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Abstract10

This work investigates numerically a natural convection flow in a rectangular differentially11

heated cavity. The aspect ratio of the cavity (height over width) is 4, the working fluid is air12

and the Rayleigh number based on the height of the cavity is 9 × 107. A large rectangular13

obstacle is placed in the center of the cavity. The influence of the size of that obstacle14

and the effect of a new geometry (obtained by extrusion of two rectangular forms from the15

obstacle) on the flow dynamics and heat transfers are investigated. The global and local heat16

transfers modifications, compared to the case without obstacle, are highlighted for several17

configurations. In such a flow regime, an optimal geometry and a solid-to-fluid conductivity18

ratio are determined. This geometry leads, for an adiabatic obstacle, to a global heat transfer19

increase of 4.39% with a local heat transfer increase up to 80%.20

Keywords: Differentially-Heated Cavity, Natural Convection, Heat Transfer Modification21

1. Introduction22

In the past decades, rectangular differentially-heated cavities (DHC) have been widely23

studied experimentally and numerically for laminar, transient and turbulent flows [1–6].24

Natural convection in a rectangular DHC is known to have a lot of industrial and engineer-25

ing applications as solar collectors [7], cooling of electronic systems [8], air-conditioning [9],26

double pane windows, and others. However, the size, performance and effectiveness of those27

engineering systems are often limited by the ability to transfer heat to or from the system.28

Thus, working toward an energy-efficient society, it is fundamental to understand and con-29

trol the attendant phenomena to increase or reduce the associated heat transfers [10, 11].30

To manipulate heat transfer in a rectangular DHC, both passive and active perturbation31

strategies of the flow were investigated. The studies showed that active actuators, located at32

the isothermal wall to modify the thermal or velocity fields, can be either mechanical [12] or33

thermal [13–15]. In every cases, the main goal is to excite instability waves inside the bound-34

ary layer (e.g. Tollmien-Schlichting waves) or inside the core region (e.g. gravity waves), in35

order to observe a significant increase of temperature gradients at the wall [16]. A numerical36

investigation (2D-DNS) for a cavity of aspect ratio four was carried out by Chorin et al. [14]37

using a thermal actuator located at the hot wall. They found that a thermal perturbation38

has a significant impact on heat transfer up to 16% downstream the disturbed area and up39
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to 2% on the cold wall. Recently, Thiers et al. [15] have shown optimal positions of two40

local thermal disturbances, one per isothermal wall: the optimum height of the actuator at41

the hot wall is 70% of the hot plate height and at 30% of the cold plate height. At those42

positions, the increase of heat transfer reached 5.5% by synchronised square waves.43

On the other hand, in general, passive actuators are mechanical. They can be located44

at the wall or away from it. If we consider techniques applied to the wall, parameters45

that can influence heat transfer at the isothermal walls are the roughness [17, 18] or a46

modification of the surface by adiabatic or conducting fins [19–21]. For a two-dimensional47

differentially heated rough square cavity, effects of frequency and dimensionless amplitude48

of sinusoidal roughness elements on the hot, and both the hot and cold walls simultaneously,49

have been investigated numerically by Yousaf and Usman [18] using a single relaxation time50

Bhatnagr–Gross and Krook (BGK) model in a Lattice Boltzmann method (LBM). The51

range of Rayleigh numbers explored was Ra ∈ [103; 106] and a Newtonian fluid of Prandtl52

number equals to 1.0 was considered. For all studied cases, a reduction in the overall Nusselt53

number was noted, up to 17%. The unsteady natural convection flow adjacent to the finned54

sidewall of a differentially heated cavity has been studied by Xu et al. [22]. In particular, a55

comparison between cases with a conducting fin and with an adiabatic fin was carried out.56

The results show that the fin may significantly influence natural convection in the cavity57

and even trigger the transition to unsteady natural convection in the cavity. Indeed, the58

authors found that the conducting fin improves the transient convective flows in the cavity59

and enhances heat transfer across the cavity (by up to 52% in comparison with the case60

without a fin). Recently, Chorin et al. [23] studied experimentally, a natural convection flow61

in a rectangular DHC disturbed by introducing a localized obstacle which acts as a small62

spatial extent passive system. The obstacle is placed inside the hot boundary layer. The63

influence of the length and the vertical location for an insulating and a conducting obstacle64

have been analysed. A relative heat transfer increase up to 83% is observed downstream the65

insulating obstacle for the largest length and highest vertical location.66

Another way of altering the natural convection flow and heat transfer is to locate a67

solid obstacle somewhere in the DHC. Obviously, the size, number, position and physical68

properties of solid obstacles have deep influences on the enclosed fluid flow and heat transfer69

structures. A literature review reveals the existence of a large number of numerical studies70

only devoted to natural convection phenomenon occurring in square DHC containing solid71

bodies with different thermal behaviours: including heat generation [24, 25], adiabatic [26–28]72

and conducting properties [29, 30]. In particular, for Ra ∈ [103; 106] and Pr = 0.071, 0.71 and73

7.1, Bhave et al. [27] reported the existence of an optimum size of the adiabatic solid which74

allows a maximum of heat transfer, for each Ra. Authors also added correlations, predicting75

optimum solid sizes, and the corresponding maximum heat transfer as a function of RaPr.76

Karki et al. [31] also confirmed the existence of an optimum size of the adiabatic solid.77

These authors underlined that heat transfer across the cavity decreases by splitting the solid78

into two or four fragments, but outside of the zone where conduction dominates. In practice,79
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such solids are not exactly adiabatic bodies: they only have a low thermal conductivity.80

Thus, the Rayleigh number is not enough. The solid-to-fluid thermal conductivity ratio81

and the number of solids have to be considered in a square differentially heated cavities82

with conducting solids. In an earlier paper, House et al. [32] numerically showed that heat83

transfer across a differentially heated cavity may be enhanced (reduced) by the addition of84

a single solid with a solid-to-fluid thermal conductivity ratio smaller (greater) than unity.85

They also concluded that heat transfer may reach a minimum as the solid size was increased86

for large solid-to-fluid conductivity ratios. The results published by Zhao et al. [33] confirm87

the heat transfer enhancing with a weakly conductive solid inside a differentially heated88

cavity for a moderate solid-to-fluid volume ratio.89

In conclusion, this review of the literature shows that few publications deal with the in-90

fluence on heat transfer of a solid located in the core region of a rectangular cavity. However,91

in a rectangular DHC, there is also a stratified stagnant core of fluid that does not partici-92

pate in the convection heat transfer between the isothermal walls. If this stagnant region is93

completely replaced by a centrally-placed adiabatic obstacle, a corresponding steady-state94

heat transfer enhancement could also be observed. Thus, the main objective of this work is95

to study numerically the impact of a solid obstacle on the heat transfer, in DHC of vertical96

aspect ratio equal to 4, when the flow is two-dimensional and laminar (RaH = 9× 107). In97

particular, the influence of the geometry of the solid obstacle is investigated in detail. The98

present article is organized as follows: in Sec. 2 the problem studied, its modelling as well99

as a summary of the numerical methods used are presented. In Sec. 3 the numerical results100

obtained are exhibited for some relevant situations. Flow fields, thermal fields and the heat101

transfer behaviour are presented and analyzed.102

2. Problem and mathematical model103

2.1. Problem definition104

Consider a two-dimensional vertical differentially heated cavity of height H and widthW ,105

filled with air, assumed to be a Newtonian fluid, of kinematic viscosity ν, thermal diffusivity106

α, thermal conductivity kf , thermal expansion β and density ρ. The Prandtl number Pr = ν
α

107

is supposed to be constant and equal to 0.71. The cavity aspect ratio Az = H
W

is set to 4.108

The two opposite vertical walls of the cavity (x-direction) are maintained isothermal: Thot109

at x = 0 and Tcold at x = W
H

= 1
4
with Thot > Tcold. The top and bottom walls of the cavity110

are adiabatic. The gravitational acceleration g⃗ acts in negative z-direction. Three cases are111

considered: case 1 is the rectangular DHC without solid, only filled with the working fluid112

(see Fig. 1a); case 2 is the rectangular DHC with an adiabatic or conductive rectangular113

solid placed at the center of the cavity (see Fig. 1b); finally, case 3 is the rectangular DHC114

with an adiabatic or conductive extruded solid placed at the center of the cavity (see Fig.115

1c).116
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Fig. 1. Schematic of three configurations studied: a) Base case; b) Rectangular case; c) Extruded case.

2.2. Mathematical model117

Heat and fluid flows can be described by the unsteady two-dimensional Navier-Stokes118

equations under the Oberbeck-Boussinesq hypothesis. The Oberbeck-Boussinesq approxi-119

mation ignores all density variations of the fluid in governing equations, except when asso-120

ciated with the gravitational term. Using the temperature difference ∆T = Thot − Tcold and121

the mean temperature Tmean = Thot−Tcold

2
, the reduced temperature θ can then be defined as122

θ = T−Tmean

∆T
. Using the cavity height H as the reference length and the Rayleigh number123

based on this cavity height Ra = gβ∆TH3/(να), the reference velocity can be defined as124

uref = αRa1/2/H, the convection time as tref = H2Ra−1/2/α and the reference pressure as125

Pref = ρu2
ref . The dimensionless form of the two-dimensional Navier-Stokes equations under126

the Oberbeck-Boussinesq hypothesis yields:127



∂u

∂x
+

∂w

∂z
= 0

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −∂p

∂x
+

Pr

Ra0.5

(
∂2u

∂x2
+

∂2u

∂z2

)
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −∂p

∂z
+

Pr

Ra0.5

(
∂2w

∂x2
+

∂2w

∂z2

)
+ Prθ

∂θ

∂t
+ u

∂θ

∂x
+ w

∂θ

∂z
=

1

Ra0.5

(
∂2θ

∂x2
+

∂2θ

∂z2

)
(1)

where u is the non-dimensional x-direction velocity component, w is the non-dimensional128

z-direction velocity component, p the non-dimensional pressure.129

Within the solid obstacle, the heat equation is expressed as:130

∂θ

∂t
= as

(
∂2θ

∂x2
+

∂2θ

∂z2

)
(2)

where as is the thermal diffusivity of the solid obstacle.131
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2.3. Boundary conditions132

Non-slip boundary conditions are imposed on the solid walls of the cavity and the solid133

obstacle, i.e.134

u = w = 0. (3)

Horizontal walls of the enclosure are assumed to be perfectly adiabatic. Thus, boundary135

conditions for temperature are expressed as:136

∂θ

∂z

∣∣∣∣
(x,z=0)

=
∂θ

∂z

∣∣∣∣
(x,z=1)

= 0. (4)

The thermal boundary conditions of the vertical cavity-walls are given by:137

θ(x = 0, z) = 0.5, θ(x = W/H = 0.25, z) = −0.5. (5)

The conservation of the heat flux at the solid obstacle–fluid interfaces could be expressed138

as following,139

∂θ

∂n

∣∣∣∣
fluid

= kr
∂θ

∂n

∣∣∣∣
solid

, (6)

where n is a vector normal to solid surface pointing outwards and kr is the solid-to-fluid-ratio140

of thermal conductivity: kr = ks/kf . Four specific values of kr are considered in the last141

section 3.3: kr = 0 for the perfectly adiabatic solid (ks = 0), kr = 10−3 (low ks), kr = 1142

(air-like ks), and kr = 102 (high ks).143

2.4. Convective transport evaluation and flow visualization144

The fluid flows in the DHC are visualized using the Line Integral Convolution (LIC).145

It was first proposed by Cabral and Leedom [34]. For each grid point in a vector field, a146

one-dimensional low-pass filter kernel function is used to convolve the noise texture so that it147

is bidirectionally symmetrical, thereby providing an output texture value. Thus, LIC could148

characterize flow fields more compactly and comprehensively than geometric visualization149

methods such as pathlines [35].150

To estimate the impact of the obstacles on heat transfer at isothermal walls, the averaged151

Nusselt number at the hot wall can also be calculated as follows:152

⟨Nu⟩x=0 =

∫ 1

0

−∂θ

∂x

∣∣∣
x=0

dz , (7)

The same expression without the minus sign and evaluated at x = W/H is applied at the153

cold wall. Due to the energy conservation across the enclosure, the average Nusselt numbers154

at the hot and cold walls must be equal, that is, ⟨Nu⟩x=0 = ⟨Nu⟩x=W/H . In order to compare155

heat transfer with or without an obstacle, the following parameter is defined:156

⟨GNu⟩ =
⟨Nu⟩x=0 − ⟨Nu⟩bf

⟨Nu⟩bf
× 100 (8)

where ⟨Nu⟩bf denotes the corresponding value of the Nusselt number for the base flow157

(bf), that is to say without solid. Thus GNu represents the relative gain (GNu > 0) or loss158

(GNu < 0) of heat transfer compared to the case without modifications (GNu = 0) when159
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a solid obstacle is located at the cavity center (see Fig. 1). In the same way, the height-160

dependant relative gain GNu(z) is defined:161

GNu(z) =
Nu(z)− Nubf(z)

Nubf(z)
× 100 (9)

2.5. Numerical Methods162

The system of equations (1) is solved by the computational fluid dynamics open-source163

program Nek5000 developed and maintained by Fischer et al. [36] at the Argonne National164

Laboratory. Nek5000 is a Navier-Stokes solver, which uses a spectral element method pro-165

posed by Patera [37], to accurately resolve the velocity field u⃗(x, z, t) and temperature field166

θ(x, z, t). This method combines the benefits of high-order spectral methods with finite ele-167

ment methods. The computational domain is made of Nx×Nz rectangular spectral elements,168

in the x and z-directions, respectively. The spatial resolution is selected using as a guideline,169

the mesh reported by [15]. In Figure 2, four examples of meshes are presented. For the170

adiabatic cases, only the flow domain needs a mesh (see Fig. 2a-b) whereas for conductive171

obstacles a mesh inside the solid is needed to calculate the temperature field (see Fig. 2c-d).172

For the thinnest case (W1 → 0, see Fig. 2d) only one point is considered; that is to say for173

example, from z ∈ [0.7; 0.95] (or z ∈ [0.05; 0.3]) the obstacle is only a boundary.174
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Fig. 2. For H0 = 0.05 and W0 = 0.04, four examples of meshes with Nx × Nz = 7 × 21: a) an adiabatic

rectangular obstacle; b) an adiabatic extruded obstacle (W1 = 0.08, H1 = 0.1); c) a conductive extruded

obstacle (W1 = 0.02, H1 = 0.3); d) thinnest conductive extruded obstacle (W1 → 0, H1 = 0.3).

On each spectral element, the Navier-Stokes equations (see Eq. 1) are rewritten in the175

weak formulation and discretized by a Galerkin method, where test and trial functions are176
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sought in different polynomial spaces. Indeed, a PN − PN−2 formulation is used: the velocity177

178 and temperature fields are discretized using Nth degree Lagrange interpolants, defined on 179 the 

Gauss-Lobatto-Legendre (GLL) quadrature points, as basis and trial functions, while 180 the 

pressure field is discretized using Lagrange interpolants of degree N − 2 defined on 181 the Gauss-

Legendre quadrature points. The time-derivative terms are discretized by the 182 third-order 

backward differentiation formula (BDF3). The nonlinear convective terms are 183 computed 

explicitly using a third-order extrapolation scheme (EXT3), while the linear terms 184 are treated 

implicitly. This high-order splitting method (BDF3-EXT3) leads to a Poisson 185 equation for 

pressure and Helmholtz equations for temperature and velocity components 186 that are solved 

using a generalized minimal residual method (GMRES) where the tolerance 187 is set to 10−8. More 

details on the numerical scheme and appropriate grid resolution can be 188 found in Deville et al. 

[38].

189 2.6. Mesh convergence and code validation

The numerical method is validated, comparing our results for the base case (see Fig. 1a)190

191 with those reported by Gadoin et al. [39] on a wider range of Rayleigh numbers, between

RaH = 6.4× 106 and 1.92 × 108. A mesh with 6× 20 spectral elements and a grid polynomial192

193 order N = 24 resulting in 144 × 480 grid points is chosen. For different Rayleigh numbers, 

194       averaged Nusselt numbers at the isothermal wall ⟨Nu⟩ are reported in Table 1.   It can be 

195 seen that the present results match very well those reported by Gadoin et al. [39] and that

the following correlation ⟨Nu⟩ = 0.311 × Ra0.2493H is obtained. This relationship is also very196

0
H
.25 reported by Grondin and Roux [40]197         close to the numerical correlation  ⟨Nu⟩  =  0.29Ra

0
H
.25 reported by Belleoud et al. [41]. For all other198        and experimental results ⟨Nu⟩ = 0.288Ra

199 cases (see Figs. 1b and 1c), a mesh convergence study is performed using a p-refinement 

200 technique in which the grid polynomial order N was increased: N = 22, 24, 26 and N = 28. 

201 It appeared that N = 24 is sufficient to obtain an accurate Nusselt number at the active 

202 wall and a sufficiently high resolution of the velocity profile. An increase of the polynomial 

203 order does not affect the simulation results. We have also checked that the cold and hot 

204 Nusselt numbers are equal. Close to the isothermal walls, the wall-normal distance is smaller

than (∆x)min

H = 3.3 × 10−4. A constant time-stepping with a target Courant-Friedrichs-Lewy205

206 number of 0.5 is used, which is sufficient to guarantee the stability during the simulation. 

207 Each calculation is extended until the flow reaches a steady stage.
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Table 1

For different Rayleigh numbers, the average Nusselt number at the isothermal wall, ⟨Nu⟩. Comparison with

the numerical results reported by [39] and the correlation ⟨Nu⟩ = 0.311× Ra0.2493H .

Rayleigh 0.311× Ra0.2493H Present Gadoin [39]

6.4× 106 15.47 15.49 15.49

6.4× 107 27.46 27.46 27.46

1.28× 108 32.65 32.69 32.69

1.6× 108 34.51 34.56 34.56

1.92× 108 36.12 36.17 36.17

2.7. Base flow208

The Rayleigh number, Ra = 9 × 107, is chosen slightly below the first critical Rayleigh209

number Rac = 1.052× 108 [5]. Thus, the base flow corresponds with a steady state and our210

results can be compared with those of our previous works [15]. The thickness δθ(z) of the211

thermal boundary is defined at a given elevation z, as the minimal horizontal distance, from212

the wall, for which the core temperature is reached [41, 42]. In the same way, the thickness of213

the dynamic boundary layer δw(z) is defined, at a given elevation z, as the minimal horizontal214

distance, from the wall, for which the vertical velocity of the fluid vanishes [4]. It can also be215

observed that the temperature gradients decrease along the hot wall as z increases, whereas216

the maximum of vertical velocity w increases. In the middle of cavity, z = 0.5, for this217

Rayleigh number, δθ(z) = 0.03 and δw(z) = 0.05.218

3. Numerical results and discussion219

The primary goal of this work is to find a way to enhance the overall heat transfer in220

the cavity. A possible way to achieve this goal is to increase the boundary layer velocity at221

the beginning of the vertical boundary layers by using a solid obstacle. For this purpose,222

two main configurations are tested. First, a rectangular obstacle is located in the cavity223

core to suppress the secondary flows. In a second part, the best geometry of the previous224

configuration is modified by a subsequent extrusion process to generate a new secondary225

flow by a backward-facing step. In each configuration, the influence of the solid obstacle on226

the velocity and temperature fields is detailed. Finally, in the third section, effects of heat227

conduction in the solid obstacle are considered.228

3.1. Suppression of base secondary flows induced by an adiabatic rectangular obstacle (case229

(b) in Fig. 1)230

In this section, for forty pairs of (W0, H0), we present in detail the effects of the size of231

an adiabatic rectangular obstacle (see Fig. 1-b): first on the flow dynamics and in a second232

part on heat transfer.233
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3.1.1. Flow dynamics234

After evaluating the base case, in order to explain the influence of the spacing H0 between235

the adiabatic wall and the top or bottom wall of the rectangular obstacle, a steady flow is236

obtained and the flow visualizations using the LIC-method are shown in Fig. 3. The spacing237

W0 between the isotherm wall and the vertical wall of the obstacle is constant: W0 = 0.04.238

The base case is also presented to show how two recirculation zones are modified by the239

obstacle: one at z ≈ 0.9 (see point A) and one at z ≈ 0.8 (see point B). The same behaviour240

is observed at the bottom of the cavity due to the centrosymmetry property of the flow (see241

Fig. 3a). When a rectangular obstacle of height H0 = 0.15 is introduced inside the cavity,242

the recirculation zone A and B get smaller (see Fig. 3b). If a larger obstacle is inserted243

(H0 = 0.05), the two recirculation zones disappear while a small recirculation zone (noted C)244

is formed at the right of the bottom side (or left of the top side) of the obstacle (see Fig. 3c).245

This is due to the fact that the velocity inside the vertical channel gets higher than inside246

the horizontal one (H0 > W0); that is to say C corresponds to an hydraulic jump. Finally,247

if we increase slightly the rectangle height so that H0 = 0.03, as H0 < W0, the velocity248

inside the horizontal channel is higher than inside the vertical one. As a consequence, a new249

recirculation zone is created at the bottom of the vertical left side (or top of the vertical250

right side) of the obstacle (see Fig. 3d).251
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Fig. 3. Line Integral Convolution (LIC) visualisation for three values of H0 when W0 = 0.04. The base case

is also presented for comparison.

Figure 4 shows vertical velocity profiles at six heights along the hot wall (z = 0.05,252

z = 0.1, z = 0.5, z = 0.7, z = 0.8 and z = 0.9), for the three cases previously presented253

(H0 = 0.15, H0 = 0.05, and H0 = 0.03). For H0 = 0.15, as expected, the vertical velocity254

profiles are close to those of the base case in the lower part of the cavity (see Fig. 4a).255
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However, in the upper part of the cavity (z = 0.9), the maximum velocity is greater than256

that of the base case (see Fig. 4b). For smaller values of H0, H0 = 0.05 or H0 = 0.03, at the257

beginning of the boundary layer (z = 0.05 and z = 0.1) it can be observed that the vertical258

velocity profiles w are higher than those of the base case. As a consequence, in this area,259

heat transfer is expected to be higher than in the base case. Using the rectangular obstacle,260

the flow is forced to pass through a vertical channel. It implies that the air flow benefits261

from a greater exchange length and consequently GNu should increase. It can be noted that262

for z = 0.05 and H0 = 0.03, a slight counterflow seen for x ∈ [0.03; 0.04] corresponds to the263

C point in Fig. 3d. Finally, it can also be observed for z = 0.5 and 0.7 that vertical velocity264

profiles are slightly lower than those of the base case; this may be explained because the base265

flow is naturally concentrated in the mid-section of the cavity due to secondary recirculation266

(see point B, Fig 3a) or because the three cases studied must overcome frictional resistance267

from the channel walls.
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Fig. 4. Vertical velocity profiles w along the hot wall for six different heights: a) upstream section; b)

downstream section. Comparison between the base case and three values of H0.

268

In Fig. 5, for H0 ∈ [0.03, 0.25] and W0 ∈ [0.03, 0.05] (i.e. W0 ∈ [δθ(z = 0.5), δw(z = 0.5)]269

for the base flow case.), the relative mean shear stress at the isothermal wall ΓT and at the270

adiabatic wall ΓQ are presented. They are defined as:271

ΓT =

(
τ

τbf

)
x={0;W/H}

, ΓQ =

(
τ

τbf

)
z={0;1}

(10)

where (τ)x={0;W/H} and (τ)z={0;1} are, considering a rectangular obstacle at the center,272

the mean shear stress at isothermal and adiabatic cavity walls respectively. For the base273

case, the same magnitudes are defined as (τbf )x={0;W/H} and (τbf )z={0;1}. The values of H0274

for the thickness of the thermal and dynamic boundary layers for base flow case, δθ(z = 0.5)275

and δw(z = 0.5), is also superimposed. Clearly, ΓT and ΓQ seems to be dependent on H0276
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than on W0 since all curves are almost superimposed (see Figs. 5a and 5b). Moreover, it277

can be observed in Fig. 5a that (τ)x={0;W/H} is close to (τbf )x={0;W/H} as ΓT ≈ 1. That is278

to say, the rectangular obstacle does not modify significantly the mean shear stress at the279

isothermal walls. On the contrary, the influence of the obstacle is more important on the280

adiabatic walls since ΓQ ∈ [0.6; 1.9] (see Fig. 5b). One can see that if the vertical aperture281

H0 < δw(z = 0.5) a significant increase of (τ)z={0;1} occurs (see Fig. 5b) whereas (τ)x={0;W/H}282

decreases.283
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Fig. 5. For various values of H0 and W0, the relative mean shear stress: a) at the isothermal wall ΓT =(
τ
τbf

)
x=0,0.25

; b) at the adiabatic wall ΓQ =
(

τ
τbf

)
z=0,1

. The values of H0 for the thickness of the thermal

and dynamic boundary layers, δθ(z = 0.5) and δw(z = 0.5), are superimposed.

3.1.2. Heat transfer284

The size effect of adiabatic rectangular obstacle on the heat transfer is now studied in285

detail. In Figure 6, the evolution of the relative gain of heat transfer GNu is shown for various286

values of the vertical and horizontal gaps, H0 and W0, respectively. For H0 ≥ 0.15, whatever287

the value of W0, a small value of the relative heat transfer gain ⟨GNu⟩ is obtained, less than288

1%. As H0 decreases to δw(z = 0.5), the heat transfer is higher than 1%; ⟨GNu⟩ increases289

continuously and reaches a local maximum for allW0. If the separation between the adiabatic290

wall and the obstacle is narrowed, H0 < δw(z = 0.5), ⟨GNu⟩ diminishes continuously probably291

because of the friction. It can also be noted that if W0 = δθ(z = 0.5) = 0.03, the relative292

gain is always negative, i.e. the heat transfer is less efficient than the base case whatever the293

value of H0 again probably due to the increase of the pressure lost. Finally, it can be noted294

that the heat transfer is maximum, ⟨GNu⟩ = 2.6%, for H0 = 0.05 and W0 = 0.04. This case295

is called from this point the best rectangular case.296
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In Figure 7, for a fixed W0 = 0.04 and three values of H0, profiles of Nusselt number297

Nu(W0 = 0.04, H0) along the hot wall are shown. The base case is also presented for298

comparison. It can be observed that when a small rectangular obstacle (H0 = 0.25) is299

introduced into the core of the cavity, the heat transfer behaviour is only slightly modified,300

whatever the elevation z considered. In this case, the profile of the Nusselt number is close301

to that of the base case and the global maximum of Nusselt number is near the bottom of the302

cavity (z = 0.01). If the distance H0 is decreased by 2.5 times (H0 = 0.10), the modifications303

are more noticeable. Indeed, a global maximum is always present near the adiabatic wall304

of the cavity but a local maximum appears at the height z = 0.1 which corresponds to the305

bottom of the rectangular obstacle. For z ≥ 0.05 and z ≤ 0.25, Nubase < Nu(H0 = 0.1,W0 =306

0.04). For z ≥ 0.25, Nu(H0 = 0.1,W0 = 0.04) is slightly lower than the base case. Finally,307

if the space between the obstacle and the adiabatic wall of the cavity is 2 times smaller (i.e.308

H0 = 0.05), the heat transfer is highly increased for 0.025 < z < 0.25, compared to the base309

case. In particular, a higher global maximum of Nu is observed in comparison with the other310

cases at the height z = H0 = 0.05.311
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Fig. 7. Profiles of Nusselt number along the hot wall for various values of H0 when W0 = 0.04. The base

case is also presented for comparison.

To evaluate more thoroughly the efficiency of heat transfer along the isothermal wall, a312

local comparison of the Nusselt numbers is presented in Table 2 for the different separations313

H0. The isothermal wall is divided in two parts: upstream z ≤ 0.25 and downstream314

z > 0.25. It appears clearly that the global enhancement of heat transfer is due to its315

increase in the upstream section (see ⟨GNu⟩(z ≤ 0.25) in Tab. 2). So, the main goal of this316

work has been achieved.317

3.2. Generation of new secondary flows induced by a backward-facing step (case (c) in Fig. 1)318

In this section, the best geometry of the rectangular case is modified by a subsequent ex-319

trusion process. The main objective is to generate new secondary recirculations downstream320
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Table 2

For various H0, the relative gain of heat transfer ⟨GNu⟩(z) in the upstream (z ≤ 0.25) and downstream

(z > 0.25) parts when W0 is fixed to 0.04.

H0 ⟨GNu⟩(z ≤ 0.25) ⟨GNu⟩(z > 0.25) ⟨GNu⟩(0 ≤ z ≤ 1)

0.25 +0.61% -0.22% +0.39%

0.20 +1.09% -0.64% +0.45%

0.15 +2.05% -1.20% +0.85%

0.10 +3.53% -2.08% +1.44%

0.05 +6.92% -4.30% +2.62%

0.03 +9.09% -9.77% -0.68%

the hot and cold boundary layers by a cut rectangular obstacle as those observed in the321

previous work of [15] who used a local thermal perturbation to obtain them. To obtain the322

optimal extrusion, two steps are considered. Firstly, the spacing H0 and W0 are fixed while323

the distances H1 (distance between the cavity adiabatic wall and the horizontal obstacle324

surface) and W1 (horizontal obstacle width after extrusion) are varied (see Figure 1c). In325

a second step, starting from the best geometry which allowed to obtain the highest heat326

transfer in the first step (called Extrusion 1), the distances obtained previously H1 and W1327

are fixed whereas H0 and W0 are varied again. At the end of step two, the most favourable328

case to the heat transfer is called: Extrusion 2. In following parts, velocity and temperature329

fields are successively presented.330

3.2.1. Flow dynamics331

In Figure 8, steady flow visualizations using the LIC-method are shown for two extruded332

obstacles and the best rectangle case determined previously. To compare with the best333

excited case obtained by a localised time varying thermal perturbations at hot and cold334

walls, the Fig. 8a presenting results from Thiers et al. [15] (see Fig. 8-E) is added. Indeed,335

for the same Rayleigh number, the authors shown that an efficient way to enhance the heat336

transfer is to disturb the hot wall at z = 0.7 and the cold wall at z = 0.3 using synchronised337

local square waves of amplitude ε = 1 and frequency f = 0.403. At this thermal disturbance338

position, the relative gain of global heat transfer by both disturbances is ⟨GNu⟩ = 5.5% [15].339

In Fig. 8a it can be observed that a large and unique recirculation zone is formed. Moreover,340

the horizontal boundary layer along the adiabatic wall are thicker than those for the base341

flow (see Fig. 3a). To take advantage of the modification of the downstream boundary layer342

and the recirculation zone, the best rectangle is extruded gradually (see Fig. 8b). Figure343

8c shows that when a small extrusion is created a small recirculation is formed (see point344

A). On the contrary in Fig. 8d, the horizontal flow is divided in two parts when it impacts345

the vertical obstacle tip (z = 0.95 or z = 0.05): the upper part of the flow is going to the346

isothermal wall whereas the lower part follows the recirculation zone and is coming back to347

the isothermal wall (see the red streamline in Fig. 8d). As a consequence, a stagnant zone348

close to the obstacle (see the zone between the recirculation A and the obstacle). Thus in Fig.349
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8d, the flow behaviour is closer to the flow when two thermal disturbances are simultaneously350

introduced at the active walls (see Fig. 8a). Therefore it may be expected a higher heat351

transfer comparatively with our best rectangular case.352
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Fig. 8. Line Integral Convolution (LIC) visualisation: a) best excited case by a local thermal perturbation

(see previous work [15]) and three obstacles where H0 = 0.05, W0 = 0.04: b) The best rectangular case; c)

obstacle 2: H1 = 0.1, W1 = 0.085; d) obstacle 1: H1 = 0.3, W1 = 0.005.

In Figure 9, flows are detailed in a more quantitative way. The best excited case is353

not more taken into account. Vertical velocity profiles along the hot wall for the base354

case, the best rectangular case, the case called Extrusion 1 and the case called Extrusion355

2 are compared for six different heights z ∈ {0.05; 0.1; 0.5; 0.7; 0.8; 0.9}. For each case, the356

distances H0, W0, H1 and W1 are reported in Tab. 3. In the upstream section (z = 0.05 and357

z = 0.1) and the downstream section (z = 0.9), it is clear that each obstacle increases the358

velocity gradient and the maximum velocity compared to the base case (see Fig. 9a). The359

fluid is forced to flow in the upstream section where the Nusselt number tends to be lower360

(see Fig. 7). However at z = 0.5 the base case has a higher maximum velocity. It can be361

explained by the fact that in the other cases wall friction has decreased the available energy362

(see Fig. 9a). In the downstream section (z = 0.7, z = 0.8 and z = 0.9) it can be observed363

that velocity profiles are higher for the obstacle cases than for base case on the border of the364

boundary layer (x > 0.04). For the Extrusion 2 case, reducing W0, the vertical maximum365

velocity is increased in the upstream section (see green line in Fig. 9a), more than two times366

at the height z = 0.05.367
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Fig. 9. Vertical velocity profiles along the hot wall for six different heights: a) upstream section; b)

downstream section. Comparison between the base case, the best rectangular case (H0 = 0.05, W0 = 0.04),

the extruded obstacle 1 (H1 = 0.3, W1 = 0.005) and the extruded obstacle 2 (H0 = 0.035, W0 = 0.035).

Table 3

For the three obstacles, the relative gain of heat transfer GNu(z) in the upstream (z ≤ 0.25) and downstream

(z > 0.25) parts.

case H0 H1 W0 W1 ⟨GNu⟩(z ≤ 0.25) ⟨GNu⟩(z > 0.25) ⟨GNu⟩(0 ≤ z ≤ 1)

Rectangular 0.05 - 0.04 - +6.92% -4.30% +2.62%

Extrusion 1 0.05 0.3 0.04 0.005 +7.04% -3.37% +3.67%

Extrusion 2 0.035 0.3 0.035 0.005 +18.00% -13.61% +4.39%

3.2.2. Heat transfer368

The relative gain of heat transfer ⟨GNu⟩ is plotted for various values of H1 and W1 in Fig.369

10a. The distances H0 and W0 are maintained constant: H0 = 0.05 and W0 = 0.04. Clearly,370

all simulated geometries generate a better heat transfer than the rectangular obstacle (which371

has higher heat transfer than the base case ). It can also be observed that there is a local372

maximum of ⟨GNu⟩ for each W1 value. This local maximum increases as W1 diminishes373

until it reaches a global maximum value for W1 → 0 and H1 = 0.25. In this study, for a374

experimental consideration, the smallest thickness considered is W1 = 0.005, which is 2% of375

the total obstacle width. Thus, the best extruded case, called Extrusion 1, corresponds to a376

relative gain ⟨GNu⟩ = +3.67%.377

The size of the obstacle which allows the highest heat transfer (H1 = 0.3) and (W1 =378

0.005) are now fixed whereas H0 and W0 are varied again. In Fig. 10b, the relative gain of379

heat transfer ⟨GNu⟩ for various values ofH0 andW0 is shown. The GNu value of Extrusion 1 is380

also presented for comparison (red dashed line). From W0 = H0 = 0.05, both values decrease381
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until 0.03. It means that a compression of the vertical and horizontal boundary layers occurs.382

It can be observed that the best tested case, corresponding to ⟨GNu⟩ = +4.39%, is obtained383

for W0 = H0 = 0.035. This case is called Extrusion 2.384
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Fig. 10. For two geometries, the relative gain of heat transfer ⟨GNu⟩: a) for various values of H1 and W1

when H0 = 0.05 and W0 = 0.04; b) for various values of H0 and W0 when H1 = 0.3, W1 = 0.005. The ⟨GNu⟩

value of the best rectangular geometry and best extrusion 1 are also presented for comparison (red dashed

lines).

In the Figure 11, the vertical evolution of the relative gain of heat transfer, GNu(z), along385

the hot wall are presented for the rectangular case, Extrusion 1 and Extrusion 2. Clearly, for386

the upstream area z ∈ [0; 0.25], the three obstacles increase the global heat transfer: +6.92%387

for the rectangular case, +7.04% for Extrusion 1 and +18% for Extrusion 2 (see Table 3).388

Moreover, it can be observed that close to z = 0.05 the local gain reaches up to 80% for389

the extrusion 2. However, the local heat transfer is reduced, GNu(z) < 0 for both extrusions390

when z ∈ [0.25; 1] and for z ∈ [0.25; 0.9] in the rectangular case. This is due to the fact391

that more cold air is in contact with the hot plate, leading to an increase of heat transfer392

in the upstream part (z ∈ [0; 0.25]); but as a consequence, the ascent of more hot air along393

the hot plate provokes a decrease of heat transfer in the downstream part z ∈ [0.25; 0.9].394

For the rectangular case, when z ∈ [0.9; 1], the gain is again positive, up to 10%. Finally,395

at the height z = 0.7, it can be observed that the sudden widening diminishes the gain for396

the extrusion 2 case contrary to the rectangular case (see the change of the slope of the red397

curve).398

3.3. Effects of the thermal conductivity399

As it can be noticed experimentally, solids are not exactly adiabatic bodies, effects of400

fluid and solid thermal conductivity on the heat transfer are studied by considering kr =401

10−3, 1.0 and 102 (where kr is the ratio of solid thermal conductivity ks to the fluid thermal402

conductivity kf : kr = ks/kf ). In Table 4, the relative gain of heat transfer ⟨GNu⟩ is reported403

for the three solid obstacles. For ks = 10−3, that is to say for a weakly conductive solid, all404

values of ⟨GNu⟩ are equal or very close to those of the adiabatic case. However, for kr = 1405

and kr = 102, it is clear that the conductive condition reduces the gain of heat transfer406
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Fig. 11. Vertical evolution of the relative gain of heat transfer, GNu(z), along the hot wall for three obstacles:

rectangular case, extrusion 1 and extrusion 2.

significantly. For ks = 1, which represents a thermal conduction close to that of polystyrene,407

the gain diminishes around 1% for all solid geometries.408

Table 4

Effects of the geometry and thermal conductivity of the solid obstacle ks on the relative gain of heat transfer.

ks kr ⟨GNu⟩rectangular ⟨GNu⟩extrusion 1 ⟨GNu⟩extrusion 2

adiabatic 0 2.62% 3.67% 4.39%

weakly conductive 10−3 2.62% 3.67% 4.38%

air-like 1 2.45% 3.54% 3.69%

highly conductive 102 -2.51% 1.15% 0.58%

4. Conclusion409

This work report the 2D direct numerical simulations of an air flow in a differentially410

heated cavity of aspect ratio 4, at a Rayleigh number of 9× 107 chosen just below than the411

first critical Rayleigh number (Rac = 1.02 × 108). In order to improve the heat transfer at412

the beginning of the boundary layers at the isotherm walls, three kinds of obstacle are tested413

looking for the optimum size: rectangular, and two cut rectangular forms. With an obstacle,414

in the middle of the cavity, which compresses the dynamic boundary layer at the isotherm415

wall, it is possible to enhance the heat transfer globally up to 4.39% compared to the heat416

transfer in a cavity without obstacle, thanks to an extruded rectangle. This is due to the417

increase of the velocity downstream the boundary layers at the isotherm walls. Locally, the418

gain could be higher than 80%. Thus the main conclusion of this work is that the presence419
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of an adiabatic obstacle increases the heat transfer in the cavity by a passive way. We finally420

verify that a conductive obstacle does not improve the heat transfer as an adiabatic one421

does. On the contrary, as the thermal conductivity of the obstacle increases, the global heat422

transfer decreases. It has to be noted that this study is valid for any Rayleigh number below423

the first critical Rayleigh number.424

The next step of this work is a generalization to a 3D cavity in order to study how425

the obstacle control the interactions between 3D flow structures and the heat transfer, for426

laminar and turbulent flows.427
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