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Abstract—We consider the case of data processing for a sewer
infrastructure where water drains are equipped with waste-
level sensors, which frequently send the related data to a data
processing unit. In order to understand the dynamics of waste
accumulation within the whole drain network, the collected data
should first be pre-processed by removing the unreliable (or, in
other words, noisy) measurements. As we show, the evolution of
the waste inside a drain can be modeled by a non-stationary
discontinuous time series model. Due to the chaotic aspect of the
waste and the hostile conditions under which the sensor should
operate, the observed time series can include outliers in the form
of peaks, which should be removed from the raw data prior to any
data processing. This paper proposes an efficient data cleaning
algorithm that makes a good compromise between computational
complexity and performance. This latter is evaluated in terms of
the probabilities of peak detection (i.e., detecting actual outliers)
and false detection (i.e., incorrectly denoting measurements as
outliers). A trade-off between these two criteria should be made
by setting appropriately the detection threshold (which, in the
proposed method, does not depend on the mean or variance
of the data). For instance, for a threshold of 2.5, the algorithm
provides a correct outlier detection probability of 0.85 and a false
detection probability of 2.5×10−2. The efficiency of the proposed
algorithm is demonstrated by applying it to real measurement
data.

Index Terms—Sewer network monitoring; Smart city; Data
cleaning; Outlier detection; Internet-of-Things.

I. INTRODUCTION

In a more than ever connected world, the Internet-of-Things
(IoT) paradigm offers promising capabilities for efficient re-
source management and environment protection at large scale.
In the smart-city context, IoT allows an efficient use of energy
resources such as electricity and water through the deployment
of dedicated sensors and connectivity solutions. Combining
IoT and artificial intelligence (AI) opens doors for the de-
ployment of efficient smart systems, capable of adapting to
the actual environmental/field conditions, ultimately enabling
optimal management of the resources [1], [2]. Typical exam-
ples are smart grids, smart water resource management and
quality monitoring, smart sewerage network, etc. [3], [4], [5].
In particular, smart management of potable water distribution
and sewerage systems can optimize resource consumption and
reduce the impact on the environment [6], [7]. Indeed, the
ecological impact of an inefficient sewerage system can be

devastating, appealing for emergency deployment of adequate
measures by the suppliers.

This work focuses on the case of a sewerage system for
a large city and considers the deployment of an IoT-enabled
smart network for managing the water drains as part of the
sewer infrastructure. These drains collect rain and water but
are also subject to urban wastes (they are not systematically
equipped with bars to prevent waste accumulation inside
them). The waste can enter the sewerage system, potentially
causing important damages, e.g., obstructing the drain evacu-
ation, resulting in local flooding, or entering the pipes of the
sewerage system, damaging then the downstream equipment.
Also, too much waste accumulation in the drains results in
overflowing in the street. In particular, in some locations in
Marseille where the drains of the stormwater network are
directly connected to the sea, the rain can directly flush the
waste into to the sea throughout the pipes, causing hence disas-
trous damage to the environment. As such, sewer networks are
critical and complex systems that need significant maintenance
and surveillance, thus the rapidly increasing deployment of
IoT-based solutions over the past few years to ensure quality
of life and protection of the environment. Examples include
automatic or semi-automatic condition assessment to identify
damages in pipes [8], water quality monitoring [9], detection
and prediction of sewer overflow [10], or measurement of
hazardous gases in sewer networks [11].

In this paper, we focus on the waste level measurement
for the storm-water network, and more specifically, on the
processing of the associated collected data for the whole
sewerage system. In fact, analyzing these data allows to
understand the dynamics of waste accumulation inside the
drains, and the appropriate actions that should be taken to
ensure proper operation of the whole network. Although this
application seems to be rather simple at a first glance, the
related data processing can be challenging in practice. Indeed,
due to the chaotic aspect of the waste and the hostile conditions
in which the sensor is installed, the observed time series can
present erroneous peaks. The detection and removal of outliers
from the raw data collected from a wireless sensor network is
an important preliminary step prior to data analysis [12], [13],
e.g., in view of developing a reliable mathematical model or
training an AI-based algorithm [14].
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For this purpose, we propose in this paper an efficient outlier
detection method with a low computational complexity. The
proposed method allows quick cleaning of the data without any
need to labeling them, as well as without any modification
of the other data points. This latter is critically important
in order not to bias the data, which will otherwise result in
information loss, impacting hence the mathematical modelling
and the event prediction of the network. The originality of
this work is related to the nature of collected data in the
form of time series, with the properties of being non-stationary
and discontinuous, to which most of the previously-proposed
solutions in the literature cannot be applied, as explained in
detail later in Section 3.

The remainder of the paper is organized as follows. Sec-
tion II explains in more detail the considered sewerage sys-
tem, the sensors, and the nature of the collected data. Next,
Section III describes the related work on outlier detection in
time series. Then, Sections IV and V present our proposed
peak detection algorithm and its performance evaluation, re-
spectively. Concluding remarks and discussions are provided
in Section VI.

II. CONSIDERED SEWERAGE SYSTEM

A. Context

Towards the deployment of IoT solutions for smart-city
applications [15], [16], one big project of the French company
SUEZ has been the digitalization of the water cycle in the
city of Marseille, the second largest city of France with
over 1.8 million inhabitants in the metropolis. This includes
the instrumentation of the city’s stormwater network and,
more precisely, the corresponding water drains by means of
a wireless sensor network (WSN) to monitor the volume of
accumulated waste. The objective is to get a deeper under-
standing of the dynamics of the network and to intervene in
a smart manner (i.e., when and where necessary) for waste
removal before it causes environmental, health, olfactory, or
visual pollution. In other words, the collected data from the
sensors are used to establish mathematical models to predict
the waste accumulation throughout the Marseille metropolitan
area.

B. The Stormwater Network

Given the size of the metropolitan area and its particulari-
ties, the associated water and sewer networks are massive and
quite complex. The sewerage system can consist of three types
of sub-networks: the wastewater and the rainwater networks,
and the combined wastewater/rainwater sewer network (the
old infrastructure), see Fig. 1. Here, we focus on the above-
mentioned second and third networks, which form together the
so-called stormwater network.

The role of a stormwater network is to absorb the rainwater
and to avoid flooding. To do so, the network includes over
18,000 drains that need to be maintained meticulously, which
includes cleaning the waste that accumulates therein over time.
The possibility of large quantities of generated waste, the
elaborate network, and the hilly topography of the city are

Fig. 1: Illustrating the three existing types of sewer networks
in the city of Marseille.

factors among others that make this task particularly com-
plex. Today, the maintenance system is inefficient and non-
optimized; the whole process necessitates human intervention
and supervision, which includes visual assessment of the waste
level inside the drains. The maintenance is currently ensured
by the cleaning staff who visit each drain regularly and collect
the waste if needed. The installation of the above-mentioned
WSN allows improving the efficiency of network maintenance
and avoiding unnecessary human intervention. So far, more
than 3,500 sensors have been installed and the goal is to
reach around 5,000 connected sensors by the end of 2022.
The current network covers about half of the city, i.e., an area
of around 128 km2.

C. Sensor Network

In the considered network, the waste level inside each drain
is monitored using ultrasonic sensors connected through a
low-power wide-area network (LPWAN), more specifically
a LoRa network [17], [18]. A few measurements are done
per 24h, and the data is sent to a server through LoRa
gateways, where the collected data from the ensemble of the
sensors are processed. To provide a more practical view of
a typical network, Figures 2(a) and 2(b) show an illustration
of the actual network deployed around Marseille downtown
(the Vieux Port district), and a schematic of the network
architecture, respectively. Details on the employed sensors and
the other parts of the network are provided in the appendix.

Figure 3 shows a simple illustration of a drain in the form
of a box-shape container with some forms of waste inside. An
ultrasonic sensor is installed on the top of the drain, pointing
toward the bottom. By measuring the delay between an emitted
pulse and its echo, the distance to the reflective surface is
calculated; this latter can correspond to waste, water or the
bottom of the drain (if it is empty). This measured distance,
denoted by D, is in fact the data that is then transmitted
through the WSN, and which is considered hereafter. Note
that a small distance signifies a high waste level W`, where
W` = Hd −D with Hd denoting the drain depth.
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(a)

(b)

Fig. 2: Illustration of the LoRa Network: (a) Part of the sewer monitoring network deployed in the Vieux Port district at
downtown of Marseille with green circles showing the location of the connected drains and towers representing LoRa

gateways through which the data is sent onto a cloud. (b) Schematic of the network architecture.

Fig. 3: Schematic of an ultrasonic sensor in a typical drain,
with some waste (in green). The waste level is measured

based on the delay between the emitted pulse and the
received echo.

D. Characteristics of the Collected Data

Each sensor measures the waste level within a drain at
regular (adjustable) time intervals. The resulting univariate
measurement data describe the evolution of the waste level
corresponding to the specific drain, which can be modeled
as a non-stationary, discontinuous time series. Note, the non-
stationarity of the collected data is due to the complex context
and the role of numerous exogenous and environmental factors
such as rain, wind, topography, etc., which are specific to

each drain (and hence, to the corresponding time-series), and
in addition, change over time depending on the unknown
contextual factors. A few typical examples of such behaviors
are:

• Drains with small variations of the waste level, i.e., accu-
mulating gradually with waste, illustrated in the example
of Figure 4(a);

• Drains with sudden variations of the measured distance,
e.g., when exposed to large-size wastes, or when it is
cleaned, illustrated in the example of Figure 4(b);

• Drains subject to rain where the waste level can either
decrease, e.g., flush type behavior where the waste is
evacuated in the network or in the streets, or increase,
i.e., the rain brings more waste to the drain (these cases
are not illustrated for the sake of brevity).

In practice, the measured distances by the sensors are
corrupted by noise and undesired outliers. In our case, due
to working in a hostile environment subject to dust, humidity,
etc., the sensors’ measurements have a precision of about
±2 cm at most, which is considered as the measurement noise.
Moreover, the measured data may include some peaks (i.e.,
the outliers), which are either because of the chaotic nature of
the waste inside the drain (see the example in Figure 5(a)) or
the form of the drain itself, resulting in multiple echos of the
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(a)

(b)

Fig. 4: Simple illustration of the evolution of the waste level W` and the measured distance D by a sensor; Hd = 50 cm; (a)
slow and steady variations, (b) sudden variations of W`.

(a) (b)

Fig. 5: Examples of typical cases resulting in the appearance of peaks in the collected data: (a) chaotic wastes inside drain
causing random ultrasonic echos;

(b) non-uniform drain shape causing ultrasonic signal bouncing on its walls.

sensor’s ultrasonic signal (see the example in Figure 5(b)).
We have shown in Figure 6 the measured data of a typical

drain sensor during an interval of about one month with two
measurements per 24h, for a drain of depth Hd ≈ 55 cm.
As we can observe, the measured data contains a few high
peaks. Note that the occurrence of successive peaks can be
due to the form and volume of the waste inside the drain.
This specific case study has been selected among the collected
data in the following since it represents a relatively difficult
case, i.e., containing two waste falls (around days 9 and 22, as
indicated in Figure 6), as well as several peaks (including two
successive peaks), in a relatively short measurement interval
(i.e., less than 15 days from the time the drain is subject to
waste accumulation).

Obviously, to study the dynamics of waste accumulation
within the network, the collected data should first be pre-
processed by removing the above-described outliers, which
is the aim of this work. Note that, this can represent a

real challenge when considering the substantial amount of
collected data in the whole network composed of thousands
of sensors.

III. RELATED WORK

As explained above, in this work, we particularly focus
on the problem of peak detection and their removal from
the raw data. As mentioned in the Introduction, there are
numerous previously-proposed works on similar topics, which
have considered outlier detection in time series [19], [20].
However, most of these solutions are not suitable for use in our
specific context, where we are concerned with a large quantity
of non-stationary and unlabeled univariate data with a complex
evolution over time, depending on a number of different (and
even unknown) contextual parameters, e.g., rain, wind, slope
of the street, proximity to markets, etc. To elucidate the
requirement of developing a new solution for the considered
application, we present in the following a brief description of



5

Fig. 6: Example of the collected data from a drain sensor with the measured waste level.

some classical but also some recently-proposed methods and
explain their inappropriateness for use in our case.

A simple way of removing peaks from data would be to do
some sort of low pass filtering to remove the “high frequency”
noise. However, this cannot be used in our case due to the
nature of the measurements as signal discontinuities, inherent
in the data, will be discarded. Even filters that preserve signal
discontinuities such as a median filter [21] will result in a
loss of useful information due to data smoothing since it
cannot distinguish between temporarily local events in the
data (useful information here) and the noisy peaks. Moreover,
data smoothing such as exponential smoothing [22] will bias
any post-classification or prediction of the data, which is, of
course, undesirable. For solutions such as adaptive piecewise
constant approximation of a time series [23], where outliers
are removed within each data segment independently, the per-
formance highly depends on the number of segments initially
set, which is difficult to optimize in our case.

Concerning statistical anomaly detection methods proposed
in the literature, which are mostly prediction based, the classi-
cal approaches based on auto-regressive (AR), moving average
(MA), or ARMA models require second order stationarity (i.e.,
in terms of mean and variance), which is not valid in our
case. It is the same for AR integrated MA (ARIMA) method,
which requires stationarity in the sense of signal variance [24].
Also, the iterative outlier removing approach based on extreme
studentized deviate test requires the number of outliers to be
known [25].

Some other investigated approaches for outlier detection
are based on machine learning. There, most of the proposed
algorithms such as one-class support vector machines (OC-
SVM) [26] are either supervised or semi-supervised, which
require labeled outliers or at least a set of clean data (without
outliers), and hence, cannot be applied to the raw data in our
case. A few unsupervised outlier detection algorithms have
also been proposed for time series, such as peer-group analysis
[27], which consist in characterizing an expected pattern
of behavior between similar objects. However, in our case,
almost every drain has its own characteristics, and could be
considered as independent from the others. Another classical
unsupervised technique is that of sub-sequence time series
clustering (STSC) [28], which consist in applying the K-
means algorithm to time series using a sliding window. Again,
each drain having its specific characteristics, the parameter K
(the number of clusters in the K-means algorithm) needs to

be set in a personalized way, thus resulting in prohibitive data
processing complexity in our case. Another solution can be to
use auto-encoder based methods, which is a special artificial
neural network used to learn an “encoding” (i.e., an optimal
representation of the signal) in an unsupervised manner, e.g.,
using long-short term memory (LSTM) based auto-encoder
[29]. However, such methods usually necessitate a significant
volume of data to optimize the parameters of the underlying
neural network, e.g., number of layers, number of cells in each
layer, window size, smoothing window size, etc.

IV. OUTLIER CLEANING FROM COLLECTED DATA

In general sense, outlier detection can be considered as a
classification problem, where a common approach consists in
transforming the time series into a scatter point representation
that facilitates separation between normal and abnormal points.
Our proposed solution is based on this idea, which is in
fact used in some of the methods described in the previous
section, where this transformation has been done using sliding
windows. Our proposed method, however, realizes this in a
much simpler way.

In fact, in order to transform the time series data into a
scattered point representation, the idea here is to give a score
to each point in order to characterize its “abnormality.” Then,
different metrics can be used to detect the noisy peaks, as
described in the following.

A. Z-Score Method

Z-score is one of the most classical metrics used for
anomaly detection [30]. Given a data-set of size N , X =
[X1, · · · , XN ] with mean µ and standard deviation σ, the
associated Z-score to each measurement Xi, denoted here by
Z(Xi), is given by Z(Xi) = (Xi − µ)/σ. Note, it implicitly
assumes a Gaussian distribution for the data. The higher the
Z-score, the higher is the probability that a given measurement
corresponds to an outlier. Typically, outlier detection is done
using a threshold: if a measurement’s Z-score exceeds the
threshold, it is considered as an outlier. This will obviously
eliminate a certain percentage of the data, for example, a
threshold of 2 and 3 results in discarding ∼ 4.6% and ∼ 0.3%
of the data, respectively. In our case, considering a rough
estimate of noisy peaks of 1% of the collected data, the
corresponding threshold is about 2.5, based on the assumption
of Gaussian distribution for X .
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Since in our case we are concerned with non-stationary
data (i.e., changing µ and σ over time), the Z-score method
should be applied on a sliding window of appropriate length,
depending on the dynamics of waste accumulation, in order
to adjust the outlier detection threshold. As an example, we
have illustrated in Figure 7 the measured data of Figure 6,
where the Z-score method is applied either to the whole
data set (see Figure 7(a)) or to a sliding window of length
10 corresponding to 5-day measurements (see Figure 7(b)),
considering a threshold of 2.5. Obviously, decreasing the
threshold will improve peak detection but it will also result
in false peak detection, and vice versa. It is worth mentioning
that, as the statistics of waste accumulation are different from
one drain to another, the considered threshold should be set in
a “personalized” way for every drain and further adapted to
environmental and seasonal conditions, for instance, due to the
non-stationarity of the waste accumulation process. However,
performing such a personalized and adaptive thresholding is
challenging and would require, for instance, to go through
change point detection in order to delimit the changes in the
distribution, resulting in considerable data processing com-
plexity.

B. Opposite Variation Detection

Looking for a better outlier detection, we firstly developed
a simple intuitive method, which consist in identifying outliers
as corresponding to an “unusual” change in the trend of the
measured distance, i.e., a sudden large (negative or positive)
variation of D. We will refer to this method as opposite
variation detection (OVD). Let us consider the time derivation
of X at instance i as follows:

δi =
Xi+1 −Xi

∆t
, (1)

with ∆t representing the time interval between two successive
measurements. To identify a change in the trend of X , we look
for a change in the sign of δi by defining κi as follows:

κi =
sign(δi+1)− sign(δi)

2
, (2)

where sign(.) is the sign function. Here, κi takes the values ±1
if the sign of δi changes, and zero otherwise; Xi is considered
as a potential peak if κi 6= 0. Based on this, we define the
outlier detection metric θi as follows:

θi = κi min(|δi+1|, |δi|), (3)

where |.| denotes the absolute value. The idea behind (3) is
to associate with each point an abnormality score, which is
obtained from the absolute value of the local slopes of the D
plot (with respect to the previous and the next data points).
This latter is the minimum of the two calculated slopes in order
to account for signal discontinuities due to normal variations
of the waste level in the drain or the measurement noise. This
way, “potential peaks” would correspond to relatively large
values of θi.

To explain this more clearly, two examples are shown in
Figure 8, where in Figure 8(a) P1 is a “normal” point whereas
in Figure 8(b) P2 is a peak to detect. Here, both points can be

considered as potential peaks since from (2) the corresponding
κ are non-zero. The metric θ is in fact calculated so as
to distinguish between these two cases. Let us denote the
corresponding metric by θP1

and θP2
. The slopes of the D plot

at P1, i.e., δP1
are denoted by SP1,1 and SP1,2; likewise the

slopes at P2 are denoted by SP2,1 and SP2,2. Here, for point P1,
the smallest slope is SP1,2, and hence, θP1 = |SP1,2|. Also, for
point P2, the smallest slope is SP2,1, and hence, θP2

= |SP2,1|.
We notice that θP1

< θP2
, in other words, P2 is more likely to

be a peak than P1, which is indeed the case here.
We have further shown in Figure 9 an illustration of outlier

detection by calculating the metric θ and applying a threshold
to it. Comparing this figure with Figure 6, one can see that for
a threshold of 2.5, the OVD method has detected two peaks,
but has missed the two others. In fact, the OVD metric is close
to zero for the case of successive peaks, which is, of course,
unsuitable.

C. Proposed Solution

As discussed in the two previous subsections, both slid-
ing window Z-score-based and OVD methods show limited
performance in practice in detecting outliers in the collected
data. In fact, these methods are based on metrics which are
centered at 0 when applied to “clean” data. Here, we propose
a more efficient feature-based solution, that we will call peak-
pattern-based Z-score (PPZ), by combining the two ideas
and applying them to a two-dimensional (2D) representation
of data, as described in the following. The idea behind this
2D feature-based approach is to complete the information
provided by Z-score method with that obtained from OVD.

We propose to use the two previously-presented metrics to
obtain a scatter plot of data, centered at (0, 0). The points
corresponding to outliers will be placed distant from the center,
which can be distinguished from the clean data by applying
a 2D threshold, i.e., in the form of an ellipse in the 2D
representation. In other words, for each point Xi of the time
series, Z-score and θ metrics are calculated, resulting in two
vectors Z and θ, respectively. Threshold setting for outlier
detection is based on eigen-decomposition of the (2 × 2)
covariance matrix KZ,θ, called standard deviational ellipse
(SDE) [31]; the resulting eigenvectors determine the angle
of the threshold ellipse, while the axes length of this latter
is set by multiplying the square root of the corresponding
eigenvalues by a constant ξ.

In fact the proposed approach relies on the simplifying
assumption that the time series X , modeled as samples of a
random variable, follows a Gaussian distribution whose mean
and standard variation are almost constant within the time
window of data collection. For instance, the considered period
in the provided examples (see Figure 6) is 120 hours, i.e., five
days, which corresponds to 10 points with sensing rate of 2
measurements per day. Under this assumption, the calculated
Z-score will also follow a Gaussian distribution. As for θ
metrics, it will follow a pseudo-Gaussian distribution, i.e., with
a higher occurrences of zeros due to κ.

Figure 10 illustrates outlier detection using the proposed
PPZ method, applied to the set of collected data from Figure 6.
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(a)

(b)

Fig. 7: Example of outlier detection using Z-score method on the data showed in Figure 6. (a) Z-score of the data calculated
on the whole window (no peaks are detected);

(b) Z-score calculated on a sliding window of length 10 points (5 days), in this case only one peak is correctly detected. The
outlier detection threshold is considered at ±2.5.

(a)

(b)

Fig. 8: Illustration of the idea behind the θ metric: (a) Normal point, P1, (b) a peak to detect, P2. We have SP1,2 < SP1,1 and
SP2,1 < SP2,2. Also, |θ(P1)| < |θ(P2)|.
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Fig. 9: OVD algorithm applied to the data in Figure 6, considering a threshold of 2.5 (in absolute value) on the calculated
metric θ.

Here, the constant ξ is fixed to 2.5, as previously considered
for Z-score and OVD methods. As can be seen, each point in
the 2D plot corresponds to the calculated Z-score and θ met-
rics for every measurement (as already shown in Figures 7(b)
and 9). The method allows the detection of all peaks, albeit
incorrectly identifying the point at Day 4 as a peak.

V. PERFORMANCE EVALUATION OF THE PROPOSED
ALGORITHM

The common approach for comparing the performances of
different outlier detection methods is to contrast the ROC
(Receiver Operating Characteristic) curves. These are obtained
upon calculation of the confusion matrix, with elements con-
sisting of the number of “true positives” NTP (i.e., correctly
detected outliers), “true negatives” NTN (i.e., correctly not-
detected normal points), “false positives” NFP (i.e., normal
points identified incorrectly as outliers) and “false negatives”
NFN (i.e., undetected outliers). ROC curves are obtained by
plotting the so-called “true positive rate” TPR, defined as
NTP/(NTP+NFN), versus the “false positive rate” FPR, defined
as NFP/(NFP +NTN).1

Performance evaluation can be done based on either sim-
ulated or real labeled data. Obviously, the former approach
is pertinent only when the simulated data are representative
of the real data. This appears to be challenging in our case
since each drain has a distinct behavior, related to a number
of environmental parameters. Nevertheless, as a preliminary
performance study of the proposed algorithm, we applied it to
a set of simulated data, generated based on a piecewise con-
stant or a piecewise linear time series (based on some arbitrary
parameters and probabilistic laws) to which a Gaussian noise
was added to represent the sensor measurement noise as well
as a few peak-type points as outliers (e.g., using an exponential

1Note, other metrics could also be used to evaluate the performance of the
algorithms including the so-called “precision” Pr defined as NTP/(NTP +
NFP), or the F1-score, defined as the harmonic mean between TPR and
precision, i.e., 2Pr TPR/(Pr + TPR).

distribution with an offset).2

Applying the proposed algorithm to such generated data was
quite promising (results are not shown for the sake of brevity).
However, this cannot be considered as representative of the
performance on the real data, given the complexity of the
collected data in practice. Therefore, we have decided to
evaluate the algorithm performance by applying it to real
(measured) data. This, however, necessitates manual labeling
of a data set in order to identify with certitude the peaks
present in the data (and to see whether or not they are actually
detected through outlier detection).

For this purpose, a data set of two months from around
300 sensors was labeled, representing a total of about 33, 600
points, among which over 460 points (i.e., 1.3% of the data)
were labeled as peaks. To label the data manually, for each
sensor, the time series was visualized as a scatter plot, where
each point was labeled or not as a peak (this was a tedious task,
of course). We have contrasted the corresponding ROC curves
of the proposed PPZ method with those of Z-score and OVD
in Figure 11, where we can notice the superiority of the former.
Note, for the PPZ algorithm, the threshold parameter ξ can be
set so as to ensure a required minimum TPR or a maximum
FPR. A good compromise can be made by setting ξ = 2.5,
which results in a TPR of 0.85 and an FPR of 2.5 × 102, as
shown in the figure. Note, the performances of the algorithms
can further be quantified by calculating the air under each
ROC curve. In this case, the airs are 0.92, 0.95 and 0.98 for
the Z-score, OVD, and PPZ methods, respectively.

Lastly, concerning the computational complexity of our
proposed method, for a sensor with N measurements, the
calculation of each metric has a complexity of O(N). Then,
the algorithm calculates the threshold ellipse, which is based
on eigen-decomposition of the covariance matrix of dimension
(2 × 2), as described in Subsection IV-C, with relatively low
complexity [32]. Meanwhile, the estimation of each of the

2More specifically, two approaches were used for data generation in these
simulations. The first approach consisted of generating data according to a
piecewise constant signal level of length N divided into P equal segments.
The value of each segment was set to an integer, generated randomly
according to a uniform distribution U(0, 100). By the second approach, data
were generated according to a piecewise linear signal level variation, where
the slope of each segment was generated randomly following a uniform
distribution U(−1, 1). In both cases, a normalized Gaussian noise was added
to each point to represent the measurement noise; then, P points, selected
randomly, were modified by adding an exponential noise with an offset to
simulate the outlier peaks.
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(a)

(b)

Fig. 10: Illustration of outlier detection using the proposed outlier detection algorithm applied to the data of Figure 6
considering ξ = 2.5: (a) scatter plot of Z-score and θ metrics; (b) the resulting detected peaks in the original time series.

four entries of the covariance matrix entails a complexity on
the order of O(N). So, overall, the proposed method has a
computational complexity on the order of O(N).

VI. CONCLUSIONS AND DISCUSSIONS

We proposed in this paper a new algorithm for peak-type
outlier detection applied to sewer network collected data.
The proposed PPZ method provides superior performance
compared to the classical Z-score method with a relatively low
additional compositional complexity. The main idea behind
this algorithm has been to enhance the performance of the Z-
score metric by augmenting it with a pattern-detection metric
designed here to detect peak-type outliers. In other words, the
Z-score metric provides a large spectrum outlier detection but

necessitates the signal to follow a Gaussian distribution as well
as the use of an optimal sliding window length. However, the
arbitrary distribution of the signal and its non-stationarity make
theses two requirements difficult to achieve in general. On the
other hand, by the OVD method, the θ metric was specifically
designed to detect peak-type outliers, independently from the
window size. As such, combining the complementary metrics
of Z-score and OVD through 2D thresholding for outlier
detection results in considerable performance improvement,
while entailing a relatively low computational complexity.

Despite the advantages of the proposed method, highlighted
in the paper, it could have limited performance in specific
circumstances in practice. The first consideration concerns
the calculation of the metric θ for the time series, which
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Fig. 11: Contrasting ROC curves of the Z-score, OVD, and the proposed PPZ method applied to labeled data.

requires that the measurement rate of the sensor should be
the same for the considered time interval (remember that
the sensing rate of each individual sensor can be modified,
if needed, to have more or less precise evolution of the
waste accumulation within the corresponding drain). Similarly,
the proposed approach assumes that the parameters of the
collected data are almost unchanged during the considered
interval. Any abrupt change in the properties of the data (e.g.,
flash function after waste accumulation due to heavy rain, or
drain cleaning) will affect the performance of the algorithm.
Moreover, the selection of the time window width for the
Z-score metric (taken as 120 hours in the presented results)
should be adapted for each specific sensor and the dynamics
of waste accumulation in the corresponding drain.

To improve the outlier detection performance, future work
will consider the use of more elaborate clustering methods (in
contrast to the considered 2D SDE), such as one-class-support-
vector-machine (OCSVM) [33], when a sufficient amount of
clean (outlier free) data is available, required for algorithm
training. This has additionally the advantage of developing a
boundary function adapted to each sensor. Also, in the case
of recurrent successive peaks, a customized metric can be
developed, adapted to such specific patterns.

APPENDIX

The network uses an LPWAN network for data transmission
from the sensors, that can be according to LoRa (used here)
or Sigfox technologies. The LoRa gateways are collocated
with network servers. The distance between a sensor and
the corresponding BS in our networks varies between a few
meters up to a few hundreds of meters. The collected data
are transferred to a cloud via the network server for storage
in a database and processing. The users can access the data
via a web application connected to the cloud. More details
on the network and sensors’ specifications are provided in the
following.

• Sensor: Ultrasonic level measurement sensor (“Hummbox
Level” third generation, made by GreenCityZen Co.,
based on Microchip’s SAM microcontroller with its de-
velopment tools and programming environment);

• Cloud: The Things Network (TTN);
• Wireless connectivity: LoRa;

– Carrier frequency: 868 MHz,
– Transmission power: 14 dBm,
– Effective Isotropic Radiated Power (EIRP): 16 dBm,
– Receiver sensitivity: −148 dBm,
– Number of channels: 3 to 8.
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