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LOOP GROUP SCHEMES AND ABHYANKAR’S LEMMA
P. GILLE

ABSTRACT. We define the notion of reductive group schemes defined over the lo-
calization of a regular henselian ring A at a strict normal crossing divisor D. We
provide a criterion for the existence for parabolic subgroups of a given type.

Keywords: Reductive group schemes, normal crossing divisor, parabolic subgroups.

MSC 2000: 14L15, 20G15, 20G35.

1. INTRODUCTION

In the reference [7], we investigated a theory of loop reductive group schemes over
the ring of Laurent polynomials k[t{", ... t:!]. Using Bruhat-Tits’ theory, this per-
mitted to relate the study of those group schemes to that of reductive algebraic groups
over the field of iterated Laurent series k((t1)) ... ((¢,)). The main issue of this note is
to start a similar approach for reductive group schemes defined over the localization
Ap of a regular henselian ring A at a strict normal crossing divisor D and to relate
with algebraic groups defined over a natural field associated to A and D, namely
the completion K, of the fraction field K with respect to the valuation arising from
the blow-up of Spec(A) at its maximal ideal. The example which connects the two
viewpoints is k[[ti, . .. ,tn]][%, . %] where K, = k(f—i, ce trfil )((tn))

After defining the notion of loop reductive group schemes in this setting, we show
that for this class of group schemes, the existence of parabolic subgroups over the
localization Ap is controlled by the parabolic subgroups over K, (Theorem [T]).

Acknowledgements. We thank R. Parimala for her insight about the presented
results.

2. TAME FUNDAMENTAL GROUP

2.1. Abhyankar’s lemma. Let X = Spec(A) be a regular local scheme. Let k be

the residue field of A and p > 0 be its characteristic. We put 7 = Hl# Z;. Let K
be the fraction field of A, and let K, be a separable closure of K. It determines a
base point & : Spec(K) — X so that we can deal with the Grothendieck fundamental
group I1; (X, ) [10].
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Let (fi,..., fr) be a regular sequence of A and consider the divisor D = > D; =
> div(f;), it has strict normal crossing. We put U = X \ D = Spec(Ap).

We recall that a finite étale cover V' — U is tamely ramified with respect to D if the
associated étale K—algebra L = Ly X --- X L, is tamely ramified at the D!s, that is,
for each i, there exists j; such that for the Galois closure Z] /K of L; /K, the inertia
group associated to vp, has order prime to p [10, XIII.2.0].

Grothendieck and Murre defined the tame (modéré in French) fundamental group
[P (U, £) with respect to U C X as defined in [10, XII1.2.1.3] and [8, §2|. This is
a profinite quotient of II;(U, &) whose quotients by open subgroups provides finite
Galois tame cover of U.

We are given a finite étale tame cover V' — U. In this case Abhyankar’s lemma
states that there exists a flat Kummer cover X’ = Spec(A’) — X where

A/:A[Tl,...,TT]/(Tlnl—fl,...,T:LT—fr)

and the n;’s are coprime to p such that V' =V xx X’ — X’ extends uniquely to a
finite étale cover Y’ — X' [10, XIII.5.2].

Lemma 2.1. Let V — U be a finite étale cover which is tame. Then Pic(V') = 0.

Proof. We use the some notation as above. We know that X’ is regular [10, XIII.5.1] so
a fortiori locally factorial. It follows that the restriction maps Pic(X’) — Pic(V’') —

Pic(V') are surjective [5, 21.6.11]. Since A’ is finite over the local ring A, it is semilocal
so that Pic(A’) = Pic(X’) = 0. Thus Pic(V') = 0 as desired. O

From now on we assume that A is henselian. According to [5], 18.5.10], the finite
A-ring A’ is a finite product of henselian local rings. We observe that A’ ®4 k =
k(Ty,...,T.]/(T", ..., 1) is a local Artinian algebra so that A’ is connected. It
follows that A’ is a henselian local ring. Its maximal ideal ism’ = m@q A'+(T3,...,T},)
so that A’/m’ = k. Since there is an equivalence of categories between finite étale
covers of A (resp. A’) and étale k—algebras [5, 18.5.15], the base change from A to
A’ provides an equivalence of categories between the category of finite étale covers of
A and that of A’. L

It follows that Y’ — X’ descends uniquely to a finite étale cover f : Y — X. From
now on, we assume that V' is furthermore connected, it implies that

HY(V,0v) = B[T\,....,T,])(T" — fi,....,T" — f,)

where B is finite connected étale cover of A. If follows that V' — U is a quotient of
a Galois cover of the shape

Bn:B[Tl:tla"'aTr:tl]/(Tln_fl""’TTn_fr)

where B is Galois cover of A containing a primitive n—root of unity. We record that
B, is the localization at Ty ...T, of B), = B[T\,...,T.]/(1T7" — fi,...,T" — f.). We
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have
Gal(B,/Ap) = Hﬂn ) x Gal(B/A).

Passing to the limit we obtain an isomorphism
(U, &) = HZ’ ) % m(X,€).

We denote by f : U*' — U the profinite étale cover associated to the quotient
(U, &) of m(U,§). According to [8, thm. 2.4.2|, it is the universal tamely ramified

cover of U. Tt is a localization of the inductive limit B’ of the B/,. On the other hand
we consider the inductive limit B of the B’s and se that B’ is a B-ring.

2.2. Blow-up. We follow a blowing-up construction arising from [5, lemma 15.1.1.6].
We denote by X the blow-up of Spec(A) at his closed point, this is a regular scheme
[9 §8.1, th. 1.19] and the exceptional divisor £ C X is a Cartier divisor isomomorphic
to P;~'. We denote by R = Oy, the local ring at the generic point 7 of E. The ring
R is a DVR of fraction field K and of residue field F' = k(E) = k(ty,...,t,—1) where
t; is the image of % € R by the specialization map. We denote by v : K* — Z the
discrete valuation associated to R.

We deal now with a Galois extension B,, of Ap as above. Since B is a connected
finite étale cover of A, B is regular and local; it is furthermore henselian [5], 18.5.10].
We denote by L the field of fraction of B and by L,, that of B,,. We have [L,, : L] =n".
We want to extend the valuation v to L and to L,,.

We denote by | = B/mpg the residue field of B, this is a finite Galois field extension
of k. Also (ti,...,t,) is a system of parameters for B. We denote by w : L™ — Z the
discrete valuation associated to the exceptional divisor of the blow-up of Spec(B) at
its closed point. Then w extends v and L, /K, is an unramified extension of degree
[L : K] and of residual extension F; = l(t1,...,t,—1)/k(t1,. .., t,—1).

On the other hand we denote by w, : L)X — Z the discrete valuation associated to
the exceptional divisor of the blow-up of Spec(B,) at its closed point. We put [, =
B, /mp,, we have [ = [,,. The valuation “n on L, extends w and its residual extension

is Fy,, = l(tl/n, o 71,/"1>/k:(t1, ... t,—1) so that [F},, : Fj] = n"~'. Furthermore the
ramification index e, of L, /L is > n. Since n" < e, [F}, : Fi] < [L, : K] = n"(where
the last inequality is [2, §VI.3, prop. 2]) it follows that e,, = n. The same statement
shows that the map L, ® L, — L, is an isomorphism. To summarize L, /L,
is tamely ramified of ramification index n and of degree n". All together we have
L,, = L, ®k Ly, so that L,,, is Galois over K, of group [[, un(B) x Gal(B/A) =
[T, (1)  Gal(1/k).
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We denote by A : y,,(1) C [T, ptn (1) the diagonal subgroup. We put L4 = Lk B)),
Since ¢, is an uniformizing parameter of K, and since A(().t, = (.t, for each ( €
pin(B), it follows that (L, )* is the maximal unramified extension of L, /K.

2.3. Loop cocycles and loop torsors. Let G be an affine X—group scheme locally
of finite presentation. A loop cocycle is an element of Z' (7} (U), G(B)) and it defines a
Galois cocycle in Z' (7} (U), G(U*")). We denote by Z,, (7} (U), G(U**")) the image
of the map Z'(7}(U), G(B)) — Z'(=}(U), G(U**')) and by H},, (U, G) the image of
the map
Z(xt(U),G(B)) — H'(m}(U),G(U*")) — H'(U,G).

We say that a G-torsor E over U (resp. a fppf sheaf G-torsor) is a loop torsor if its
class belongs to H,,,,(U,G) C H'(U,G).

A given class v € H},, (U, G) is represented by a l-cocycle ¢ : Gal(B,/Ap) —
G(B) for some cover B, /A as above. Its restriction ¢* : Gal(B/A) — G(B) to
the subgroup Gal(B/A) of Gal(B,/A) is called the “arithmetic part” and the other
restriction ¢9°° : [[, pn(B) — &(B) is called the geometric part. We observe that
@9 is a B-group homomorphism.

Furthermore for o € Gal(B/A) and 7 € [[, un(B) the computation of |7, page 16]
shows that ¢9%°(oro™1) = ¢ (0) %¢(T) (o)~ so that ¢9%° descends to a homomor-
phism of A-group schemes ¢9°° : i — 4aG. This provides a parameterization of loop
cocycles.

Lemma 2.2. (1) For B, /A as above, the map ¢ — (¢, p9°) provides a bijection be-
tween 7}, (Gal(B,/Ap), G(B)) and the couples (z,n) where z € Z*(Gal(B/A),G(B))

loop
and n : [, pn — .G is an A-group homomorphism.

(2) The map ¢ — (¢, $9°°) provides a bijection between leoop(ﬂl(U, &)Y, G(E)) and
the couples (z,1) where z € Z*(r(X,€), G(B)) and 1 : []}, 7' — .G is an A—group
homomorphism.

Proof. This is similar with 7, lemma 3.7]. O

We examine more closely the case of a finite étale X—group scheme § of constant
degree d.
Lemma 2.3. (1) F(B) = §(X*) = F(U").
(2) We assume that d is prime to p. We have Hy,,,(U,§) = H' (U, ).
(8) We assume that d is prime to p. Let f : § — $ be a homomorphism of A—group
schemes (locally of finite type). Then f, <H1(U, 3)) C H,,,(U,9).

Proof. (1) We are given a cover B, /A as above such that Fp, = I'g, is finite constant.
as above. Since B and B, are connected, the map §(B) — §(B,) reads as the
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identity I' = $(B) — §(B,) = T so is bijective. By passing to the limit we get
3(B) = 3(U).

(2) Let & be a §—torsor over U. This is a finite étale U—scheme. Since U is noetherian
and connected, we have a decomposition € = V; Xy --- Xy V; where each V; is a
connected finite étale U—scheme of constant degree d;. We have dy +---+ d; = d so
that we can assume that d; is prime to p. We have then &(1]) # 0.

It follows that f; : V4, — U is a finite étale cover so that there exists a fac-
torization U — Vi & U of f so that &(Us!) % §. Therefore [¢] arises from
HY (#t(U,€),F(UY) € HY(U,§). Tt follows that H(7t(U, £), F(U*)) — HY(U,F).
We use now (1) and obtain the desired bijection H(7(U, ¢),J(B)) — H*(U,T).
(3) This follows readily from (2). O

2.4. Twisting by loop torsors. We assume that the A—group scheme G acts on an
A-scheme Z. Let ¢ : (I} pn)(B) x Gal(B/A) — G(B) be a loop cocycle. It gives
rise to an A-action of u!, on 4Z. We denote by (4rZ)?” the fixed point locus for
this action, it is representable by a closed A-subscheme of sZ [4, A.8.10.(1)]. We
have a closed embedding (4Z2)?” xx U C 4Z of U-schemes.

3. FIXED POINTS METHOD

Theorem 3.1. Let X = Spec(A) be a henselian regular local scheme and U = X\ D as
above. We denote by v : K* — Z the discrete valuation associated to the exceptional
divisor E of the blow-up of X at its closed point.

Let G be an affine A-group scheme of finite presentation acting on a proper smooth

A-scheme Z. Let ¢ be a loop cocycle for G. ThenY = ( Z) P s a smooth proper
A-scheme and the following are equivalent:

(1) (2)(Ky) # 0

(ii) Y (k) £ 0;

(iii) Y(U) # 0;

(w) (Z)(U) # 0.

This is quite similar with the fixed point theorem [7, §, thm. 7.1]. The following
example makes the connection.

¢ar'

Example 3.2. We assume that A = k[[t;,...,t]] for a field £ and
kU] = K[[t1, ... ,tn]][l 1}. We are given an affine algebraic k—group G act-

P ) E
ing on a smooth propei" k-scheme Z. In this case K = k((t1,...,t,)) and A embeds
in k:(i—i, . Z=2)[[t,]] so that K embeds in k(f—i, ...+ Z=1)((t,)) which is nothing but

t i
the complete field K,. If @) is a loop G-torsor over U, the statement is then that
QZ(U) # 0 if and only if ?Z(K,,) # (). Taking a cocycle ¢ € Z1(m,(U)!, G(ks)) for E,

this rephrases by the equivalence between (,2)(U) # 0 and (,2)(K,) # 0.
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What we have from [7, thm. 7.1| (in characteristic zero but this extends to this tame
setting) is the equivalence between (42)(k[ti, ..., t5]) # D and (,2) (k((t1)) ... ((t.))) #
0. Since (42)(k[ti",... . ;")) C (42)(U) and (42)(K.) C (62)(k((tr)) .. ((t,))), it
follows that this special case of Theorem B.1]is a consequence of the fixed point result
of [7].

We proceed to the proof of Theorem B.11

Proof. According to [4, A.8.10.(1)], Y = (MT.(Z‘z’geo)) is a closed A-scheme of 4erZ so

is proper. It is smooth over X according to point (2) of the same reference.

Let ¢ : Gal(B,,/Ap) — G(B) be the loop 1-cocycle for some Galois cover B,,/Ap as
above for some n prime to p. Up to replace G by 4 and G by garz, we can assume
that ¢ = 1 without lost of generality.

(i1) = (uii). Since Y} is the special fiber of the smooth X-scheme Y, Hensel’s lemma
shows that Y(A) — Y(k) is onto. Since Y (k) is not empty, it follows that Y'(A) is
not empty and so is Y (U).

(1) = (iv). Since Y(U) C Z(U), Y (U) # 0 implies that ,Z(U) # 0.

(1v) == (i). This is obvious.

(i) = (1i). We assume that (,2)(K,) # 0. By definition we have
(s2)(Ky) ={z € Z(Ly,) | ¢#(0).0(z) =z VYo € Gal(L,/K)}

and our assumption is that this set is non-empty. Let O, be the valuation ring of
Z(Ly, ). Since Z is proper over X, we have a specialization map Z(L,,,) = Z(O,, ) —
Zk(F1,). We get that the set

{z € Zy(Fi),| ¢(0).0(2) =2z Yo € Gal(Ly,,/K,)}
is not empty. Since we have an embedding
Fo=1(", . tea) = (™). ()

in a higher field of Laurent series successive specializations, along the coordinates

/™ 2" show similarly that the set

(3.1) {z € (Z)(1) | 6(0).0(z) = 2 Yo € Gal(L, /KU)}
is not empty. Since " = 1, this set is (Z;,)"" (k). Thus Y (k) = (Z,)"" (k) is non
empty. 0

4. PARABOLIC SUBGROUPS OF LOOP REDUCTIVE GROUP SCHEMES

4.1. Chevalley groups. Let Gy be Chevalley group defined over Z. Let Ty be a
maximal split Z-subtorus of Gy together with a Borel subgroup By containing it. We
denote by Ay the Dynkin diagram of (Go, By, Tp). We denote by Gy .4 the adjoint
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quotient of Gy and by G§¢ the simply connected covering of DGy. We have a map
Aut(Go) — Aut(Gs¢) — Aut(Goaq) and a fundamental exact sequence

1 = Goaa = Aut(Goaa) = Out(Goua) — 1

where Out(Gpaqg) — Aut(Ag) We recall that there is a bijection I — Py be-
tween the finite subsets of Ay and the parabolic subgroups of Gy containing B,
[11, XXVI.3.8]; it is increasing for the inclusion order, in particular By = Fyy and
Go = Py .a,- We consider the total scheme Parg, of parabolic subgroups of Gy, it is
a projective smooth Z-scheme equipped with a type map t : Parg, — Of(Ag) where
Of(Ap) stands for the finite constant scheme attached to the set of subsets of A [11]
XXVL3|. The fiber at I is denoted by Parg, s, it has connected fibers and is the
scheme of parabolic subgroups of Gg of type I. We have a natural action of Aut(G)
on Parg,. As in [6, §5.1], we denote by Aut;(Gy) the stabilizer of I for this action.
By construction Aut;(Gy) acts on Parg, ;.

4.2. Definition. Let G be a reductive U-group scheme in the sense of Demazure-
Grothendieck [IT], XIX]. Since U is connected and G is locally splittable [11], XXII.2.2]
for the étale topology, G is an étale form of a Chevalley group G, as above defined
over Z.

We say that G is a loop group scheme if the Aut(Go)-torsor @ = Isom(Gy, G)
(defined in |11, XXIV.1.9]) is a loop Aut(Gy)-torsor. We denote by Gy .4 the adjoint
quotient of Gy and ny G§¢ the simply connected covering of DGy. We have a map
Aut(Go) = Aut(Gs¢) — Aut(Gy qq) which permits to see G,q (resp. G*°) as twisted
forms of G 4q (resp. G§°) so that G,q and G*¢ are also loop reductive group schemes.
We consider the map Aut(Gy) — Aut(Goaa) — Out(Goaa) — Aut(Ap).

If ¢ : Gal(B,/A) — Aut(Gy)(B) is a loop cocycle, we get an action of Gal(B,,/A)
on A called the star action. If I is stable under the star action, we can twist Parg,
by ¢ and deal with the scheme ,Parq,; which is the scheme of parabolic subgroup
schemes of G of type I.

4.3. Parabolics.

Theorem 4.1. Assume that G is a loop U-group scheme and let ¢ : Gal(B,/Ap) —

Aut(Go)(B) be a loop cocycle such that G = fGy. Let I C Ag be a subset stable under
the star action defined by ¢. Then the following are equivalent:

(i) G admits a U—parabolic subgroup of type I;

geo

(i) the k-morphism 1) : p, — Aut(uGo)p = (yerAut(Gy)), normalizes a para-
bolic k—subgroup of yerGo . of type I;

(iii) Gk, admits a parabolic subgroup of type I.

Proof. Without loss of generality we can assume that G is adjoint. Our assumption
on the star action rephrases by saying that ¢ takes values in Aut;(G).
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We apply Theorem [3.1] to the action of Aut;(Gy) on the proper A-scheme Parg, ;.
We consider the A-scheme Y = (goParg, 1)*". Theorem B.Ilshows that the following
statements are equivalent.

(") (Parg,,)(U) # 0;

(i) Y (k) # 0.

(i) (Pargy ) () £ 0.

Clearly (i’) is equivalent to condition (i) of the Theorem and similarly we have
(13i") <=> (7i7). It remains to establish the equivalence between (ii) and (ii’).

Assume that (goParg, 1)?"” (k) is not empty and pick a k-point 2. Then the sta-
bilizer (4:Gp), is a k—parabolic subgroup of 4Gy of type I which is stabilized by the
action ¢, In other words, ¢{°” normalizes (4G),. Conversely we assume that 4G
admits a k—parabolic subgroup of type I normalized by ¢9¢°.

Conversely assume that 4G admits a k-parabolic parabolic k—subgroup of type I
normalized by ¢9°°. It defines then a point z € (geParg, r)(k) which is fixed by ¢9°.

U

4.4. An example. Assume that the residue field k is not of characteristic two and
consider the diagonal quadratic form of dimension 2"

q= Z urt'(zr)®

IC{l,...,T’}

where t; = [],.;t; and u; € A*. Then SO(g) is a loop reductive group scheme over
U. Since the projective quadric {¢ = 0} is a scheme of parabolic subgroups of SO(q),
Theorem [£.1] shows that ¢ is isotropic over Ap if and only if ¢ is isotropic over K.
The two dimensional case is related with [3, proof of Theorem 3.1].
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