Loop group schemes and Abhyankar's lemma Philippe Gille ## ▶ To cite this version: Philippe Gille. Loop group schemes and Abhyankar's lemma. 2023. hal-03933634v1 ## HAL Id: hal-03933634 https://cnrs.hal.science/hal-03933634v1 Preprint submitted on 10 Jan 2023 (v1), last revised 30 Jul 2023 (v4) **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. ## LOOP GROUP SCHEMES AND ABHYANKAR'S LEMMA #### P. GILLE ABSTRACT. We define the notion of reductive group schemes defined over the localization of a regular henselian ring A at a strict normal crossing divisor D. We provide a criterion for the existence for parabolic subgroups of a given type. Keywords: Reductive group schemes, normal crossing divisor, parabolic subgroups. MSC 2000: 14L15, 20G15, 20G35. ### 1. Introduction In the reference [7], we investigated a theory of loop reductive group schemes over the ring of Laurent polynomials $k[t_1^{\pm 1}, \ldots, t_n^{\pm 1}]$. Using Bruhat-Tits' theory, this permitted to relate the study of those group schemes to that of reductive algebraic groups over the field of iterated Laurent series $k((t_1)) \ldots ((t_n))$. The main issue of this note is to start a similar approach for reductive group schemes defined over the localization A_D of a regular henselian ring A at a strict normal crossing divisor D and to relate with algebraic groups defined over a natural field associated to A and D, namely the completion K_v of the fraction field K with respect to the valuation arising from the blow-up of $\operatorname{Spec}(A)$ at its maximal ideal. The example which connects the two viewpoints is $k[[t_1, \ldots, t_n]][\frac{1}{t_1}, \ldots \frac{1}{t_n}]$ where $K_v \cong k(\frac{t_1}{t_n}, \ldots, \frac{t_1}{t_{n-1}})((t_n))$ After defining the notion of loop reductive group schemes in this setting, we show that for this class of group schemes, the existence of parabolic subgroups over the localization A_D is controlled by the parabolic subgroups over K_v (Theorem 4.1). **Acknowledgements.** We thank R. Parimala for her insight about the presented results. ## 2. Tame fundamental group 2.1. **Abhyankar's lemma.** Let $X = \operatorname{Spec}(A)$ be a regular local scheme. Let k be the residue field of A and $p \geq 0$ be its characteristic. We put $\widehat{\mathbb{Z}}' = \prod_{l \neq p} \mathbb{Z}_l$. Let K be the fraction field of A, and let K_s be a separable closure of K. It determines a base point $\xi : \operatorname{Spec}(K) \to X$ so that we can deal with the Grothendieck fundamental group $\Pi_1(X, \xi)$ [10]. Date: January 10, 2023. Let (f_1, \ldots, f_r) be a regular sequence of A and consider the divisor $D = \sum D_i = \sum \operatorname{div}(f_i)$, it has strict normal crossing. We put $U = X \setminus D = \operatorname{Spec}(A_D)$. We recall that a finite étale cover $V \to U$ is tamely ramified with respect to D if the associated étale K-algebra $L = L_1 \times \cdots \times L_a$ is tamely ramified at the $D_i's$, that is, for each i, there exists j_i such that for the Galois closure \widetilde{L}_{j_i}/K of L_{j_i}/K , the inertia group associated to v_{D_i} has order prime to p [10, XIII.2.0]. Grothendieck and Murre defined the tame (modéré in French) fundamental group $\Pi_1^D(U,\xi)$ with respect to $U \subset X$ as defined in [10, XIII.2.1.3] and [8, §2]. This is a profinite quotient of $\Pi_1(U,\xi)$ whose quotients by open subgroups provides finite Galois tame cover of U. We are given a finite étale tame cover $V \to U$. In this case Abhyankar's lemma states that there exists a flat Kummer cover $X' = \operatorname{Spec}(A') \to X$ where $$A' = A[T_1, \dots, T_r]/(T_1^{n_1} - f_1, \dots, T_r^{n_r} - f_r)$$ and the n_i 's are coprime to p such that $V' = V \times_X X' \to X'$ extends uniquely to a finite étale cover $Y' \to X'$ [10, XIII.5.2]. **Lemma 2.1.** Let $V \to U$ be a finite étale cover which is tame. Then Pic(V) = 0. *Proof.* We use the some notation as above. We know that X' is regular [10, XIII.5.1] so a fortiori locally factorial. It follows that the restriction maps $Pic(X') \to Pic(V') \to Pic(V)$ are surjective [5, 21.6.11]. Since A' is finite over the local ring A, it is semilocal so that Pic(A') = Pic(X') = 0. Thus Pic(V) = 0 as desired. From now on we assume that A is henselian. According to [5, 18.5.10], the finite A-ring A' is a finite product of henselian local rings. We observe that $A' \otimes_A k = k[T_1, \ldots, T_r]/(T_1^{n_1}, \ldots, T_r^{n_r})$ is a local Artinian algebra so that A' is connected. It follows that A' is a henselian local ring. Its maximal ideal is $\mathfrak{m}' = \mathfrak{m} \otimes_A A' + \langle T_1, \ldots, T_r \rangle$ so that $A'/\mathfrak{m}' = k$. Since there is an equivalence of categories between finite étale covers of A (resp. A') and étale k-algebras [5, 18.5.15], the base change from A to A' provides an equivalence of categories between the category of finite étale covers of A and that of A'. It follows that $Y' \to X'$ descends uniquely to a finite étale cover $\widetilde{f}: \widetilde{Y} \to X$. From now on, we assume that V is furthermore connected, it implies that $$H^0(V, \mathcal{O}_V) = B[T_1, \dots, T_r]/(T_1^n - f_1, \dots, T_r^n - f_r)$$ where B is finite connected étale cover of A. If follows that $V \to U$ is a quotient of a Galois cover of the shape $$B_n = B[T_1^{\pm 1}, \dots, T_r^{\pm 1}]/(T_1^n - f_1, \dots, T_r^n - f_r)$$ where B is Galois cover of A containing a primitive n-root of unity. We record that B_n is the localization at $T_1 cdots T_r$ of $B'_n = B[T_1, cdots, T_r]/(T_1^n - f_1, cdots, T_r^n - f_r)$. We have $$\operatorname{Gal}(B_n/A_D) = \left(\prod_{i=1}^r \mu_n(B)\right) \times \operatorname{Gal}(B/A).$$ Passing to the limit we obtain an isomorphism $$\pi_1^t(U,\xi) \cong \left(\prod_{i=1}^r \widehat{\mathbb{Z}}'(1)\right) \rtimes \pi_1(X,\xi).$$ We denote by $f: U^{sc,t} \to U$ the profinite étale cover associated to the quotient $\pi_1^t(U,\xi)$ of $\pi_1(U,\xi)$. According to [8, thm. 2.4.2], it is the universal tamely ramified cover of U. It is a localization of the inductive limit \widetilde{B}' of the B'_n . On the other hand we consider the inductive limit \widetilde{B} of the B's and se that \widetilde{B}' is a \widetilde{B} -ring. 2.2. **Blow-up.** We follow a blowing-up construction arising from [5, lemma 15.1.1.6]. We denote by X the blow-up of $\operatorname{Spec}(A)$ at his closed point, this is a regular scheme [9, §8.1, th. 1.19] and the exceptional divisor $E \subset X$ is a Cartier divisor isomomorphic to \mathbb{P}_k^{r-1} . We denote by $R = \mathcal{O}_{X,\eta}$ the local ring at the generic point η of E. The ring R is a DVR of fraction field K and of residue field $F = k(E) = k(t_1, \ldots, t_{r-1})$ where t_i is the image of $\frac{f_i}{f_r} \in R$ by the specialization map. We denote by $v: K^{\times} \to \mathbb{Z}$ the discrete valuation associated to R. We deal now with a Galois extension B_n of A_D as above. Since B is a connected finite étale cover of A, B is regular and local; it is furthermore henselian [5, 18.5.10]. We denote by L the field of fraction of B and by L_n that of B_n . We have $[L_n:L]=n^r$. We want to extend the valuation v to L and to L_n . We denote by $l = B/\mathfrak{m}_B$ the residue field of B, this is a finite Galois field extension of k. Also (t_1, \ldots, t_r) is a system of parameters for B. We denote by $w : L^{\times} \to \mathbb{Z}$ the discrete valuation associated to the exceptional divisor of the blow-up of $\operatorname{Spec}(B)$ at its closed point. Then w extends v and L_w/K_v is an unramified extension of degree [L:K] and of residual extension $F_l = l(t_1, \ldots, t_{r-1})/k(t_1, \ldots, t_{r-1})$. On the other hand we denote by $w_n: L_n^{\times} \to \mathbb{Z}$ the discrete valuation associated to the exceptional divisor of the blow-up of $\operatorname{Spec}(B_n)$ at its closed point. We put $l_n = B_n/\mathfrak{m}_{B_n}$, we have $l = l_n$. The valuation $\frac{w_n}{n}$ on L_n extends w and its residual extension is $F_{l,n} = l\left(t_1^{1/n}, \ldots, t_{r-1}^{1/n}\right)/k\left(t_1, \ldots, t_{r-1}\right)$ so that $[F_{l,n}:F_l] = n^{r-1}$. Furthermore the ramification index e_n of L_n/L is $\geq n$. Since $n^r \leq e_n [F_{l,n}:F_l] \leq [L_n:K] = n^r$ (where the last inequality is $[2, \S{VI}.3, \text{ prop. 2}]$) it follows that $e_n = n$. The same statement shows that the map $L_w \otimes_L L_n \to L_{w_n}$ is an isomorphism. To summarize L_{w_n}/L_w is tamely ramified of ramification index n and of degree n^r . All together we have $L_{w_n} = L_w \otimes_K L_n$ so that L_{w_n} is Galois over K_v of group $\prod_i \mu_n(B) \rtimes \operatorname{Gal}(B/A) = \prod_i \mu_n(l) \rtimes \operatorname{Gal}(l/k)$. We denote by $\Delta: \mu_n(l) \subset \prod_i \mu_n(l)$ the diagonal subgroup. We put $L_{w_n}^{\Delta} = L_n^{\Delta(\mu_n(B))}$. Since t_r is an uniformizing parameter of K_v and since $\Delta(\zeta) \cdot t_r = \zeta \cdot t_r$ for each $\zeta \in \mu_n(B)$, it follows that $(L_{w_n})^{\Delta}$ is the maximal unramified extension of L_{w_n}/K_v . 2.3. Loop cocycles and loop torsors. Let G be an affine X-group scheme locally of finite presentation. A loop cocycle is an element of $Z^1(\pi_1^t(U), G(\widetilde{B}))$ and it defines a Galois cocycle in $Z^1(\pi_1^t(U), G(U^{sc,t}))$. We denote by $Z^1_{loop}(\pi_1^t(U), G(U^{sc,t}))$ the image of the map $Z^1(\pi_1^t(U), G(\widetilde{B})) \to Z^1(\pi_1^t(U), G(U^{sc,t}))$ and by $H^1_{loop}(U, G)$ the image of the map $$Z^{1}(\pi_{1}^{t}(U), G(\widetilde{B})) \to H^{1}(\pi_{1}^{t}(U), G(U^{sc,t})) \to H^{1}(U, G).$$ We say that a G-torsor E over U (resp. a fppf sheaf G-torsor) is a loop torsor if its class belongs to $H^1_{loop}(U,G) \subset H^1(U,G)$. A given class $\gamma \in H^1_{loop}(U,G)$ is represented by a 1-cocycle ϕ : $Gal(B_n/A_D) \to G(B)$ for some cover B_n/A as above. Its restriction ϕ^{ar} : $Gal(B/A) \to G(B)$ to the subgroup Gal(B/A) of $Gal(B_n/A)$ is called the "arithmetic part" and the other restriction ϕ^{geo} : $\prod_i \mu_n(B) \to \mathfrak{G}(B)$ is called the geometric part. We observe that ϕ^{geo} is a B-group homomorphism. Furthermore for $\sigma \in \operatorname{Gal}(B/A)$ and $\tau \in \prod_i \mu_n(B)$ the computation of [7, page 16] shows that $\phi^{geo}(\sigma \tau \sigma^{-1}) = \phi^{ar}(\sigma) {}^{\sigma}\phi(\tau) \phi^{ar}(\sigma)^{-1}$ so that ϕ^{geo} descends to a homomorphism of A-group schemes $\phi^{geo}: \mu_n^r \to {}_{\phi^{ar}}G$. This provides a parameterization of loop cocycles. - **Lemma 2.2.** (1) For B_n/A as above, the map $\phi \mapsto (\phi^{ar}, \phi^{geo})$ provides a bijection between $Z^1_{loop}(\operatorname{Gal}(B_n/A_D), G(B))$ and the couples (z, η) where $z \in Z^1(\operatorname{Gal}(B/A), G(B))$ and $\eta : \prod_i \mu_n \to {}_z G$ is an A-group homomorphism. - (2) The map $\phi \mapsto (\phi^{ar}, \phi^{geo})$ provides a bijection between $Z^1_{loop}(\pi^1(U, \xi)^t, G(\widetilde{B}))$ and the couples (z, η) where $z \in Z^1(\pi^1(X, \xi), G(\widetilde{B}))$ and $\eta : \prod_{i=1}^r \widehat{\mathbb{Z}}' \to {}_zG$ is an A-group homomorphism. *Proof.* This is similar with [7, lemma 3.7]. We examine more closely the case of a finite étale X-group scheme $\mathfrak F$ of constant degree d. Lemma 2.3. (1) $\mathfrak{F}(\widetilde{B}) = \mathfrak{F}(X^{sc}) = \mathfrak{F}(U^{sc,t}).$ - (2) We assume that d is prime to p. We have $H^1_{loop}(U,\mathfrak{F})=H^1(U,\mathfrak{F})$. - (3) We assume that d is prime to p. Let $f: \mathfrak{F} \to \mathfrak{H}$ be a homomorphism of A-group schemes (locally of finite type). Then $f_*(H^1(U,\mathfrak{F})) \subset H^1_{loop}(U,\mathfrak{H})$. - *Proof.* (1) We are given a cover B_n/A as above such that $\mathfrak{F}_{B_n} \cong \Gamma_{B_n}$ is finite constant. as above. Since B and B_n are connected, the map $\mathfrak{F}(B) \to \mathfrak{F}(B_n)$ reads as the identity $\Gamma \cong \mathfrak{F}(B) \to \mathfrak{F}(B_n) \cong \Gamma$ so is bijective. By passing to the limit we get $\mathfrak{F}(\tilde{B}) = \mathfrak{F}(U^{sc,t}).$ (2) Let \mathfrak{E} be a \mathfrak{F} -torsor over U. This is a finite étale U-scheme. Since U is noetherian and connected, we have a decomposition $\mathfrak{E} = V_1 \times_U \cdots \times_U V_l$ where each V_i is a connected finite étale U-scheme of constant degree d_i . We have $d_1 + \cdots + d_l = d$ so that we can assume that d_1 is prime to p. We have then $\mathfrak{E}(V_1) \neq \emptyset$. It follows that $f_1: V_1 \to U$ is a finite étale cover so that there exists a factorization $U^{sc,t} \to V_1 \xrightarrow{h} U$ of f so that $\mathfrak{E}(U^{sc,t}) \neq \emptyset$. Therefore $[\mathfrak{E}]$ arises from $H^1(\pi_1^t(U,\xi),\mathfrak{F}(U^{sc,t}))\subset H^1(U,\mathfrak{F}).$ It follows that $H^1(\pi_1^t(U,\xi),\mathfrak{F}(U^{sc,t}))\stackrel{\sim}{\longrightarrow} H^1(U,\mathfrak{F}).$ We use now (1) and obtain the desired bijection $H^1(\pi_1^t(U,\xi),\mathfrak{F}(B)) \xrightarrow{\sim} H^1(U,\mathfrak{F}).$ (3) This follows readily from (2). 2.4. Twisting by loop torsors. We assume that the A-group scheme G acts on an A-scheme Z. Let $\phi: (\prod_i^r \mu_n)(B) \rtimes \operatorname{Gal}(B/A) \to G(B)$ be a loop cocycle. It gives rise to an A-action of μ_n^r on $\phi^{ar}Z$. We denote by $(\phi^{ar}Z)^{\phi^{geo}}$ the fixed point locus for this action, it is representable by a closed A-subscheme of $_{\phi^{ar}}Z$ [4, A.8.10.(1)]. We have a closed embedding $(_{\phi^{ar}}Z)^{\phi^{geo}} \times_X U \subset _{\phi}Z$ of U-schemes. ### 3. Fixed points method **Theorem 3.1.** Let $X = \operatorname{Spec}(A)$ be a henselian regular local scheme and $U = X \setminus D$ as above. We denote by $v: K^{\times} \to \mathbb{Z}$ the discrete valuation associated to the exceptional divisor E of the blow-up of X at its closed point. Let G be an affine A-group scheme of finite presentation acting on a proper smooth A-scheme Z. Let ϕ be a loop cocycle for G. Then $Y = \binom{\sigma}{\phi^{ar}} Z^{\phi^{geo}}$ is a smooth proper A-scheme and the following are equivalent: - (i) $({}_{\sigma}Z)(K_v) \neq \emptyset$; - (ii) $Y(k) \neq \emptyset$; - (iii) $Y(U) \neq \emptyset$; - (iv) $({}_{\sigma}Z)(U) \neq \emptyset$. This is quite similar with the fixed point theorem [7, §, thm. 7.1]. The following example makes the connection. **Example 3.2.** We assume that $A = k[[t_1, \ldots, t_r]]$ for a field k and $k[U] = k[[t_1, \ldots, t_n]] \left[\frac{1}{t_1}, \ldots, \frac{1}{t_r}\right]$. We are given an affine algebraic k-group G acting on a smooth proper k-scheme Z. In this case $K = k((t_1, \ldots, t_r))$ and A embeds in $k(\frac{t_1}{t_r}, \ldots, \frac{t_{r-1}}{t_r})[[t_r]]$ so that K embeds in $k(\frac{t_1}{t_n}, \ldots, \frac{t_{r-1}}{t_r})((t_r))$ which is nothing but the complete field K_v . If Q is a loop G-torsor over U, the statement is then that ${}^{Q}Z(U) \neq \emptyset$ if and only if ${}^{Q}Z(K_{v}) \neq \emptyset$. Taking a cocycle $\phi \in Z^{1}(\pi_{1}(U)^{t}, G(k_{s}))$ for E, this rephrases by the equivalence between $({}_{\phi}Z)(U) \neq \emptyset$ and $({}_{\phi}Z)(K_v) \neq \emptyset$. What we have from [7, thm. 7.1] (in characteristic zero but this extends to this tame setting) is the equivalence between $({}_{\phi}Z)(k[t_1^{\pm 1},\ldots,t_r^{\pm 1}]) \neq \emptyset$ and $({}_{\phi}Z)(k((t_1))\ldots((t_r))) \neq \emptyset$. Since $({}_{\phi}Z)(k[t_1^{\pm 1},\ldots,t_r^{\pm 1}]) \subset ({}_{\phi}Z)(U)$ and $({}_{\phi}Z)(K_v) \subset ({}_{\phi}Z)(k((t_1))\ldots((t_r)))$, it follows that this special case of Theorem 3.1 is a consequence of the fixed point result of [7]. We proceed to the proof of Theorem 3.1. *Proof.* According to [4, A.8.10.(1)], $Y = \binom{1}{\phi^{ar}} (Z^{\phi^{geo}})$ is a closed A-scheme of $\phi^{ar}Z$ so is proper. It is smooth over X according to point (2) of the same reference. Let $\phi : \operatorname{Gal}(B_n/A_D) \to G(B)$ be the loop 1-cocycle for some Galois cover B_n/A_D as above for some n prime to p. Up to replace G by $_{\phi^{ar}G}$ and G by $_{\phi^{ar}Z}$, we can assume that $\phi^{ar} = 1$ without lost of generality. - $(ii) \Longrightarrow (iii)$. Since Y_k is the special fiber of the smooth X-scheme Y, Hensel's lemma shows that $Y(A) \to Y(k)$ is onto. Since Y(k) is not empty, it follows that Y(A) is not empty and so is Y(U). - $(iii) \Longrightarrow (iv)$. Since $Y(U) \subset {}_{\phi}Z(U), Y(U) \neq \emptyset$ implies that ${}_{\phi}Z(U) \neq \emptyset$. - $(iv) \Longrightarrow (i)$. This is obvious. - $(i) \Longrightarrow (ii)$. We assume that $({}_{\phi}Z)(K_v) \neq \emptyset$. By definition we have $$(_{\phi}Z)(K_v) = \{z \in Z(L_{w_n}) \mid \phi(\sigma).\sigma(z) = z \ \forall \sigma \in \operatorname{Gal}(L_n/K)\}$$ and our assumption is that this set is non-empty. Let O_{w_n} be the valuation ring of $Z(L_{w_n})$. Since Z is proper over X, we have a specialization map $Z(L_{w_n}) = Z(\mathcal{O}_{w_n}) \to Z_k(F_{l,n})$. We get that the set $$\{z \in Z_k(F_{l,n}), | \phi(\sigma).\sigma(z) = z \ \forall \sigma \in \operatorname{Gal}(L_{w_n}/K_v)\}$$ is not empty. Since we have an embedding $$F_{l,n} = l(t_1^{1/n}, \dots, t_{r-1}) \hookrightarrow l((t_1^{1/n})) \dots ((t_{r-1}^{1/n}))$$ in a higher field of Laurent series successive specializations, along the coordinates $t_1^{1/n}, ..., t_{r-1}^{1/n}$ show similarly that the set (3.1) $$\left\{ z \in (Z_k)(l) \mid \phi(\sigma).\sigma(z) = z \ \forall \sigma \in \operatorname{Gal}(L_{w_n}/K_v) \right\}$$ is not empty. Since $\eta^{ar}=1$, this set is $(Z_k)^{\eta^{geo}}(k)$. Thus $Y(k)=(Z_k)^{\eta^{geo}}(k)$ is non empty. ## 4. Parabolic subgroups of loop reductive group schemes 4.1. Chevalley groups. Let G_0 be Chevalley group defined over \mathbb{Z} . Let T_0 be a maximal split \mathbb{Z} -subtorus of G_0 together with a Borel subgroup B_0 containing it. We denote by Δ_0 the Dynkin diagram of (G_0, B_0, T_0) . We denote by $G_{0,ad}$ the adjoint quotient of G_0 and by G_0^{sc} the simply connected covering of DG_0 . We have a map $\operatorname{Aut}(G_0) \to \operatorname{Aut}(G_0^{sc}) \xrightarrow{\sim} \operatorname{Aut}(G_{0,ad})$ and a fundamental exact sequence $$1 \to G_{0,ad} \to \operatorname{Aut}(G_{0,ad}) \to \operatorname{Out}(G_{0,ad}) \to 1$$ where $\operatorname{Out}(G_{0,ad}) \xrightarrow{\sim} \operatorname{Aut}(\Delta_0)$ We recall that there is a bijection $I \to P_{0,I}$ between the finite subsets of Δ_0 and the parabolic subgroups of G_0 containing B_0 [11, XXVI.3.8]; it is increasing for the inclusion order, in particular $B_0 = P_{0,\emptyset}$ and $G_0 = P_{0,\Delta_0}$. We consider the total scheme Par_{G_0} of parabolic subgroups of G_0 , it is a projective smooth \mathbb{Z} -scheme equipped with a type map $\mathbf{t} : \operatorname{Par}_{G_0} \to \operatorname{Of}(\Delta_0)$ where $\operatorname{Of}(\Delta_0)$ stands for the finite constant scheme attached to the set of subsets of Δ_0 [11, XXVI.3]. The fiber at I is denoted by $\operatorname{Par}_{G_0,I}$, it has connected fibers and is the scheme of parabolic subgroups of G_0 of type I. We have a natural action of $\operatorname{Aut}(G_0)$ on Par_{G_0} . As in [6, §5.1], we denote by $\operatorname{Aut}_I(G_0)$ the stabilizer of I for this action. By construction $\operatorname{Aut}_I(G_0)$ acts on $\operatorname{Par}_{G_0,I}$. 4.2. **Definition.** Let G be a reductive U-group scheme in the sense of Demazure-Grothendieck [11, XIX]. Since U is connected and G is locally splittable [11, XXII.2.2] for the étale topology, G is an étale form of a Chevalley group G_0 as above defined over \mathbb{Z} . We say that G is a loop group scheme if the $\operatorname{Aut}(G_0)$ -torsor $Q = \operatorname{Isom}(G_0, G)$ (defined in [11, XXIV.1.9]) is a loop $\operatorname{Aut}(G_0)$ -torsor. We denote by $G_{0,ad}$ the adjoint quotient of G_0 and ny G_0^{sc} the simply connected covering of DG_0 . We have a map $\operatorname{Aut}(G_0) \to \operatorname{Aut}(G_0^{sc}) \xrightarrow{\sim} \operatorname{Aut}(G_{0,ad})$ which permits to see G_{ad} (resp. G_0^{sc}) as twisted forms of $G_{0,ad}$ (resp. G_0^{sc}) so that G_{ad} and G_0^{sc} are also loop reductive group schemes. We consider the map $\operatorname{Aut}(G_0) \to \operatorname{Aut}(G_{0,ad}) \to \operatorname{Out}(G_{0,ad}) \xrightarrow{\sim} \operatorname{Aut}(\Delta_0)$. If $\phi : \operatorname{Gal}(B_n/A) \to \operatorname{Aut}(G_0)(B)$ is a loop cocycle, we get an action of $\operatorname{Gal}(B_n/A)$ on Δ_0 called the star action. If I is stable under the star action, we can twist $\operatorname{Par}_{G_0,I}$ by ϕ and deal with the scheme ${}_{\phi}\operatorname{Par}_{G_0,I}$ which is the scheme of parabolic subgroup schemes of G of type I. ### 4.3. Parabolics. **Theorem 4.1.** Assume that G is a loop U-group scheme and let $\phi : \operatorname{Gal}(B_n/A_D) \to \operatorname{Aut}(G_0)(B)$ be a loop cocycle such that $G \cong {}_{\phi}G_0$. Let $I \subset \Delta_0$ be a subset stable under the star action defined by ϕ . Then the following are equivalent: - (i) G admits a U-parabolic subgroup of type I; - (ii) the k-morphism $\eta_k^{geo}: \mu_n^r \to \operatorname{Aut}(\eta^{ar}G_0)_k = (\eta^{ar}\operatorname{Aut}(G_0))_k$ normalizes a parabolic k-subgroup of $\eta^{ar}G_{0,k}$ of type I; - (iii) G_{K_n} admits a parabolic subgroup of type I. *Proof.* Without loss of generality we can assume that G is adjoint. Our assumption on the star action rephrases by saying that ϕ takes values in $\operatorname{Aut}_I(G_0)$. We apply Theorem 3.1 to the action of $\operatorname{Aut}_I(G_0)$ on the proper A-scheme $\operatorname{Par}_{G_0,I}$. We consider the A-scheme $Y = (\phi^{ar} \operatorname{Par}_{G_0,I})^{\phi^{geo}}$. Theorem 3.1 shows that the following statements are equivalent. - (i') $({}_{\phi}\operatorname{Par}_{G_0,I})(U) \neq \emptyset;$ - (ii') $Y(k) \neq \emptyset$. - (iii') $({}_{\sigma}\operatorname{Par}_{G_0,I})(K_v) \neq \emptyset.$ Clearly (i') is equivalent to condition (i) of the Theorem and similarly we have $(iii') \iff (iii)$. It remains to establish the equivalence between (ii) and (ii'). Assume that $(\phi^{ar}\operatorname{Par}_{G_0,I})^{\phi^{geo}}(k)$ is not empty and pick a k-point z. Then the stabilizer $(\phi^{ar}G_0)_z$ is a k-parabolic subgroup of $\phi^{ar}G_0$ of type I which is stabilized by the action ϕ_k^{geo} . In other words, ϕ_k^{geo} normalizes $(\phi^{ar}G)_z$. Conversely we assume that $\phi^{ar}G$ admits a k-parabolic subgroup of type I normalized by ϕ^{geo} . Conversely assume that $_{\phi^{ar}}G$ admits a k-parabolic parabolic k-subgroup of type I normalized by ϕ^{geo} . It defines then a point $z \in (_{\phi^{ar}}\operatorname{Par}_{G_0,I})(k)$ which is fixed by ϕ^{geo} . 4.4. **An example.** Assume that the residue field k is not of characteristic two and consider the diagonal quadratic form of dimension 2^r $$q = \sum_{I \subset \{1, ..., r\}} u_I t^I (x_I)^2$$ where $t_I = \prod_{i \in I} t_i$ and $u_I \in A^{\times}$. Then SO(q) is a loop reductive group scheme over U. Since the projective quadric $\{q = 0\}$ is a scheme of parabolic subgroups of SO(q), Theorem 4.1 shows that q is isotropic over A_D if and only if q is isotropic over K_v . The two dimensional case is related with [3, proof of Theorem 3.1]. #### References - [1] A. Borel, *Linear algebraic groups*, 2nd edn, Graduate Texts in Mathematics **126** (Springer, New York, 1991). - [2] N. Bourbaki, Algèbre commutative, Ch. 1 à 10, Springer. - [3] J.-L. Colliot-Thélène, R. Parimala, V. Suresh, Patching and local-global principles for homogeneous spaces over function fields of p-adic curves, Comment. Math. Helv. 87 (2012), 1011-1033. - [4] B. Conrad, O. Gabber, G. Prasad, *Pseudo-reductive groups*, Cambridge University Press, second edition (2016). - [5] A. Grothendieck (avec la collaboration de J. Dieudonné), Eléments de Géométrie Algébrique IV, Publications mathématiques de l'I.H.É.S. no 20, 24, 28 and 32 (1964 1967). - [6] P. Gille, Sur la classification des schémas en groupes semi-simples, "Autour des schémas en groupes, III", Panoramas et Synthèses 47 (2015), 39-110. - [7] P. Gille and A. Pianzola, Torsors, reductive group schemes and extended affine Lie algebras, Memoirs of AMS 1063 (2013). - [8] A. Grothendieck, J. P. Murre, The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme, Lecture Notes in Mathematics 208 (1971), Springer-Verlag, Berlin-New York. - [9] Q. Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics 6 (2002), Oxford University Press, Oxford. - [10] Séminaire de Géométrie algébrique de l'I.H.E.S., Revêtements étales et groupe fondamental, dirigé par A. Grothendieck, Documents mathématiques vol. 3 (2003), Société mathématique de France. - [11] Séminaire de Géométrie algébrique de l'I. H. E. S., 1963-1964, schémas en groupes, dirigé par M. Demazure et A. Grothendieck, Lecture Notes in Math. 151-153. Springer (1970). UMR 5208 Institut Camille Jordan - Université Claude Bernard Lyon 1 43 boulevard du 11 novembre 1918 69622 Villeurbanne cedex - France $Email\ address: {\tt gille@math.univ-lyon1.fr}$