and Suquet (1994); Michel et al. (1999) proposed to use it-

erative schemes combined with Fast Fourier Transform to solve numerically

these equations. A broad range of engineering problems such as fluid flows

(Nguyen et al., 2013; Bignonnet, 2020), non linear behavior (Michel et al.,

2001), finite strain (De Geus et al., 2017), Kapitza interface problem in com-

posites (Monchiet, 2018) etc.... have been treated by the method since then.

Efforts have been made to accelerate the convergence at high contrast ra-

tio such as the polarization schemes (Eyre and Milton, 1999; Monchiet and

Bonnet, 2013), variational schemes (Brisard and Dormieux, 2010), Newton-

Krylov solvers (Brisard and Dormieux, 2012; Vondřejc et al., 2014; Zeman

et al., 2010; Schneider, 2019).

For porous materials where the contrast ratio becomes infinite, the conver-

gence becomes the main issue. It is shown that most of iterative schemes

fail to satisfy the divergence free and rotational free criteria (Moulinec and

Silva, 2014). To overcome those limitations, To and Bonnet (2020); To et al.

(2021) recently proposed a class of iteration scheme based on boundary inte-

gral equation. Another interesting technique is to use discrete Green tensors

and modified wavevectors as derived from finite difference approximation

(Willot et al., 2014). In a comparison between different iterative schemes,

(Moulinec et al., 2018) the authors stated ”continuous Green’s operator per-

forms better for moderate contrast whereas discrete operators should be used

for large contrast”. Since the latter is suitable for pixelized microstructure,

it will be adopted to solve the heat transfer problem.

3



The paper is organized as follows. First, the important results of asymptotic

homogenization theory in the case of large contrasts between the properties

of constituents is recalled. Next, the LS integral equation for the heat trans-

fer problem with a source term using modified Green tensors is presented.

Combined with the immersed interface technique (Peskin, 1972), the itera-

tive schemes are then derived for a large class of boundary value problems:

prescribed flux, prescribed temperature, temperature jump, temperature de-

pendent source term. These schemes are then used to solve the frequency

dependent heat transfer problem and results are compared with analytical

solutions from the literature.

2. Heat transfer problems from asymptotic homogenization theory

2.1. Strong contrast composites and effective frequency dependent heat capac-

ity

According to the asymptotic homogenization theory, the macroscopic law

is constructed based on the length scale ratio

ε =
lmicro

Lmacro

≪ 1 (1)

where lmicro and Lmacro are the characteristic length at the micro and macro

scales of the heterogeneous material. In addition, all physical quantities are

treated as functions of two space variables, the macroscopic space variable

X and the microscopic space variable x, with x = X/ε representing local

fluctuations within the microstructure.

Let us consider a porous material whose solid skeleton is characterized by

conductivity κs and thermal capacity cs filled by a fluid characterized by

κg and cg as in Fig. 1. When κg/κs = O(1) and ρscs/(ρgcg) = O(1) the

asymptotic expansion method (Auriault, 1983) shows that the porous mate-

rial behaves as a material with the effective conductivity given by the usual

4



Figure 1: Sketch of two phase material with high contrast conductivity ratio κg/κs ≪ 1.

homogenization method, i.e the static case. In this case, the effective thermal

capacity is equal to the volume average of local thermal capacities.

When the thermal conductivity of the gas is very small compared to the one

of the solid, this result is no longer valid. It is shown that if κg/κs = O(ε2)
and ρscs/(ρgcg) = O(1), the porous medium is characterized by a frequency

dependent thermal capacity that is obtained from a dynamic localization

problem which writes:

κg∆xθ − iωρgcgθ − iωρgcgT = 0, (2)

and

θ = 0 at the solid/gas boundary (3)

where T (X) is the amplitude of the macroscopic temperature, that depends

only on the macroscopic space variable X. The solution of this equation

5



leads to a local value of θ linearly related to T :

θ(X,x, ω) = −χ(x, ω)T (X) (4)

The macroscopic balance of energy can be written:

divX(κeff∇XT ) = (ρc)eff iωT (5)

where κeff is the effective conductivity and (ρc)eff is the effective dynamic

thermal capacity given by

(ρc)eff = ⟨ρc⟩ − ρgcg
|V |

∫
Vg

χ(x, ω)dx. (6)

Here, V is the volume of the periodic cell, Vg is the volume of fluid within

the cell and ⟨⟩ denotes the volume average over the cell.

2.2. Heat transfer due to acoustic wave in fluid filled porous media

In this case, the dynamic behavior is governed at the local scale by mass

conservation, Navier-Stokes equation, heat equation and the equation of state

for the gas. The scaling of these equations with suitable renormalization of

the physical coefficients has been described in Auriault et al. (2010) and

Boutin et al. (1998). The asymptotic method leads to the following results:

• At highest order in ε, the macroscopic pressure P depends only on the

macroscopic space variable.

• At the following order, the local temperature within the gas is the

solution of

κg∆xθ − iωρgcgθ + iωP = 0, (7)

with θ = 0 on the boundary of the fluid domain. It is noteworthy that

equation (7) has the same form as (2) where the driving force iωP plays
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the same role as −iωρgcgT

The solution is proportional to iωP and it is natural to introduce a variable

θ given by θ = θκg

iωP
that is solution of:

∆θ − θ

δ2
+ 1 = 0, (8)

where δ is the complex length

δ =

√
κg

iωρgcg
. (9)

The volume average of θ over the fluid volume is given by:

Θ =
1

|Vg|

∫
Vg

θdx (10)

with Θ being a macroscopic physical parameter called the ”thermal perme-

ability” (Lafarge et al., 1997). For a given microstructure, Θ only depends on

the complex length δ, which is a function of frequency by (9), or Θ = Θ(δ(ω)).

This parameter plays an important role in the determination of the effective

dynamic compressibility.

From equations (2) and (7), it can be seen that these equations are the

same when replacing P by −ρgcgT . It follows that χ in (4) is related to θ∗

by

χ =
θ

δ2
. (11)

Finally, the effective dynamic capacity is obtained from the thermal perme-

ability by:

(ρc)eff = ⟨ρc⟩ − 1

δ2
ρgcg
|V |
|Vg|Θ = ⟨ρc⟩ − 1

δ2
νgρgcgΘ (12)
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where νg is the volume concentration of gas.

In the following, the problem of dynamic thermal permeability will be solved,

knowing that the dynamic thermal capacity can be obtained from this rela-

tion.

2.3. Temperature jump boundary conditions

In addition to the perfect boundary conditions (3), we also study the case

where there is a temperature jump, also called temperature slip, in the form

(Kapitza, 1941):

θ(x) = l∇θ(x)n(x) = κg

κint

∇θ(x)n(x) at solid/gas boundary (13)

with n being the normal vector, l the slip length, κint the interface coeffi-

cient. The phenomenon is frequently encountered at gas flows characterized

by high Knudsen number, i.e when the mean free path is comparable to the

characteristic size of the pore (Umnova et al., 2009; Chastanet et al., 2004).

Microscopically, it can be quantified by the collision between the gas atoms

and the solid wall (Liao et al., 2018a,b). For perfect interface, l = 0 and

κint =∞, the perfect boundary conditions (3) is recovered.

It is noteworthy that the slip condition can be recovered as the limit case of

a layer of large conductivity and small thickness at the interface between the

phases, when the thickness tends to zero. This does not affect the distribution

of heat capacity and it will be considered that the result of homogenization

theory (Auriault et al., 2010) is also valid in this case, the difference being

only to account for the temperature jump in the localization problem.
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3. Fourier Transform resolution method using the static Green ten-

sor

For simple geometries (plane slits, cylindrical interfaces), the boundary

value problem (8-9) can be solved in a closed form, but in the general case a

suitable numerical solution becomes necessary. In this section, a numerical

solution based on a FFT formulation is presented.

3.1. Periodic heat equation with source term and associated discrete operators

Let us consider a heterogeneous material where the local conductivity

κ(x) is a periodic function of the coordinate x with period V of dimen-

sions V = L1 × L2 × L3 in the Cartesian coordinate system. The governing

equations of the problem are the following

e = E −∇θ, div(j) + s = 0, j = κe (14)

where θ, e, j and s are the V periodic temperature, (minus) temperature

gradient, heat flux and source term with volume averages Θ, E, J and 0, i.e

⟨θ(x)⟩ = Θ, ⟨e(x)⟩ = E, ⟨j(x)⟩ = J , ⟨s(x)⟩ = 0. (15)

The last condition ⟨s(x)⟩ = 0 is necessary for the compatibility between the

periodic flux j and the energy conservation. In general, the source term s

can be temperature dependent. Due to the periodicity, the problem can be

solved using Fourier series. For a V periodic function f(x) of real variable

x(x1, x2, x3), it can be written as

f(x) =
∑
ξ

f̂(ξ)eiξx, i =
√
−1 (16)
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where f̂(ξ) is the Fourier transform of f(x), notation f̂(ξ) = F [f(x)], and
function of wave vector ξ(ξ1, ξ2, ξ3)

ξk = 2πni/Li, ni = 0,±1,±2, ...,±∞, i = 1, 2, 3. (17)

Numerically, we are limited to finite resolution by bounding ni with resolu-

tion parameter N , i.e −N ≤ ni ≤ N−1, and solve the problem on collocated

grid. It is noted that the resolution parameter N corresponds to resolution

2N in real space. For example, if N = 128 is adopted for 2D problems, in

real space the resolution would be 256× 256.

The usual way to produce Green tensor for the FFT method is to use the

classical relation between spatial derivative and the product by the wave vec-

tor. An alternative is to use a modified Green tensor built as follows using

modified wave vectors. As shown in (Willot et al., 2014), the use of modified

Green tensors avoids the convergence issues in infinite contrast situations

and solution fluctuations due to Fourier series. The spatial derivatives at the

grid points x(n1h1, n2h2, n3h3) with hi = Li/2N are estimated by forward

and backward finite difference. In physical and Fourier space, we have

Forward:
∂f

∂xi

(x) =
1

hi

[f(x+ hiei)− f(x)] ,
∂̂f

∂xi

(ξ) = ikif̂(ξ),

Backward:
∂f

∂xi

(x) =
1

hi

[f(x)− f(x− hiei)] ,
∂̂f

∂xi

(ξ) = ik∗
i f̂(ξ),

i = 1, 2, 3. (18)

with the modified complex wavevector ki and its complex conjugate k∗
i being

the quantities

ki =
1

hi

(eiξihi − 1), k∗
i =

1

hi

(e−iξihi − 1). (19)
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Next, following Willot et al. (2014), the discrete Green operators P , Q, H

and R are constructed from the modified wavevector k(k1, k2, k3)

P (ξ) =
k ⊗ k∗

|k|2
, Q(ξ) = I − P (ξ), H(ξ) = I − 2P (ξ)

R(ξ) =
ik

|k|2
, ∀ξ ̸= 0 (20)

and

P (0) = Q(0) = H(0) = R(0) = 0 (21)

As a result, the integral equations to solve the heat transfer problem with

source term can be obtained (To et al., 2021). Depending on the choice of

unknowns, we have, say, for gradient e

e(x) = E +
1

κ0

R ∗ s− P ∗
[
κ− κ0

κ0

e

]
(22)

for the flux j

j(x) = J +R ∗ s+Q ∗
[
κ− κ0

κ
j

]
(23)

and for the polarization τ

τ (x) = T + 2R ∗ s+H ∗
[
κ− κ0

κ+ κ0

τ

]
, (24)

Here the polarization τ with average ⟨τ (x)⟩ = T , is given by

τ = (κ+ κ0)e = (κ+ κ0)j/κ (25)

and ∗ represents convolution operation in the real space. In Fourier space,

this operation is equivalent to simple product between the transformed quan-

11



tities.

The LS equations (22), (23) and (24) can be used to solve the corresponding

quantities e, j, τ by iteration schemes. In addition, the temperature distri-

bution can be recovered from the equivalent relation of (14)

θ(x) = Θ + θ̃(x), θ̃(x) = −R∗ ∗ e. (26)

and θ̃(x) is the fluctuation θ(x) around the mean value Θ.

3.2. Iteration schemes

Let us start with the LS equations (22), (23) and (24). The common

points of those equations are that they have the form

u(x) = U +A ∗ s+B ∗ (ϵu) (27)

where u (which can be either e or j or τ ) represents the unknown to be ob-

tained, U the volume average of u(x), ϵ(x) the known functions of the local

conductivity, A,B are discrete Green operator with an explicit expression

in Fourier space (see Table 1).

In section 2, it has been shown that we need to solve equations (8) with a

temperature dependent source term. We consider the case where the source

term s is a linear function of the local values of e or j or θ, i.e

s(x) = αe(x)e(x) +αj(x)j(x) + αθ(x)θ(x) + α0(x) (28)

whereαe(x),αj(x), αθ(x) and α0(x) are known fields, thus independent from

the solution e or j or θ. Since the source term must have zero mean ⟨s(x)⟩ =
0 and θ(x) = Θ + θ̃(x) from (26), the following relation must be verified

−⟨αθ(x)⟩Θ = ⟨αe(x)e(x) +αj(x)j(x) + αθ(x)θ̃(x) + α0(x)⟩. (29)
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Name u(x) U A(ξ) B(ξ) ϵ(x)

e scheme e(x) E R(ξ)/κ0 −P (ξ) κ(x)−κ0

κ0

j scheme j(x) J R(ξ) Q(ξ) κ(x)−κ0

κ(x)

τ scheme τ (x) T 2R(ξ) H(ξ) κ(x)−κ0

κ(x)+κ0

Table 1: Different iteration schemes with unknown and operators associated to Lippmann-
Schwinger equations with source term

The problem (14) can be solved using any one of the four governing equations

(22), (23) or (24) and iterate in order to produce the field θ that is consis-

tent with the dynamic equation. Algorithm 1 shows the case of polarization

scheme, i.e u = τ that is used in the paper. The convergence quality of

polarization method has been demonstrated in previous publications (see e.g

Willot et al., 2014; Moulinec et al., 2018; Monchiet and Bonnet, 2013).

Algorithm 1 Schemes for periodic heat transfer problem with source term

Initialization τ (0) = T
repeat

1. Compute e(n−1) = τ (n−1)

κ(x)+κ0
, j(n−1) = κ(x)τ (n−1)

κ(x)+κ0
, θ̃(n−1) =

−F−1{R∗F [e(n−1)]}
2. Compute Θ(n−1) from e(n−1), j(n−1) and θ̃(n−1) by (29) and θ(n−1) =

θ̃(n−1) +Θ(n−1)

3. Compute s(n−1) from θ(n−1), j(n−1), e(n−1) by (28)

4. Update τ (n) = T +F−1{2RF [s(n−1)] +HF [κ(x)−κ0

κ(x)+κ0
τ (n−1)]}. Equiva-

lently, τ (n) = τ (n−1) − 2F−1{PF [j(n−1)]−RF [s(n−1)] + κ0QF [e(n−1)]}
n← n+ 1

until convergence criteria is met

Some remarks on the iterative schemes dealing with periodic problems

can be made as follows.

i) In the classical homogenization problem where s = 0 and with a finite

contrast, the local conductivity being bounded by κmin < κ(x) < κmax, the

best choice of the reference conductivity in this case is κ0 =
√
κminκmax for τ
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scheme. The polarization τ scheme has shown to have a faster convergence

rate than e and j schemes. Furthermore, combined with the modified Green

operators, it does not encounter infinite contrast issues.

ii) In the case where the source term s is prescribed s = α0(x) with the

condition ⟨α0(x)⟩ = 0, step 3 is unnecessary. The temperature field θ is

defined up to a constant Θ and the constant Θ(n−1) in step 2 can be set

unchanged and equal to Θ during the whole process. In the opposite case

where s depends on the local temperature θ, the constant Θ(n−1) in step 2

is then chosen to guarantee ⟨s(n−1)⟩ = 0 by (29). See also applications to

Neumann and Dirichlet boundary conditions in iii) and iv).

Figure 2: Boundary Γ crossing cells 1, 2, ..,M .

The method can be extended to non periodic problems where the source term

can be used to impose heat flux and temperature, for example the immersed

interface technique (Peskin, 1972; LeVeque and Li, 1994; Wiegmann). The

details of FT implementation using form factor and continuous Green tensors

can be found in a recent work (To et al., 2021). Another possibility is to use

polarization (or eigenstress/strain for elasticity) as done by Gelebart (2020)
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or Chen et al. (2019). For the present problem, the modified Green tensors

(Willot et al., 2014) as shown previously and the immersed interface method

to deal with perfect or imperfect boundary conditions on pixelized or curved

boundary are combined.

iii) Considering the Neumann boundary conditions for normal flux jn(x)

jn(x) = jpn(x), x ∈ Γj (30)

on boundary Γj which is adjacent to the void phase. Here jpn(x) is the

prescribed normal flux. The void can be considered as a material with zero

conductivity. If the Γj is approximated to follow the pixel boundary, crossing

the cells located at x1,x2, ...,xM (see Fig.2), the normal flux at xi is related

to the source term at xi by

s(xi)h = jpn(xi) (31)

and h is the cell dimensions. In the general case where Γj is a known

curve boundary curvature significantly different from the previous pixel based

boundary, the source term can be evaluated by a more general formula

h3s(xi) =

∫
Γi
j

jpn(x)ds ≃ jpn(xi)|Γi
j| (32)

where Γi
j is the portion of Γj in the cell i.

iv) The Dirichlet type boundary conditions for temperature

θ(x) = θp(x), x ∈ Γt (33)

are applied to a boundary Γt and the source term is known outside Γt. In this

case, θp(x) is the prescribed temperature. The boundary Γt is not necessary
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adjacent to the void phase as Γj of the previous case. Again, the source

term s can be used to control the temperature in the cell crossed by Γt , for

example θ(xi) = θpi , i = 1, 2, ..,M . Such constraint can be imposed by the

penalty technique, leading to

s(n)(xi) = κpen(θ
(n−1)(xi)− θpi ) (34)

with large value of κpen. The other technique is to use the augmented La-

grange technique, coupled with iteration

s(n)(xi) = s(n−1)(xi) + κL(θ
(n−1)(xi)− θpi ) (35)

where κL is the Lagrange coefficient, usually taken κL = κ0. The integration

constant Θ(n−1) in step 2 can be chosen to ensure the vanishing average source∑
xi∈Γt

s(n)(xi) +
∑
xi /∈Γt

s(xi) = 0 (36)

at each time step n by (29). Specifically, we have for penalty technique∑
xi∈Γt

κpen(θ̃
(n−1)(xi) + Θ(n−1) − θpi ) +

∑
xi /∈Γt

s(xi) = 0 (37)

or

Θ(n−1) =
1

M

∑
xi∈Γt

κpen(θ
p
i − θ̃(n−1)(xi))−

∑
xi /∈Γt

s(xi)

 (38)

and for augmented Lagrange technique∑
xi∈Γt

s(n−1)(xi) + κL(Θ
(n−1) + θ̃(n−1)(xi)− θpi ) +

∑
xi /∈Γt

s(xi) = 0 (39)
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or

Θ(n−1) =
1

M

κL(θ
p
i − θ̃(n−1)(xi))−

∑
xi /∈Γt

s(xi)−
∑
xi∈Γt

s(n−1)(xi)

 .

(40)

v) The temperature jump condition on the boundary Γint adjacent to the

void. The normal flux on Γint is proportional to the temperature difference

and κint is the interface coefficient

jn(x) = κint(θ(x)− θp(x)), x ∈ Γint. (41)

In this case, the heat exchange at x1,x2, ...,xM where the material is in

contact with the temperature θpi , i = 1, 2, ..,M is given by

hs(n)(xi) = κint(θ
(n−1)(xi)− θpi ) (42)

for a pixel based boundary and by

h3s(n)(xi) = κint(θ
(n−1)(xi)− θpi )|Γi

int| (43)

for a curved boundary.

vi) The standard convergence criteria of the algorithm is based on the inte-

grability of e

εe = ∥ik(ξ)× ê(n)(ξ)∥F < εe (44)

and the conservation of energy associated to j

εj = ∥ik∗(ξ)ĵ(n)(ξ) + ŝ(n)(ξ)∥F < εj (45)
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which results in the combined criteria

εje = max{εe, εj} < εje = min{εe, εj} (46)

where εe, εj, εje are error norms and εe, εj, εje ≪ 1 are the smallness param-

eter controlling the accuracy of the solution. In the case where there are

temperature constraints at x1,x2, ...,xM , an additional error tolerance εθ on

temperature is adopted

εθ = max
i=1..M

|θ(n)(xi)− θpi | < εθ. (47)

The global error and global tolerance are denoted as

ε = max{εje, εθ} < ε. (48)

The frequency dependent heat transfer problem is the particular case of the

general problem considered in the previous section.Two phases are present:

the gas (conductivity κg) and the solid (conductivity κs). The temperature

to solve is called the excess temperature θ which is considered as being null

(θ(x) = 0) in the solid phase. Due to the similar nature of the two equations

(7) and (2), the acoustic wave problem (2) in gas filled porous material will

be dealt as an example.

In this case, the average flux, gradient and polarization do not exist E =

J = T = 0 and the internal field is induced by the source term s which is

known in the gas phase

s = −iωP + iωρgcgθ in the gas phase (49)

and unknown in the solid phase.

The two types of boundary conditions can be treated by Algorithm 1. For
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ideal boundary conditions, the augmented lagrangian with temperature con-

straints is applied to either the boundary cell or the whole solid phase. In

this case, the value of the conductivity κs does not affect the solution of our

problem but its choice can have impacts on the convergence behavior. The

numerical experiments show that setting κs = 100 − 1000κg and global tol-

erance ε = 0.001− 0.0001 will yield the optimal value between computation

cost and accuracy. Regarding imperfect boundary conditions, we set κs = 0

so that the normal flux is equal to the source term as before. Additionally,

since the resulting flux is proportional to the measure of the boundary and

thus affects the source term s, results can be sensitive to the choice of pixel

based or curved boundary.

4. Generalized scheme based on frequency dependent Green oper-

ators

Up to now, the Green operators P ,Q,H and R are obtained for a homo-

geneous media of conductivity κ0 and the heterogeneity effect of conductivity

is accounted for by the polarization. For systems involving variation of in-

ternal heat energy, the source term s can be further decomposed into a heat

generation s̃ and a source term coming from the thermal capacity as

s = s̃+ iωρcθ (50)

where ρc is the heat capacity. Then, the Green operators can be generalized

to account for the heat capacity of the reference media ρ0c0. It is noted

that a similar treatment is used in the context of homogenization of Bloch

wave in elastodynamics (see e.g Srivastava and Nemat-Nasser, 2012, and the

references therein) For the present heat transfer problem, let us pose

s′ = s̃+ iω(ρc− ρ0c0)θ = s− iωρ0c0θ (51)
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This shows that the use of the reference capacity introduces a new polariza-

tion term iω(ρc − ρ0c0)θ. Inserting this relation into (22) in Fourier space

and noting that θ̂(ξ) = −R∗(ξ)ê(ξ) from (26) and R(ξ)R∗(ξ) = 1/|k|2 via

(20), we obtain[
1 +

iωρ0c0
κ0|k|2

]
ê(ξ) =

1

κ0

R(ξ)ŝ′(ξ)− 1

κ0

P (ξ) ̂(κ− κ0)e(ξ), ∀ξ ̸= 0.

(52)

Passing the term
[
1 + iωρ0c0

κ0|k|2

]
to the right side of the equation and returning

to the real space yields

e(x) = E +
1

κ0

R′ ∗ s′ − 1

κ0

P ′ ∗ (κ− κ0)e, (53)

with the new Green tensors R′,P ′

R′(ξ) =
ik

|k|2 + iωρ0c0
κ0

, P ′(ξ) =
k ⊗ k∗

|k|2 + iωρ0c0
κ0

, ∀ξ ̸= 0. (54)

Similar expressions can be derived for flux j and polarization τ

j(x) = J +R′ ∗ s′ +Q′ ∗ κ− κ0

κ
j, (55)

and

τ (x) = T + 2R′ ∗ s′ +H ′ ∗ κ− κ0

κ+ κ0

τ , (56)

with Q′,H ′ defined as

Q′(ξ) = I − P ′(ξ), H ′(ξ) = Q′(ξ)− P ′(ξ), ∀ξ ̸= 0 (57)

Like R,P ,Q,H , the tensors R′,P ′,Q′,H ′ vanish at ξ = 0, or P ′(0) =

Q′(0) = H ′(0) = 0. It is noted that if the composite ratio ωρ0c0/κ0 → 0,
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we recover the original expressions R′ = R, P ′ = P , Q′ = Q, H ′ = H .

We find that LS equations (53), (55) and (56) based on the frequency and

heat capacity dependent Green operators P ′,Q′ andH ′ have the same struc-

ture as (22), (23) and (24). As a result, the iteration method can be based on

Algorithm 1 with suitable modification. The modified source term s′ becomes

s′ = −iωP + iω(ρc− ρ0c0)θ in the gas phase (58)

and is unknown in the solid phase. To enforce the given temperature at the

solid phase, the penalty and the augmented Lagrange techniques are applied

to s like in the original scheme to ensure (36) and s′ is calculated by the

formula

s′(n) = s(n) − iωρ0c0θ
(n−1). (59)

As a result when ρ0c0 = 0, the scheme associated to the frequency dependent

tensor is exactly the same as in the original scheme.

5. Numerical applications

In the previous sections, two kinds of Green tensors, the static and dy-

namic ones were presented. Since the first one leads to converging results,

the results are presented in the first two subsections by using the static Green

tensor . Next, the dynamic Green tensor is introduced in the last subsection

in order to evaluate the capacity of the related numerical scheme, compared

to the one related to static Green tensor.

5.1. Heat transfer with an ideal boundary

The two 2D problems where analytical solution is available (see Ap-

pendix) will be considered first. The unit cell has dimensions L1 = L2 = 1

and the resolution parameter is fixed at N = 128, or resolution 256 × 256
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in real space. Other parameters of the simulation are: κg = 1, κs = 100,

κ0 =
√
κgκs = 10 and global tolerance ε = 0.001. The ideal boundary

condition is applied at the solid gas interface and the augmented Lagrange

technique is used to control the temperature of the solid phase. The itera-

tion scheme based on the original Green tensors will be used. The program

is written using Matlab and all the simulations are run on a laptop computer

under Windows 10 OS with Intel Core i5-10310U CPU 1.70GHz RAM 16 GB.

In the first problem, the gas is inside a parallel slit pore of width 2a = 2/3

and the characteristic length is fixed κg/ωρgcg = 1 (or δ = 1/
√
i). After 39

iterations which takes 1.00 s, the algorithm converges, yielding results given

in Fig 3. From the real temperature field, it is zero outside the gas phase

and increases around the center due to the effect of the source term. The

temperature profile cutting across the unit cell confirms this trend and shows

that both the real and imaginary parts of the temperature match perfectly

the analytical solutions given in the Appendix.

In the second problem, the gas is contained inside the cylindrical pore with ra-

dius a = 1/3. The characteristic length parameters are varied κg/ωρgcg = 1,

0.02, 0.01. The algorithm stops after 45, 78, 104 iterations (or 1.02s, 1.65s,

2.20s computation time) and results are plotted in Fig. 4. Again, the tem-

perature is zero in the solid phase and the solution in the gaseous phase

agrees with the analytical solutions. It is noted that when κg/ωρgcg and δ

decreases, the behavior corresponds to a lower diffusivity/conductivity and

the temperature profile tends to decrease and flatten out. Theoretically, the

temperature field tends to a vanishing small field θ → 0 when δ → 0. When

δ increases, the conductive behavior becomes increasingly dominant. Nu-

merical evidence shows that when κg/ωρgcg ≥ 1, the temperature profile is

stabilized and less sensitive to the parameter κg/ωρgcg.
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Figure 3: The case of parallel pore with perfect solid-gas interface. The real part of
temperature field ℜ(κgθ/iωP ) (top) and the variation of the real and imaginary part of
temperature along axis x2 (bottom).
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Figure 4: The case of circle pore with perfect solid-gas interface. The real part of tem-
perature field ℜ(κgθ/iωP ) with κg/ωρgcg = 1 (top) and the variation of the real part of
temperature on axis x2 at different value of κg/ωρgcg (bottom).
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Next we shall consider a problem on a fiber material containing a random

setting of cylindrical fibers. The sample section containing 15 random non-

overlapping circles of radius 0.06 is generated by the Random Sequential

Addition (RSA). The cylinder represents the solid phase and the pore cor-

responds to the space between the cylinders. We are interested by the con-

vergence behavior of the problem, i.e the variation of errors εje and εθ with

respect to the number of iterations. From Fig. 5, the error norms exhibit a

common two regimes behavior: a steep descent followed by a slower descent.

This two regimes behaviour is also found in the recent work on the conver-

gence of FFT based iterative schemes (Moulinec et al., 2018). It is noted

that our error norm exhibits some curvature rather than straight lines in

(Moulinec et al., 2018). It is suggested that implementation of temperature

constraints has some effects on the variation trend of the error norm. While

the slope of the slow descent is relatively similar for all error norms, the slope

and the extent of the steep descent depend on κs. Using high values of κs

accelerates the convergence and leads to a small error value earlier and before

starting the slow regime.

5.2. Thermal permeability problem with temperature jump boundary

In this subsection, the performance of the algorithm for imperfect bound-

ary condition will be studied. Let us study again the first two examples,

parallel pore and circle pore with the same parameters as in the previous

section and introduce the interface coefficient l = δ = 1/
√
i (or κint = κg/δ)

at the solid gas boundary. The global tolerance is the same as the previ-

ous case ε = 0.001. We note that for normal homogenization problems of

heterogeneous materials, to achieve the best convergence rate, the reference

conductivity κ0 should be taken as κ0 =
√
κminκmax and the two positive

values κmax, κmin are the upper and lower bounds of the local conductivity.

Under the special problem with presence of the interfaces, the void phase

and the external source at the interface, the optimal reference conductivity

κ0, is generally unknown and must be studied case by case.
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Figure 5: The case of fiber material with perfect solid-gas interface. The radius of the
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(top) and the variation error norms with respect to the number of iteration (bottom).
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Figure 6: The case of parallel pore with temperature jump at solid-gas interface. The
variation of the real and imaginary part of temperature on axis x2 for.

In the slit pore problems, it is found that the FFT method has a good perfor-

mance. Specifically, with κ0 = κg, we need 4 iterations (0.15 s) to reach the

global accuracy ε and the results compare well with the analytical solution.

Both imaginary and real parts produce the jump value at the interface and

the variation in the pore is also the same (see Fig. 6). In the figure, the

temperature in the solid phase obtained by FFT method is not zero because

we are interested only in the gas temperature. The solid conductivity is set

to zero (κs = 0) and the heat exchange between the solid and the gas is

accounted for by the source term. It is noted that for slit pore, the real

interface nearly coincides with the pixel based boundary at the resolution

N = 128.

For the cylindrical pore problem (see Fig. 7), we observe a significant dif-

ference between the scheme without curve correction (42) and the one using

pixel based approximation (43). So, the comparison ls made also with curve
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correction in the source term. Without the correction, the resulting source

term which is proportional to the measure of the boundary can be over or un-

derevaluated. This results in a deviation from the analytical solution. When

taking account for the length of the circle crossing the cell, the agreement is

excellent. The convergence is also fast as with κ0 = κg, the algorithm stops

after 15 iterations (or 0.35 s)

It can be concluded that to study interface effects, the evaluation of the

boundary flux is important and requires an accurate description of the bound-

ary length in the cells.

Next the problem of fiber material with varying slip length l from 10−3δ to

105δ is considered. To ensure the convergence, the reference conductivity

κ0 must also vary, especially for small values of slip length l, near an ideal

interface regime. It requires an increasing value of κ0 in these cases and the

convergence is slower. For example, for l = 0.001δ, we need κ0 = 1000κg and

11707 iterations (or 250 s). For moderate and high slip l ≥ 0.1δ, the method

based on penalty technique is very fast, with a number of iterations ranging

from 10 to 200. Looking at the temperature field in Fig. 8, a significant ef-

fect of the slip length on the solution can be observed. When the slip length

increases, there is no resistance at the interface and the solid phase tends to

facilitate the heat flow in the gas. Consequently, the temperature field in the

gas is much more homogeneous.

At the limit case, the homogeneous temperature field is expected to satisfy

(2) and the temperature field can be obtained

θ = −iωP

κg

δ2 (60)

and the thermal permeability Θ according to (9)

Θ(δ(ω)) = −δ2. (61)
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Figure 7: The case of circle pore with temperature jump at solid-gas interface. The
variation of the real and imaginary part of temperature on axis x2 using two formulations:
without curve correction (42) (top) and with curve correction (43) (bottom).
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Figure 8: The case of fiber material with temperature jump at solid-gas interface. The
radius of the fibers is 0.06 and the porosity is ν = 0.865. The real part of temperature
field ℜ(κgθ/iωP ) at l = 0.1δ (top) and l = δ (bottom).
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With δ = 1/
√
i, these theoretical limits agree with the numerical results in

Fig. 9 as we found ℜ[Θ] = 0 and ℑ[Θ] = −1 at high value of thermal slip.

It is interesting to remark the different behavior of ℜ[Θ] and ℑ[Θ]: ℜ[Θ]

first increases to a peak, around l/δ = 5 before decreasing to 0 and ℑ[Θ]

monotonically decreases to −1.
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Figure 9: The real and imaginary part of effective thermal permeability Θ as function of
thermal slip length l/δ. The complex length is fixed at δ = 1/

√
i.

5.3. Comparison of the results obtained using static or frequency dependent

tensor schemes

Up to now , all results have been obtained by using the ”static” Green

tensor. So, in this subsection, the comparison is made between the results

obtained from both Green tensors. A firt result is that the frequency depen-

dent tensor schemes P ′,Q′,R′,H ′ yield the same solution at convergence as

the original scheme for all the problems considered in the previous subsec-

tion. In terms of convergence rates, they are obviously the same when the

reference heat capacity vanishes ρ0c0 = 0. To achieve the comparison, the

new scheme is used by varying the reference parameter ρ0c0, which can be an
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ρ0c0
ρgcg

Niter
ρ0c0
ρgcg

Niter
ρ0c0
ρgcg

Niter

−0.6 very slow −103i 97 −0.7eiπ/4 341
−0.5 456 −102i 48 −0.6eiπ/4 49
−0.1 45 −10i 45 −0.1eiπ/4 45
−0.01 45 −i 45 −0.01eiπ/4 45

0 45 - - - -
0.01 45 i 45 0.01eiπ/4 45
0.1 45 10i 51 0.1eiπ/4 45
0.5 441 102i diverge 0.6eiπ/4 49
0.6 very slow 103i diverge 0.7eiπ/4 338

Table 2: Number of iterations at convergence as a function of reference heat capacity
ρ0c0 for cylindrical pore problem. As for computation time, it varies from 1.10 s for 45
iterations to 7.40s for 338 iterations.

arbitrary complex number. Let us pose ρ0c0/ρgcg = reiφ with r being a real

number and φ = 0, π/4, π/2. The problems of slit pore and cylindrical pore

with perfect boundary conditions and parameters κs = 100, κg/ωρgcg = 1

are considered as examples.

From Table 2 for cylindrical pore problem, it is found that the convergence

is sensitive to the reference parameter. For all cases under consideration, the

best convergence is achieved when ρ0c0 = 0 or | ρ0c0
ρgcg
| is small. When ρ0c0

ρgcg

reaches a certain threshold value, the error norm decreases very slowly or

even increases (divergence). The convergence behavior is symmetric if ρ0c0
ρgcg

is real or in the form ρ0c0
ρgcg

= reiπ/4. The number of iterations remains rela-

tively low and then changes drastically at | ρ0c0
ρgcg
| = 0.6 − 0.7. The behavior

is different when ρ0c0
ρgcg

is purely imaginary. The scheme still converges well

at much higher value | ρ0c0
ρgcg
| and diverges when ρ0c0

ρgcg
= 100i. It is suggested

that this behavior can be linked to the singularity of the new Green tensors.

It is noted that the term iωρ0c0/κ0 can be negative and the denominator

|k|2 + iωρ0c0/κ0 of the new Green tensors can be singular for some values of

k.
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ρ0c0
ρgcg

Niter
ρ0c0
ρgcg

Niter
ρ0c0
ρgcg

Niter

−1000 286 −103i 127 −1000eiπ/4 145
−100 44 −102i 53 −100eiπ/4 51
−10 45 −10i 45 −10eiπ/4 45
−1 39 −i 41 −eiπ/4 39
0 39 - - - -
1 41 i 39 eiπ/4 39
10 45 10i 47 10eiπ/4 47
100 46 102i diverge 100eiπ/4 118
1000 230 103i diverge 1000eiπ/4 diverge

Table 3: Number of iteration at convergence as a function of reference heat capacity ρ0c0
for slit pore problem. As for computation time, it varies from 1.0 s for 39 iterations to
2.50s for 118 iterations.

For the problem of slit pore (see Table 3), a behavior similar to the one

of cylindrical pore is observed. There is some small difference in the fact

that the scheme is stable for a larger range of ρ0c0
ρgcg

, especially when ρ0c0
ρgcg

is

real or not purely imaginary. The scheme converges relatively well up to

| ρ0c0
ρgcg
| = 100 − 1000, compared to | ρ0c0

ρgcg
| = 0.6 − 0.7 for the cylindrical pore.

This is a special problem where the heat transfer is along one direction only.

It suggests that the particularity of the solution renders the spectral prop-

erty of the scheme less sensitive to ρ0c0. From these two examples, we find

that the dynamic Green tensor, though being a priori more ”adapted” to the

dynamic equation, does not improve in any way the speed or convergence,

compared to the static Green tensor. The best convergence being observed

when the heat capacity is set to zero in the dynamic Green tensor.

6. Concluding remarks

In the present paper, the Fourier Transform method is developed to solve

the frequency dependent heat transfer problem. The main ingredient of the

method is the LS equation for heat transfer problem based on discrete Green

operators. The source term appearing in the equation is used to capture
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the harmonic fluctuation of pressure and to enforce the constraints at the

boundary. Both ideal and temperature jump boundary conditions can also

be modelled by the method. From the applications to different microstruc-

tures, the method proves to be fast and to yield accurate results.

A generalized scheme based on a dynamic Green tensors is also proposed.

Analogous to elastodynamics, those frequency dependent tensors are derived

by using a reference complex heat capacity ρ0c0. While being more flexible,

the scheme converges equally well at small value of ρ0c0. Equivalently, the

optimal convergence of the generalized scheme is recovered in the particular

case where the dynamic Green tensor coincides with the static Green tensor.

The use of source terms was shown in a previous work to be very useful

when solving boundary value problems using FFT formulation (To et al.,

2021). This work shows that the introduction of these source terms can be

also of interest when the sources are frequency-dependent as in the case of

dynamic heat conduction.

Appendix A. Analytical solutions for 2D heat transfer problems

with temperature jump

For parallel pore of width 2a limited by the inequality −a < x2 < a (see

Fig. A10a), the solution θ(x2) in the gas phase must satisfy

θ′′(x2)−
θ(x2)

δ2
+

iωP

κg

= 0. (A.1)

The general solution

θ =
P

ρgcg
+ Aex2/δ +Be−x2/δ (A.2)
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Figure A.10: Microstructures of two examples.

combined with the boundary conditions at the gas-solid interface

θ(a) = −lθ′(a), θ(−a) = lθ′(−a) (A.3)

yield the analytical solution

θ =
P

ρgcg

[
1− ex2/δ + e−x2/δ

(ea/δ + e−a/δ) + l/δ(ea/δ − e−a/δ)

]
. (A.4)

In the case of perfect interface l/δ = 0, the classical solution is recovered

θ(x2) =
P

ρgcg

[
1− ex2/δ + e−x2/δ

ea/δ + e−a/δ

]
(A.5)

where temperature equal to 0 at x2 = ±a.

For circular pore of radius a (see Fig. A10b), the governing solution in

the cylindrical coordinate for θ(r) in the gas phase becomes

θ′′(r) +
θ′(r)

r
− θ(r)

δ2
+

iωP

κg

= 0 (A.6)
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The general solution has the form

θ(r) =
P

ρgcg
+ AI0(r/δ) (A.7)

where Ik is the modified Bessel function of first kind and of kth order. Under

the boundary conditions at the gas-solid interface is given by

θ(a) = −lθ′(a) (A.8)

The exact solution of the above problem is

θ(r) =
P

ρgcg

[
1− I0(r/δ)

I0(a/δ) + l/δI1(a/δ)

]
. (A.9)

In the case of perfect interface l/δ = 0, the classical solution is recovered

θ(r) =
P

ρgcg

[
1− I0(r/δ)

I0(a/δ)

]
(A.10)

where temperature equal to 0 at r = a.
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