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In this paper, a coupling of the Finite Element Method (FEM) and the Boundary Element Method (BEM) is used to model the
behavior of magnetoelectric effects in composite structures. This coupling of numerical methods makes it possible not to have to
consider a free space domain, and thus to use a single mesh for the magnetic, mechanical and electrical problems. This results in a
consequent reduction of the number of unknowns which is accompanied by shorter computation times compared to a classical FEM
approach. A mixed magnetic vector potential, reduced magnetic scalar potential formulation is used for the magnetic problem, and
classical FEM formulations are used for electrical and mechanical problems. The resulting global algebraic system is solved by a
block Gauss-Seidel solver.

Index Terms—FEM-BEM coupling, magnetoelectric, piezoelectricity, piezomagnetism, multiphysics, Gauss-Seidel method

the electrical and mechanical quantities [4]. This is not
the case for magnetostrictive materials, which generally
exhibit non-linear behavior. However, it is possible to
induce a polarization state by applying a magnetic field
and/or a mechanical prestress and thus define a set of linear
relationships [5]. In this framework, the mechanical, electrical
and magnetic behavior relations are written:

T = cE,B : S − te ·E − th ·B, (1)
D = e : S + εS ·E, (2)
H = − h : S + νS ·B, (3)

where T , S, D, E, B and H are, respectively, the stress
tensor, the linear strain tensor, the electric flux density, the
electric field, the magnetic flux density and the magnetic
field. cE,B is the stiffness tensor at constant electric field
and magnetic flux density, εS is the electrical permittivity
tensor at constant strain, νS is the magnetic reluctivity tensor
at constant strain, e is the piezoelectric tensor and h the
piezomagnetic tensor. As we are describing heterogeneous
composite structures, the piezoelectric tensor e is taken null
in the piezomagnetic phase and, reciprocally, piezomagnetic
tensor h is taken equal to zero in the piezoelectric phase.

III. ELECTRO-MAGNETO-MECHANICAL MODELING

We consider an open boundary domain Ω = Ω0 ∪ Ωpe ∪
Ωpm where Ω0, Ωpe and Ωpm represent the free space, the
magnetostrictive and the piezoelectric domains, respectively,
as shown in Figure (1). We will also call Ωm = Ωpe ∪ Ωpm
the domain of active materials. The magnetoelectric problem
consists in solving Maxwell’s equations in the framework of
quasistatic regime [6]:

∇×E = 0, ∇·D = 0, ∇×H = Js, ∇·B = 0 in Ω,
(4)

as well as the balance of linear momentum for the mechanical
equilibrium without body force:

∇ · T = 0 in Ωm. (5)
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I. INTRODUCTION

Without relying on induction, electromagnetic coupling can
be obtained through the mechanical association of piezoelec-
tric and magnetostrictive materials. The resulting composite
structure displays an extrinsic magnetoelectric effect [1] and
can allow for magnetic to electric energy conversion or vice-
versa. For the modelling of magnetoelectric composites, the
FEM allows solving for the behavior of materials with non-
trivial structures [2]. Nevertheless, a classical FEM approach
has several disadvantages. A free space domain has to be
considered to properly model the decay of magnetic fields
at infinity, and the extent of this domain is dependent on the
distance between the field sources and the active materials.
A FEM-BEM coupling for the magnetic phenomena based
on a mixed formulation of the magnetic problem [3] can
be applied to the modelling of the multiphysics phenomena
arising in magnetoelectric composite structures, thus allowing
not to explicitly consider a free space region. The magneto-
electric problem is then decomposed into three sub-problems:
a magnetic problem solved using the FEM-BEM approach, and
an electrical and a mechanical problem solved using classical
FEM formulations. This coupling of numerical methods intro-
duces resolution difficulties that can be overcome by using a
block Gauss-Seidel type solving algorithm.

After introducing the used behavioral laws and the chosen
formulation for each single-physics problem, we will compare
our magneto-mechanical formulation to an analytical solution.
We will then introduce our multiphysics solver and study its
convergence for a simple test case.

II. BEHAVIORAL LAWS

Magnetoelectic composites involve piezoelectric
and magnetostrictive materials characterized by strong
electro(magneto)-mechanical coupling. Piezoelectric materials
can be described by a set of linear relationships between
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Fig. 1. Domains of the magnetic problem. With Js a prescribed solenoidal
current density and Ω0 an open boundary domain.

To derive a variational formulation inside the active material
domain Ωm in terms of the magnetic vector potential a (B =
∇ × a), considering the absence of electric current in Ωm,
we multiply (4), Maxwell-Ampere equation (4), by the test
function δa. After integration by parts, it follows:∫

Ωm

∇× δa ·H dΩ−
∫
∂Ωm

(δa×H) · n d∂Ω = 0∀ δa, (6)

where ∂Ωm is the exterior surface of Ωm and n the unit
outward normal vector to ∂Ωm. Given the magnetic behavior
law (3), we can rewrite the volume term in (6) as:∫

Ωm

∇× δa ·HdΩ =

∫
Ωm

∇×δa · νS ·∇×a dΩm

−
∫

Ωpm

∇×δa · h : S dΩm.
(7)

Furthermore, H = H0−∇φred, with H0 the field created
by external currents Js, calculated by the Biot-Savart law,
and φred the magnetic reduced scalar potential. After the
application of some vector identities applied to the surface
term of (6), similarly to [3], the weak form reads: find (a,
φred) such that:∫

Ωm

∇×δa · νS ·∇×a dΩm+

∫
∂Ωm

(∇× δa) · n φred d∂Ωm

−
∫

Ωpm

∇×δa · h : S dΩm =

∫
∂Ωm

(δa× n) ·H0 d∂Ωm ∀ δa.

(8)
The discretization of (8) is performed using edge elements

for the vector potential a and 0-order surface elements for the
reduced scalar potential φred. The previous discretization can
take account of a nonlinearity in νS .

The behavior of the magnetic field in the free space domain
is taken into account by adding an equation to the system. In
∂Ωm, the potential φred verifies the Laplace equation ∆φred =
0 [7]. Green’s third identity applied to φred in ∂Ωm leads to
the following equation [8]:

1

2
φred −

∫
∂Ωm

φred
∂G

∂n
d∂Ωm +

∫
∂Ωm

G
Bn
µ0
d∂Ωm =

∫
∂Ωm

G H0nd∂Ωm,

(9)
where G is the Green function of the 3D Laplacian operator.

Using a Galerkin approach. Equation (9) is discretized using
0-order surface elements. As

∫
Bn dS =

∮
asurf · dl, after

discretization of (9) the magnetic vector potential in edge
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Fig. 2. Mechanical and electrical domains. With fT the surface forces, us the
imposed displacement, ϕ0 the imposed electric potential and Qs the surface
charge density.

elements is introduced in the discretized equation from the
flux of the magnetic induction through each facet element.

B. Electric and mechanical problems

The electrical and mechanical problems are limited to the
active material’s domain Ωm (Fig. 2). Indeed, even if a
FEM-BEM coupling can also be formulated for the electrical
problem, we can neglect the leaks of the electric field for two
reasons: the high permittivity of the considered piezoelectric
materials channels the fields inside the active domain, and
the electrodes exciting the piezoelectric material are in direct
contact with the active domain. Thus treating the electric
problem with the FEM and only meshing the active region
is a reasonable approximation for the modeled phenomena.

From (1) and (5), together with the small strains assumption
and neglecting the magnetic forces, we obtain the mechanical
weak form [9]: find u such that:∫

Ω

δS : c : SdΩ−
∫

Ω

δS : et ·EdΩ−
∫

Ω

δS : ht ·BdΩ

= 0 ∀δS
(10)with u the displacement vector, ϕ the electric scalar potential

and S = sym(∇u), E = −∇ϕ, δS = sym(∇δu) together
with the Dirichlet boundary condition on ∂Ωum (Fig. 2a). We
do not impose charges on the electrodes, Qs = 0 on ∂Ωd,
but potentials ϕ = ϕ0 on ∂Ωϕm, one floating and the other in
reference. In these conditions, the electric weak form is: find
ϕ such that:∫

Ωm

∇δϕ·εS ·E dΩm+

∫
Ωpe

∇δϕ·e·S dΩm = 0∀ δϕ. (11)

IV. MATRIX SYSTEM AND RESOLUTION METHOD

The resulting global matrix system (12) is composed of
sparse FEM matrices (in light colors) and full BEM matrices
(in dark blue), and has a big scaling difference between
coefficients. Usually, a suitable solver is used for each single-
physics problem: a preconditioned GMRES iterative solver
is appropriate for problems involving full matrices (here the
magnetic problem) while the MUMPS direct solver is better
suited for problems with sparse matrices (here the electrical
and mechanical problems). With these considerations, the
system (12) can be solved iteratively using a block Gauss-
Seidel scheme (13). Contrary to a direct resolution, the block
Gauss-Seidel scheme thus allows using an optimized solver
for each sub-system.
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Fig. 3. Convergence of averaged H(z) (’.’), S11 (’×’), S22 (’o’) and S33

(’+’) on meshed spheres vs analytical solutions.
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[Kii]{xn+1
i } = {Shi}−

i−1∑
j=0

[Kij ]{xn+1
j }−

n∑
j=i+1

[Kij ]{xnj }.

(13)
The block Gauss-Seidel scheme also allows for solving well

conditioned sub-systems, as extra-diagonal sub-matrices are
scaled by the current solutions and introduced as second hand
terms (13). The stopping criteria for the multiphysics reso-
lution algorithm was the relative convergence of the single-
physics solution between each iteration n.

V. VALIDATION

The magneto-mechanical formulation is validated with re-
spect to an analytical formula for the field and strains, consid-
ering an unconstrained sphere under a uniform source field.
The magnetic field inside a sphere under a uniform source
field is given by:

H =
3

µr + 2
H0. (14)

To obtain a coupled analytical solution for an unconstrained
piezomagnetic sphere, we solve for T = 0 and (14) with
µr = B/(µ0H). We tested our magneto-mechanical formu-
lation with first-order finite elements, with coefficient similar
to [10] and increasingly finely meshed spheres imposing no
surface forces and a uniform source field. We obtained the
convergence curves presented in Figure 3. We observe the
convergence up to 10−4 of the FEM-BEM solution towards the
analytical solution. Having validated the magneto-mechanical
coupling, we will focus on solving the full problem.

Fig. 4. Three layers magnetoelectric heterostructure, the colored arrows
represent the poling direction of the materials.

Fig. 5. Amplified displacement field and nodal voltage (V ).

VI. RESULTS

The full proposed model was tested on a composite structure
with the geometry presented in Figure 4. It is composed
of a PZT piezoelectric layer in between two Terfenol-D
magnetostrictive layers and dimensions 3×6×14 mm. The
mesh has 5656 elements. The device functions as follows:
the source field drives the deformation of the magnetostrictive
layers. As both phases are mechanically bonded together, the
piezoelectric layer will deform and an electric voltage will
appear between the electrodes, as shown in Figure 5.

Fig. 6. Coil positioning.

We considered a coil crossed by 100A as a source for the
magnetic excitation and positioned as shown in Figure 6, also,
all linear coupling tensors with coefficients from [10]. We
obtained, as shown in Figure 5, a deformation of the global
structure along its length, and the presence of a static electric
potential difference between the electrodes.

VII. SOLVER BEHAVIOR

The resolution order of the global matrix at each block
Gauss-Seidel iteration remains an open question, and many
possibilities arise. In problems driven by a particular physics,
and in order to have non-null solutions for the first iterations,
a natural resolution order can sometimes be found. For the
device in question, the magnetic field drives the deformation
of the piezoelectric layer, cf Figure 4, so a natural order of



resolution would be to solve at each Gauss-Seidel iteration for
the magnetic problem followed by the mechanical and then
the electric problem. Figure 7 gives the convergence ratios, as
defined in Figure (7), of the different problems per resolution
number.
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Fig. 7. Convergence ratio of magnetic (o), mechanical (x) and electric (+)
solutions after given n° of resolutions for the block Gauss-Seidel algorithm
with a 1-2-3-1... resolution pattern for the given mesh. ‖xn‖ Relates the nth
solution of the given problem.
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Fig. 8. Convergence ratio of magnetic (o), mechanical (x) and electric (+)
solutions after given n° of resolutions with an adaptative resolution pattern
for the given mesh.

The resolution pattern of multiphysics problems is an active
research subject, for example for the study of fluid-solid
interactions, where multiple resolutions in subdomains are
performed in order to obtain a coupled solution. In [11],
multiple resolution patterns are proposed, and the different
physics solved in a previously defined and fixed order within
a black-box multiphysics solver.

Another approach to solving the multiphysics problem is to
have no imposed resolution order, but after each resolution, to
compare the convergence ratios of all single-physics problems
and solve for the one with the worst convergence ratio, that
has not immediately been solved before. For our particular
application, as the magnetic and electric problem are uncou-
pled, the mechanical problem must be solved at least every
two resolutions. This resolution algorithm was implemented,
and we obtained the convergence curves presented in Figure 8.
They can be compared to the classical Gauss-Seidel presented
in Figure 7. As shown in Table I, for this particular application,
the adaptative algorithm solves the multiphysics problem in

TABLE I
NUMBER OF RESOLUTIONS NEEDED FOR MULTIPHYSICS

CONVERGENCE PER SINGLE-PHYSICS PROBLEM

Problem regular G-S adaptative G-S
Magnetic 14 8
Electric 14 14

Mechanical 14 15

37 iterations vs 42 resolutions for the classic algorithm with
a tolerance of 10−7. But in our particular implementation,
it translated into a total resolution time of 133 s vs 188 s
(-29 %) on a personal computer (Intel© Core™ i7-10610U
CPU @ 1.80GHz 2.30 GHz), the magnetic problem is indeed
particularly difficult to solve as it contains both FEM and
BEM matrices. The relative difference between single-physics
solutions of the two tested resolution algorithm remained
inferior to the tolerance of the solver.

VIII. CONCLUSION

In this paper, we proposed a FEM-BEM formulation of the
magneto-electric effect in composite structures. A mixed for-
mulation of the magnetic phenomena allowed us to use vector
shape functions and not to explicitly consider and mesh an
air region. The magneto-mechanical model was successfully
validated against an analytical solution. We then solved the
full magneto-electric problem on an example of composite
structure and studied two variations of the block Gauss-Seidel
resolution algorithm, one with a fixed resolution pattern and
an adaptative one leading to a lesser number of resolutions
and a lower resolution time in the studied test case.
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