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Abstract—Cosserat rod theory proved efficient modeling per-
formances in robotics, especially in the context of continuum
robots, in the past decade. The implementation of such theory
is far from being unique and straightforward. We consider the
illustrative example of multi-segment, general routing tendon ac-
tuated continuum robots in their nominal static operating regime.
This paper details two main approaches based on Cosserat rod
modeling, namely the Newtonian and Lagrangian approaches. We
provide a walk-through guide regarding theoretical derivations
and numerical implementation of both approaches, together with
a proof of equivalence. This comparative study is supplemented
with novel contributions and extensions of each approach and
in-depth discussion of their performances and applicability, as
well as highlighting their special features.

Index Terms—Modeling, Control, and Learning for Soft
Robots, Flexible Robots, Tendon/Wire Mechanism, Cosserat
Beams.

I. INTRODUCTION

CONTINUUM robots are slender actuated flexible struc-
tures that can be compared to elephant trunks, octopus

arms or squid tentacles. The main characteristics of continuum
robots are their ability to conform to curvilinear paths and
inherent compliance. In addition, their designs often offer ease
of miniaturization and enhanced dexterity. These advantages
enable continuum robots to have safe and soft interactions
with unstructured environments, to evolve in confined spaces
or avoid obstacles, and offer tolerance for geometric variations
in grasped objects. This type of robots is suited for a myriad of
applications, ranging from nuclear decontamination to medical
applications [1], [2].

Modeling continuum robots is a challenging task due to
the lack of discrete joints and their compliant nature, thus
their deformation when in interaction with the environment.
As such, numerous modeling approaches have been devel-
oped [1]–[4]. Two main modeling categories can be identified:
geometry based models and mechanical models. Geometry
based models [5], [6], including the well known constant
curvature approach [7]–[11], have the advantage to lead to
analytical formulations and are thus suitable for real-time
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inverse kinematics and control. On the downside, these models
are less accurate than their mechanical counterpart, are subject
to error propagation, and cannot take external efforts into
account [12]. Mechanical models, on the other hand, take the
elastic behavior of the constitutive materials of the robots into
account and solve the problem over boundary conditions (BCs)
that can involve external loading of the structures.

Some mechanical models for continuum robots employ the
Euler-Bernoulli [13]–[15] or Timoshenko beam theories that
are geometrically linear and can model only small rotations
of the beam’s cross-section. Thus, the community started
exploiting the more general Cosserat rod theory [16]–[19].
The approach was applied to various continuum manipulators
as concentric tube continuum robots [20], [21], tendon actu-
ated continuum robots (TACRs) [22]–[25] and multi-backbone
continuum robots [26]–[28]. The method has been studied
extensively for modeling the statics and dynamics [29]–[31]
and has become the standard over the past ten years in
the robotics community. In a majority of cases, the authors
propose to solve the boundary value problem (BVP) of the
Cosserat rod with a shooting based approach. The limitations
of the approach include the dependence of the convergence
on the initial guess and the high dimension state vectors for
complex robot structures [26], [27]. In this paper, this approach
will be called the Newtonian approach, as it relies solely
on Newton’s laws, and in particular on the action-reaction
principle (Newton’s second law) to include actuation in the
robot model.

Lately, another approach for solving the same mechanical
problem was proposed based on a Lagrangian viewpoint [32]–
[34]. In essence, the Lagrangian approach for mechanics is
based on two key ingredients: first the concept of configuration
space, second a variational principle that allows the static or
dynamic balance on this space to be derived [35]. In contrast
to Newtonian mechanics, this more abstract point of view
allows to directly derive a minimal set of equations without
the need for isolating subsystems and using the action-reaction
principle. This advantage is particularly useful for complex
continuum robots involving multiple rods in interaction with
each other. In the case here considered, Lagrangian mechanics
is used as a systematic reduction process of the Cosserat
rod model. This reduction consists in parameterizing the
configuration of a rod by the coefficients of its strain fields on
a truncated functional basis according to the Ritz method [33].
It allows the application of efficient numerical approximation
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methods based on variational formulations, both in statics and
in dynamics [36]. On the other hand, since the residual vector
is based on the weak form of the virtual works, its derivation
is less straightforward than that of the Newtonian approach.
Moreover, the dimension of the residual vector is generally
larger, and increases with the number of segments.

This paper focuses on the modeling of continuum robots
and chooses the use-case of TACRs in their nominal static
operating regime (used in the representative medical appli-
cations of continuum robots), to illustrate theoretical models
and numerical simulations. TACRs consist of a central elastic
backbone, which is pulled upon by a set of tendons (i.e. cables)
attached at its end. The tendons are routed through holes in
disks, distributed along the length of the backbone. By routing
tendons at different angles around the backbone and pulling
on them, bending can be achieved in a 3D workspace.

The main motivation of this paper is to resolve the confusion
of a certain number of concepts, shared or split between the
Newtonian and the Lagrangian approaches, which arise due
to the different viewpoints they are based on. In addition, the
two approaches, coming from different communities, do not
share a common set of notations or mathematical framework,
which does not ease the comparison. Moreover, the contin-
uum robotics community, being less familiar with Lagrangian
mechanics, may face difficulties to make informed choices as
to which approach should be used for each specific case. This
paper provides an exhaustive derivation of both approaches
in a common mathematical framework in order to clarify the
links between them and objectively compare the strengths and
weaknesses of each.

Beyond presenting, in a single structured picture, the two
approaches that are currently dominant in the community,
this article presents several specific contributions to each of
these approaches. In the Newtonian approach, beyond [22],
the case of a multi-segment TACR with slope discontinuities
in the tendon routings between segments is addressed. For the
Lagrangian approach, besides a more in-depth derivation of
the static Lagrangian model through a canonical application
of the principle of virtual work, new numerical perspectives
are proposed. In [32], the numerical resolution is performed
through explicit time integration of an overdamped equivalent
system. In contrast, we here introduce a linearization of
the nonlinear static balance equations, which enables to use
Newton-Raphson’s method. Another novelty of the present
work is that efficient spectral methods [37] are used to
calculate the residual vector and the Jacobian matrix thanks
to a new BVP, called the inverse kineto-static BVP, and its
tangent BVP.

Based on the comparison of the two methods, we provide a
mathematical proof of the equivalence of the two approaches.
This equivalence is backed by an extensive set of simulations,
which compare the Lagrangian approach to the Newtonian
approach. The latter was previously experimentally validated
in [22] for TACRs. The simulations also put in light specifics
of each approach owing to differences in numerical imple-
mentation, allowing the reader to make an advised choice. To
ease prototyping of TACR applications, the associated code
can be found at https://github.com/TIMClab-CAMI/Cosserat-

Rod-Modeling-of-Tendon-Actuated-Continuum-Robots.
Section II explains the reasons behind the differences of

notations that can be found in the literature and the correspon-
dence between them. In Section III, we establish the common
mathematical framework as a building block for the derivation
of both approaches in Sections IV and V. In these sections, the
necessary keys for easily bridging with previously published
work are given. Section VI provides the mathematical proof of
equivalence between the two approaches. In Section VIII, both
approaches are compared in terms of numerical performance
using a common simulation framework. In Section IX, we
discuss the implementation considerations and the simulation
results, as well as general performance considerations of both
approaches in different use-cases.

II. NOTATIONS

When the Newtonian approach and the Lagrangian approach
first occurred in the literature, two clear different systems of
notations were recognizable. The symbols in the Newtonian
approach were chosen to match as closely as possible both
the notation proposed by S. S. Antman [38] and the existing
literature on the modeling of continuum robots [19]. On
the other hand, the Lagrangian approach privileged notations
from geometric mechanics [39] and its applications to rigid
multi-body systems and continuous media, including fluid
mechanics [40]. This choice also eases the application of
developments on manipulators to other contexts as e.g. eel-
like robots. This paper purposely uses Lagrangian notations.
This choice aims at better introducing the Lagrangian approach
by familiarizing the reader with these notations throughout the
developments of the Newtonian approach. A dictionary of the
two systems of notations is presented in Table I.

Table I highlights some key differences that can be sum-
marized as follows. In the Newtonian approach, vector fields
are mostly expressed in R3 whereas the Lagrangian approach
makes extensive use of wrenches and twists, expressed in R6.
In the literature on the Newtonian approach, these R3 vectors
are represented by bold symbols to differentiate them from
scalars and matrices. As many developments of the Lagrangian
approach are conducted in other (vector) spaces than R3, this
practice is less applicable in this context, and will not be
used in this article. In both approaches all vector fields in R3

can be expressed either in the inertial frame or in the cross-
sectional frames, which can sometimes lead to confusion1. To
avoid ambiguity, this paper adopts the convention of Juan
Carlos Simo of noting a vector of R3 with a lowercase
letter (preferably latin) when expressed in inertial frame, and
uppercase, when expressed in cross-sectional frame. The only
exception to this rule is the position vector field r, which
is always expressed in the inertial frame, R being used for
the orientation. Vector fields in R6 are not concerned by this
rule, since they represent vectors in the Lie algebra se(3),
denoted with Greek letters as it is usually the case in geometric
mechanics on SE(3) [39].

1The term ‘cross-sectional frame’ will be used, which is equivalent to the
terms ‘body frame’ and ‘material frame’. Correspondingly, the reference frame
is named the ‘inertial frame’ and is equivalent to the terms ‘fixed frame’ and
‘spatial frame’.

https://github.com/TIMClab-CAMI/Cosserat-Rod-Modeling-of-Tendon-Actuated-Continuum-Robots/
https://github.com/TIMClab-CAMI/Cosserat-Rod-Modeling-of-Tendon-Actuated-Continuum-Robots/
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Table I
COMPARISON OF THE NOTATION CONVENTIONS OF THE LITERATURE.

Newtonian approach Lagrangian approach (+ this paper) Dimensions Units
Reference length parameter s ∈ [0, l] X ∈ [0, l] R m

Position p(s) r(X) R3 m

Orientation R(s), (z-axis aligned) R(X), (x-axis aligned) R3×3

Cross-sectional frame g(s) = (p, R)(s) g(X) = (R, r)(X) R4×4

Linear rate of change (shear & extension) v(s) Γ(X) R3

Angular rate of change (bending & torsion) u(s) K(X) R3 m−1

Space-rate twist - ξ = (KT ,ΓT )T R6 (m−1,−)

Initial value or prior to deformation* •∗ •0
Total length of the robot l l R m

Strain - ϵ = ξ − ξ0 R6 (m−1,−)

Related to the ith tendon •i •i
Number of tendons n m R
Length of the ith tendon li li R m

Related to the jth segment •j •j
Number of segments m χ R
Length of the jth segment lj lj R m

Cross-sectional frame position of the ith tendon ri(s) = [xi(s) yi(s) 0]
T Di(X) = (0, Di,Y , Di,Z)(X) R3 m

Inertial frame tendon position pi(s) = p+Rri ri(X) = r +RDi R3 m

Tangent to the path of the ith tendon ṗi/∥ṗi∥ ti = r′i/∥r′i∥ R
Tension in the ith tendon τi τi R N

Vector of tensions - τ = (τ1 .. τm)T Rm N

Stress (bending & torsion) m(s) C(X) R3 Nm

Stress (shear & extension) n(s) N(X) R3 N

Stress (wrench) - Λ(X) =
(
C(X)T , N(X)T

)T R6 (Nm,N)

Angular and linear stiffness matrices Kbt(s),Kse(s) Ha(X),Hl(X) R3×3 N, Nm2

Hookean stiffness matrix or H(X) = diag(Ha(X),Hl(X)) R6×6 (N,Nm2)

Generalized stiffness - Kϵϵ Rk×k **
Total external distributed couples l(s) c̄(X), C̄(X) R3 Nm/m

Total external distributed forces f(s) n̄(X), N̄(X) R3 N/m

Total external distributed wrench - F̄ (X) =
(
C̄(X)T , N̄(X)T

)T R6 (Nm/m,N/m)

External tip couples - c+, C+ R3 Nm

External tip forces - n+, N+ R3 N

External tip wrench - F+ =
(
CT

+ , NT
+

)T R6 (Nm,N)

Relative to external loads (not tendons) - •ext
External distributed forces (not tendons) fe(s) n̄ext(X) R3 N/m

External distributed couples (not tendons) le(s) c̄ext(X) R3 Nm/m

Relative to rod elastics - •rod
Relative to actuation by the tendons - •act
Distributed forces applied by the tendons f t(s) n̄act(X) R3 N/m

Distributed couples applied by the tendons lt(s) c̄act(X) R3 Nm/m

Distributed forces applied to the ith tendon f i(s) n̄i(X) R3 N/m

Stress of actuation - Λact(X) R6 (Nm,N)

Generalized external forces - Qext Rk **
Generalized restoring forces - Qrod Rk **
Generalized forces of actuation - Qact Rk **
Matrix of actuation - L Rk×m **
Number of shape functions - k R
Shape functions - Φ(X) = (Φ1 ..Φk)

T R6×k **
Generalized strain coordinates - q = (q1 .. qk)

T Rk **
First and second derivative wrt. s or X •̇, •̈ •′, •′′

Residual vector - R

* The subscript •o from the literature on the Lagrangian approach was, in this paper, replaced with a subscript •0 to prevent confusion.
** The units of these quantities depend on the choice of the shape functions.
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Another difference concerns the partial derivation with
respect to the rod arc length variable in its reference (stress-
less) configuration. It is denoted •̇ in the Newtonian approach
and •′ in the Lagrangian approach. Related to this spatial
differentiation are the densities of external forces, couples, and
wrenches per unit arc length that are distinguished from the
ordinary forces, couples, and wrenches by an overbar (e.g. n̄
or F̄ in Table I).

Using the symbols q and Q, for the generalized strain
coordinates, and the corresponding generalized forces, respec-
tively, is a deliberate choice inherited from the standards
of Lagrangian mechanics [35]. In the context of continuum
robotics, this choice reflects the fact that the strain coordinates
of a continuum robot are the distributed counterpart of the
localized joint coordinates of a rigid robot.

A few notational conventions related to Lie group theory of
SE(3) are presented below. In particular, the two approaches
share common convention notations related to the •̂ operator,
defined as follows. If W = (W1,W2,W3)

T is a vector of R3,
then Ŵ denotes the skew-symmetric matrix of R3×3 such that

Ŵ =

 0 −W3 W2

W3 0 −W1

−W2 W1 0

 .

The reciprocal is denoted •∨ such that (Ŵ )∨ = W .
Similarly, if W = (W1,W2,W3)

T and V = (V1, V2, V3)
T

are two vectors of R3, with ν = (WT , V T )T a vector of R6,
then ν̂ denotes the matrix of R4×4 as

ν̂ =

(
Ŵ V
01×3 0

)
,

where Ŵ is the skew-symmetric matrix associated to W ∈ R3.
Finally, the Lagrangian approach uses some of the standard
notations of geometric mechanics on the Lie group SE(3),
namely the adjoint maps ad and Ad defined for any field of
twist ν and homogeneous transformation g,

ν =

(
W
V

)
and g =

(
R r

01×3 1

)
,

by the two matrices of R6×6

adν =

(
Ŵ 03×3

V̂ Ŵ

)
and Adg =

(
R 03×3

r̂R R

)
.

Throughout the paper, Adg will be used to pass a twist from
one frame to another, the two being separated by a pose g.
And adν will be used to model the inertial derivative of the
cross-sectional basis as it moves along its centerline with a
twist ν expressed in the moving frame.

III. KINETO-STATIC MODEL OF COSSERAT RODS

Cosserat rod theory is a one-dimensional theory of contin-
uous media used to describe slender bodies subject to finite
deformations. In contrast to vibration theory or strength of
materials, Cosserat rod theory is geometrically exact in the
sense that it is not based on any approximation of small
displacements or slopes. The equations of this theory are
derived below as a basic element for the modeling of various
continuum robots.

R(X)
x

zyX

X1−n(X1)
−c(X1)

X2

n(X2)

c(X2)

c̄(X), n̄(X)

inertial frame y

z

x

r(X)

g(X)

proximal
side

distal
side

Figure 1. Free body diagram of a piece of rod. The yellow line represents an
arbitrary finite piece of a rod from X1 to X2. The dash-dot line represents the
centerline of the rod along which the reference length parameter X evolves.
Some rod sections are represented (in green) to each of which a cross-sectional
frame is attached (in red). The transformation g(X) = (R, r)(X) shows the
link between the inertial frame (in blue) and the cross-sectional frame. The
rod is at static equilibrium between the external forces n̄(X) and couples
c̄(X), and its internal restoring forces n(X) and couples c(X).

A. Kinematics
Let us consider a single rod in space, of length l. In

Cosserat theory, the rod is modeled by a continuous stacking
of rigid cross-sections labeled by a continuous index that is
here chosen to be the arc length, noted X ∈ [0, l], counted
along the rod in a reference stress-less configuration. To each
cross-section that is assumed to be circular, is attached a cross-
sectional frame whose origin coincides with the cross-section
center. The position and orientation of rigid cross-sections are
described, respectively, by an X-parameterized curve in space
r : X ∈ [0, l] 7→ r(X) ∈ R3, and another in the Lie group of
rotations R : X ∈ [0, l] 7→ R(X) ∈ SO(3). Together, r and R
define a field of homogeneous transformation that describes
the entire rod

g : X ∈ [0, l] 7→ g(X) =

(
R(X) r(X)
01×3 1

)
∈ SE(3). (1)

The matrix g(X) represents the position and orientation of
the X-cross-section of the Cosserat rod or the pose of the
X−‘cross-sectional frame’ in the inertial frame (see Fig. 1).
At this point, the configuration space of a rod clamped in a
fixed basis is defined by the set of all possible fields of pose
g, with g(0) = 14×4, i.e.:

C1 = {g : X ∈ [0, l] 7→ g(X) ∈ SE(3) , with: g(0) = 14×4} .
(2)

The space-variations of position and orientation along the
length are modeled by the linear and angular rates of change,
respectively. In the cross-sectional frame, these two rates are
defined by the two fields Γ and K of R3 such that

r′ = RΓ , R′ = RK̂ , (3)

where the •′ symbol denotes differentiation with respect to X .
When combined, the fields of linear and angular space-rate Γ
and K, define a unique field of twist ξ such that

g′ = gξ̂ (4)

is equivalent to the two relations of (3).
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B. Static Model of a Cosserat Rod

As shown in Fig. 1, the rod is at static equilibrium under
the effect of some external force n̄ and couple c̄ density fields
defined over ]0, l[, and some tip force n+ and couple c+. Thus,
the rod generates some internal restoring forces n and couples
c over [0, l] that fulfill Newton’s balance of forces and couples
in the inertial frame

n′+n̄ = 03×1 , c′+r′×n+c̄ = 03×1 , ∀X ∈]0, l[ . (5)

The rod is assumed to be clamped at X = 0, and these
two sets of ordinary differential equations (ODEs) need to
be supplemented by the BCs

r(0) = 03×1 , R(0) = 13×3 , n(l) = n+ , c(l) = c+ . (6)

Note here that n(X) and c(X) are transmitted across the
X-cross-section. According to the conventions of continuum
mechanics, if X is oriented positively from the proximal to
the distal end of the rod, n(X) and c(X) are are counted
positively when exerted by the the distal piece of rod (i.e.
after arc-length X) onto the proximal piece (i.e. before arc-
length X). This first convention is in contrast to the convention
of rigid multi-body dynamics where the inter-body wrenches
are counted positively when applied from the basis to the tip.
In what follows, the stress-less reference configuration of any
kinematic variable is noted with index •0. As such, in the
small strain regime, the two strain fields of the rod, related
to shear and extension, and bending and torsion, respectively,
are defined as Γ−Γ0 and K−K0. Moreover, assuming linear
material elasticity, the internal forces n and couples c are
related to Γ and K through the constitutive laws

n = RHl (Γ− Γ0) , c = RHa (K −K0) , (7)

where, ∀X ∈ [0, l], Hl(X) and Ha(X) are the arc length
parameterized stiffness matrices for shear and extension, and
bending and torsion, respectively. (5) to (7) define a closed
static formulation of a clamped-free Cosserat rod in the inertial
frame. Alternatively, the same equations can be expressed in
the cross-sectional frame. To derive this other version, all the
vectors of the above formulation are shifted from the inertial
frame to the mobile cross-sectional ones, using the notation
conventions r′ = RΓ, n = RN , c = RC, n̄ = RN̄ , and
c̄ = RC̄, as follows:

(RN)
′
+RN̄ = 03×1 ,

(RC)
′
+ (RΓ)× (RN) +RC̄ = 03×1 .

(8)

Then, via composition rules of derivatives along with the
relation R′ = RK̂

RN ′ +RK̂N +RN̄ = 03×1 ,

RC ′ +RK̂C + (RΓ)× (RN) +RC̄ = 03×1 ,
(9)

which, being true for any R and owing to the definition of the
hat operator, provides

N ′ +K ×N + N̄ = 03×1 ,

C ′ +K × C + Γ×N + C̄ = 03×1 .
(10)

Once supplemented with the BCs

r(0) = 03×1 , N(l) = R(l)Tn+ ,

R(0) = 13×3 , C(l) = R(l)T c+ ,
(11)

which are deduced from their inertial frame version (6),
equations (10) stand for the ODEs of a Cosserat rod in the
cross-sectional frame. Following the convention of [41], all
pairs of angular and linear vectors gather in R6 vectors(

C
N

)′

+

(
K × C + Γ×N

K ×N

)
+

(
C̄
N̄

)
=

(
03×1

03×1

)
. (12)

Let us introduce the notations Λ =
(
CT , NT

)T
for the R6

field of stress wrench, F̄ =
(
C̄T , N̄T

)T
for the R6 field of

external loads, and F+ =
(
CT

+ , N
T
+

)T
, with C+ = R(l)T c+

and N+ = R(l)Tn+ for the wrench of external tip loads.
These notations enable to rewrite the two ODEs (12) in the
more compact (geometric) form as a balance of wrenches
expressed in the cross-sectional frame

Λ′ − adTξ Λ + F̄ = 06×1 . (13)

To which one needs to add the BCs

g(0) = 14×4 , Λ(l) = F+ . (14)

Similarly to the twist form of (4), (7) can be rewritten as

Λ = Hϵ = H (ξ − ξ0) , (15)

where ϵ = ξ − ξ0 =
(
(K −K0)

T
, (Γ− Γ0)

T
)T

is the R6

field of strain and H = diag (Ha,Hl) is the R6×6 Hookean
stiffness matrix.

C. Reshaping the Cosserat Model as a BVP
Whether in the Newtonian or in the Lagrangian approach,

the notion of BVP plays an essential role in the modeling
of continuum robots. In short, a BVP is a system of ODEs
whose solutions must satisfy BCs that partially determine the
state variables at the boundaries. In the present context, such
a system can be set in state space form

x′ = f(x) , h−(x(0)) = 0 , h+(x(l)) = 0 , (16)

where x is the vector of state variables, while the two functions
h± of the state vector x, at X = 0 and l, fix the BCs at the two
ends of the rod, with dim(h−) + dim(h+) = dim(x). Based
on this definition, it is straightforward to show that using the
constitutive laws (7) to remove the internal forces and couples
in (5) and (6) and gathering the resulting equations with (3),
yields a closed formulation describing the statics of an elastic
rod


r
R
Γ
K


′

=



RΓ

RK̂

Γ′
0 −H−1

l

[(
K̂Hl +H′

l

)
(Γ− Γ0) +RT n̄

]
K ′

0 −H−1
a

[(
K̂Ha +H′

a

)
(K −K0)

+ Γ̂Hl (Γ− Γ0) +RT c̄
]


,

r(0) = 03×1 , Γ(l) = Γ0 +H−1
l R(l)Tn+ ,

R(0) = 13×3 , K(l) = K0 +H−1
a R(l)T c+ .

(17)
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Figure 2. Synthesis of the steps in both approaches side by side. The
corresponding steps meet horizontally across the columns. The blue and
red areas are relative to the Newtonian and the Lagrangian approaches,
respectively. The yellow area is common to both (up to Section III). The
corresponding equation numbers are provided for each step. The abbreviations
act., ext., and int. stand for actuation, external, and internal, respectively.

(17) defines a BVP in the explicit state form (16), with
x = (r,R,Γ,K) being the state variables. Note that using con-
stitutive relations in alternate ways provides another equivalent
BVP where strain variables (Γ,K) are replaced by stress ones
(n, c), while all the strain and stress vectors can be expressed
in the cross-sectional or inertial frames.

D. From Cosserat Rods to TACRs

The following two sections present two different approaches
that use the above derived equations to model TACRs. The
main steps of each of the approaches are synthesized in
Fig. 2 and the accompanying video to help the reader follow
through the developments and highlight the correspondence
of the steps between approaches. Both approaches assume
the same set of model simplifications. The tendons are in-
extensible, experience no friction, and are routed through
continuous routing paths rather than through discrete disks.
These are all reasonable assumptions for small curvatures and
a large amount of routing disks, but may introduce significant
discrepancies when this is not the case. Also, in addition
to the assumption of material linear elasticity (see (7)), the
considered robots have constant material properties along their
length (i.e. H′ = 06×6).

IV. NEWTONIAN MODEL OF TACRS

In the Newtonian approach, the model is deduced from
Newton’s laws, i.e. by isolating the backbone and each of the
tendons separately, and by using the action-reaction principle
to remove the interaction forces between them. To detail this
process, let us first remark that, in a TACR, the backbone of
the robot can be modeled by the BVP (17). Sections IV-A
and IV-B describe how this BVP is complemented with a
model of tendon actuation.

A. Model of Tendon Actuation

To introduce the model of tendon actuation in (17), the
distributed loads are spelled out as

n̄ = n̄ext + n̄act , c̄ = c̄ext + c̄act , (18)

where n̄ext and c̄ext model the external loads applied by
the environment such as gravity or contacts, while n̄act and
c̄act stand for those applied by the tendons. Invoking the
action-reaction principle, the distributed force exerted by each
tendon i onto the backbone is equal to the opposite of the
distributed force exerted by the backbone on this tendon,
noted n̄i. Therefore, summing these contributions provides the
distributed force of the m tendons on the backbone

n̄act =

m∑
i=1

−n̄i . (19)

As a tendon cannot transmit any couples, the distributed
moment of the tendons exerted on the backbone c̄act is equal
to only the sum of the cross products of each moment arm
with each force

c̄act =

m∑
i=1

(ri − r)× (−n̄i) = −
m∑
i=1

di × n̄i , (20)

where ri = r + RDi is the position of the ith tendon
expressed in the inertial frame, Di(X) = (0, Di,Y , Di,Z)

T (X)
the position of the ith tendon expressed in the X-cross-
sectional frame, and di = RDi. Modeling a tendon as an
inextensible degenerate Cosserat rod, with no angular inertia,
one can derive the expression for n̄i, by applying the linear
static balance (5) with its internal forces ni, to each tendon
individually

n̄i + n′i = 03×1 . (21)

Again, as a perfectly flexible string cannot support internal
couples or shear forces but only a constant tension τi tangent
to its path, the field of internal forces along each tendon i
reads

ni = τiti , (22)

with ti = r′i/∥r′i∥ the unit tangent vector to the path of the
tendon. Now, considering that the tension is constant (τ ′i =
03×1), (21) provides the expression of the external forces of
each tendon

n̄i = −n′i = −τit′i . (23)
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B. Forward kineto-static BVP of a TACR
Following the methodology of [22], (23) is introduced into

(19) and (20), and the result into (18) then in (5). These
identifications provide the stress balance equations of the
TACR actuated by a set of m tendons

n′ +

m∑
i=1

τit
′
i + n̄ext = 03×1 ,

c′ + r′ × n+

m∑
i=1

di × (τit
′
i) + c̄ext = 03×1.

(24)

To obtain an explicit form of the ODEs (24) compatible with
(16), one needs to express the field of forces exerted by each
tendon in terms of the backbone strains (Γ, K) and their space
derivatives. To this end, let us first remark that we have

n̄i = −τit′i = −τi
(

r′i
∥r′i∥

) ′

= τi
r̂′i

2

∥r′i∥
3 r

′′
i , (25)

referring to Appendix B of [22] for further details. Next, one
needs to expand the first and second derivatives of ri. Ex-
pressing these quantities in cross-sectional frame coordinates
permits a more concise writing, as follows:

r′i = RΓi = R
(
K̂Di +D′

i + Γ
)
,

r′′i = R
(
Γ′
i + K̂Γi

)
,

(26)

where Γi = RT r′i. Now, introducing (26) in (25) and the result
in (19) and (20) yields

n̄act = R (a+AΓ′ +GK ′) ,

c̄act = R (b+BΓ′ +HK ′) ,
(27)

where A, B, G, H , a, and b depend on Γi = RT r′i =
Γ+K×Di+D

′
i and are all proportional to τi, as detailed in

Appendix A. Finally, using (27) in (18) and the result in (17),
and rearranging the obtained expressions, yields the ODEs
governing the statics of a TACR in the expected explicit form

r
R
Γ
K


′

=


RΓ

RK̂(
Hl +A G
B Ha +H

)−1(
c
d

)
 , (28)

where the expressions of c and d are detailed in Appendix A.
This set of ODEs needs to be supplemented with the BCs of
(17). Here the values of n+ and c+ are the forces and moments
generated by the attachment of each tendon at the boundary,
which, invoking the action-reaction principle, read

n+ =

m∑
i=1

−ni(l) = −
m∑
i=1

τiti ,

c+ =

m∑
i=1

di × (−ni(l)) = −
m∑
i=1

di × τiti .

(29)

Finally, with these detailed BCs, (28) defines the same BVP
as obtained in [22]. This BVP is the forward kineto-static BVP
of a TACR, "forward" because its resolution provides outputs
in motion (here strains), from inputs in force (here tendon
tensions).

V. LAGRANGIAN MODEL OF TACRS

In this section, the Lagrangian model of a TACR is derived
from the principle of virtual work, starting from zero, i.e.,
calculating individually each contribution to the virtual work
balance. In other words, to improve the intelligibility of the
approach, we bring back TACR modeling to the canonical
Lagrangian methodology. Note that this choice contrasts with
recent publications on the topic, where the Lagrangian model
is obtained either by projection of Cosserat partial differential
equations with Jacobian matrices [33], [34], or by feeding
a continuous Newton-Euler inverse algorithm with specific
inputs [32].

Adopting this canonical viewpoint, Lagrangian modeling
is achieved in two steps. In a first (kinematic) step, the
Lagrangian approach consists of a reduction of the infinite
dimensional configuration space (2) into a finite-dimensional
configuration space. In a second step, this kinematic reduction
is introduced in the principle of virtual work. As this principle
holds in any definition of the configuration space, it allows to
shift the static balance of Section III-B, from the configuration
space (2), to the (finite dimensional) reduced one. This two-
step process finally produces the reduced kineto-static model
of a TACR.

A. Strain Based Reduction

The purpose of the reduction is to shift the previously
introduced continuous model to a finite dimensional model in
terms of a vector of generalized strain coordinates q, similar to
the joint coordinates of a rigid manipulator. g being in a non-
commutative Lie group (i.e. a nonlinear manifold), the usual
linear operations of interpolation or functional superimposition
cannot directly be used to achieve the expected reduction. To
circumvent this issue, the idea is to remark first that one can
reconstruct any g by integrating (4) from X = 0 to X = l
starting from g(0) = 14×4. Therefore the configuration space
(2) of a clamped Cosserat rod can be alternatively defined by
the functional space

C2 = {ξ : X ∈ [0, l] 7→ ξ(X) ∈ R6} . (30)

C2 is a (functional) linear space, since SE(3) in (2) is now re-
placed by the vector space R6. This alternate definition allows
to apply usual procedures of linear reduction. According to the
Ritz approach [42], the strain field ϵ = ξ − ξ0 is decomposed
on a functional basis of "strain functions" as

ϵ = Φ(X)q , (31)

where q is a Rk vector of generalized strain coordinates and
Φ is a R6×k matrix of shape functions whose choice is fixed
by the user. As a result, any configuration of the rod can be
reconstructed in the inertial frame by integrating the ODE

g′ = g (Φq + ξ0)
∧ (32)

from X = 0 where g(0) = 14×4, to X = l. The purpose of
the next section is to derive the static balance of a TACR in
terms of the vector of generalized strain coordinates q of its
backbone, i.e. on the finite dimensional configuration (vector)



8 IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. Y, MONTH 2023

space Rk. This reduced model will take the usual matrix form
of Lagrangian mechanics.

B. Reduced Static Balance

Once the configuration space is defined, one needs to use
one of the variational principles of Lagrangian mechanics to
derive the model of the system in this space. In statics, the
principle of virtual work applies. It considers the system in its
static equilibrium where the external loads balance the internal
restoring forces (stress), thus

δWext + δWint = 0 , (33)

where δWext and δWint stand, respectively, for the work of
external and internal forces along any virtual displacement (or
variation) of the configuration, compatible with the geometric
BCs and the parameterization used to describe the system. In
the case of TACRs, the system considered is the backbone and
the part of the tendons contained inside the robot. Since the
tendons have negligible inertia and elasticity, the configuration
of this system is that of the backbone alone. Thus any field
of kinematically compatible virtual displacement along the
robot can be defined by a small perturbation of g noted δg,
with δg(0) = 04×4. As for (4), this field of transformation
perturbations is entirely described by a field of twist noted δζ
and defined by

δg = gδζ̂ , with: δζ(0) = 06×1 . (34)

The condition at X = 0 is imposed by the compatibility of
variations δg with the geometric BC g(0) = 14×4. When
applied to the backbone, such virtual displacements generate
variations of its strain field δϵ = δ(ξ−ξ0) = δξ. These relative
variations δξ are related to the absolute ones δζ through the
commutation relation

δζ ′ = δξ − adξδζ . (35)

To derive this relation, it suffices to remark that, since vari-
ations δ do not affect the labels X , the variation and X-
derivation are exchangeable, i.e.

δ(g′) = (δg)′ . (36)

Then, using the definitions of δζ and ξ in terms of g, namely
δg = gδζ̂, and g′ = gξ̂ in (36), as well as the anti-hat operator,
leads to (see Appendix B) the expected relation (35). Based
on these preliminaries, one can now develop the balance of
virtual works (33) as follows. The virtual work of internal
elastic stress reads

δWint = −
∫ l

0

δϵTHϵ dX . (37)

As regards the work of external forces, it can be detailed as
the sum

δWext = δW̃ext + δWact

=

(∫ l

0

δζT F̄ dX + δζ(l)TF+

)
+

(
m∑
i=1

δli τi

)
, (38)

where δW̃ext stands for the virtual work of external gravity
and contact forces, while δWact is the virtual work of tensions
exerted on the tendons, with δli the variation of length of the
part of tendon i contained in the robot. Now, assuming the
tendons are inextensible, the kinematic relation between their
length variations and the strain variations of the backbone is
(see Appendix C)

δli =

∫ l

0

J̄liδϵ dX,

with: J̄li =
1

∥Γi∥
(
ΓT
i ,Γ

T
i

)( D̂T
i 03×3

03×3 13×3

)
, (39)

where the Jacobian (continuum) operator J̄li is introduced,
with Γi = RT r′i = Γ +K × Di + D′

i, and Di = RT di, the
vector of the components of the radial position of the tendon i
in the cross-sectional frame of the backbone. Introducing this
relation in the second term of (38), and exploiting the fact that
τ ′i = 03×1, allows rewriting the virtual work of actuation in
the form

δWact =

m∑
i=1

∫ l

0

δϵT J̄T
li τi dX =

∫ l

0

δϵT

(
m∑
i=1

J̄T
li τi

)
dX .

(40)
This last equation shows that the effect of tendons naturally
appears as stress (and not forces) since they work along
strain variations δϵ (and not along configuration variations,
i.e. virtual displacements δζ). Based on this remark, the field
of actuation stress Λact is defined as

δWact =

∫ l

0

δϵTΛact dX ⇒

Λact =

(
m∑
i=1

τiJ̄
T
li

)
=

m∑
i=1

1

∥Γi∥

(
Di × Γi

Γi

)
τi , (41)

which can be integrated to the constitutive law (15) yielding
the more general active-passive law

Λ = Λact +Hϵ . (42)

To detail the expression of the first term δW̃ext of (38), the
virtual displacements δζ must be expressed in terms of δϵ
and subsequently δq. To this end, the first step is to introduce
adξ = Ad−1

g Ad′g in the commutation relation (35). The second
step is to integrate the result between 0 and X . This provides
the expression of any virtual displacement field δζ that is
compatible with the internal kinematics and the geometric BCs

δζ(X) = Ad−1
g(X)

∫ X

0

Adg(Y )δξ(Y ) dY

=

[
Ad−1

g(X)

∫ X

0

Adg(Y )Φ dY

]
δq = J(X)δq , (43)

where J(X) defines the Jacobian matrix, which maps any
variation δq to δζ(X). To obtain (43), one needs the relation
δζ(0) = 06×6 (consequence of g(0) = 14×4) as well as the
variation of (31)

δξ = δϵ = Φδq . (44)
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Using (43) in δW̃ext of (38), and (44) in δWint of (37) as
well as in δWact of (41), the balance of virtual works (33)
reads

δqTQext + δqTKϵϵq = δqTQact . (45)

(45), being true for any δq, provides the static balance of
generalized forces

Qext +Kϵϵq = Qact . (46)

This equation introduced the following three vectors of gen-
eralized forces. The Rk vector of generalized restoring forces

Qrod =

∫ l

0

ΦTHϵ dX =

(∫ l

0

ΦTHΦ dX

)
q = Kϵϵq ,

(47)
with Kϵϵ the Rk×k matrix of generalized stiffness. The Rk

vector of generalized forces of actuation

Qact = −
∫ l

0

ΦTΛact dX

= −
m∑
i=1

[∫ l

0

ΦT

∥Γi∥

(
Di × Γi

Γi

)
dX

]
τi = L(q)τ . (48)

And the Rk vector of generalized external forces

Qext = −
∫ l

0

JT F̄ dX − J(l)TF+ , (49)

which can be alternatively written in the equivalent form (see
Appendix D)

Qext = −
∫ l

0

ΦTΛ dX , (50)

where Λ is the solution of the inverse kineto-static BVP of a
TACR, obtained by gathering (4) and (15),(

g
Λ

)′

=

(
gξ̂

adTξ Λ− F̄

)
,

g(0) = 14×4 , Λ(l) = F+ .

(51)

This new BVP is called the inverse BVP, because it allows to
calculate force-outputs (here the stress Λ) from the knowledge
of motion-inputs (here the strain ϵ = ξ − ξ0). In other words,
Λ is the field of stress that balances the imposed external
wrenches F̄ and F+ when the backbone is in the configuration
ξ.

It should be noted here that, although expressions (49) and
(50) are equivalent and dual to each other, choosing one or
the other to calculate the generalized external forces, leads to
fundamentally different algorithms. In details, if one uses (49),
as in [33], [34], the external forces of (46) are calculated with
Jacobian matrices according to a matrix projective process,
often called Kane’s method in the mechanical literature [43].
On the other hand, if one uses (50) as in [32], the same forces
are calculated by solving the inverse BVP (51). In section
VII.B, this second approach will be addressed yet with new
numerical methods (compared to [32]), and applied to the
simulation of a TACR in its quasi-static regime.

VI. EQUIVALENCE OF THE TWO MODELS OF TENDON
ACTUATION

Before Lagrangian reduction, the two approaches only differ
by the model of tendon actuation (see Fig. 2). Hence, the
purpose of this section is to demonstrate the equivalence of
these two models. To this end, let us first reconsider (18) and
recall that, in the Newtonian approach (see Section IV), the
action of the tendons is modeled as external forces n̄act and
couples c̄act. Both are integrated in the wrench of external
distributed loads F̄ applied along the backbone as follows:

F̄ =

(
C̄
N̄

)
=

(
C̄ext

N̄ext

)
+

(
C̄act

N̄act

)
=

(
RT c̄ext
RT n̄ext

)
+

(
RT c̄act
RT n̄act

)
.

(52)
Whereas in the Lagrangian approach (see Section V), the
same actions are modeled by the wrench of stress across the
backbone Λact whose expression is defined by (41), and which
can be expressed in the inertial frame as(

cact
nact

)
=

(
RCact

RNact

)
=

m∑
i=1

(
di × ti
ti

)
τi , (53)

where remind that RΓi = r′i, ti = r′i/∥r′i∥ and RDi = di.
To demonstrate the equivalence of both approaches, the first
step is to reconsider the BVP (17) on which the Newtonian
approach is based. But, in contrast to Section IV-B, the action
of tendons is no more modeled as a field of external forces
and couples defined by (19), (20), and (23), but as the field of
stress wrench across the backbone (53). This change of view
point means that, in (17), c̄act and n̄act are removed from the
model of external loads (18), to be replaced by internal forces
and couples across the backbone cact and nact. These internal
forces superimpose to its usual elastic forces and couples, now
noted crod and nrod, to form the full field of internal couples
and forces along the robot considered as a stress-actuated
backbone

c = crod + cact , n = nrod + nact . (54)

Note that once expressed in the cross-sectional frames, these
two relations do define the active constitutive law (42), which
takes the detailed form

Λ = Λact +Hϵ =
(
RT cact
RTnact

)
+

(
Ha (K −K0)
Hl (Γ− Γ0)

)
, (55)

where nact and cact are given by (53). As announced, substi-
tuting (53) and (54) in the stress balance (5), produces(

nrod +

m∑
i=1

τiti

)′

+ n̄ext = 03×1 ,(
crod +

m∑
i=1

di × (τiti)

)′

+ r′ ×

(
nrod +

m∑
i=1

τiti

)
+ c̄ext = 03×1 .

(56)



10 IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. Y, MONTH 2023

Rearranging (56) with the usual composition rules of deriva-
tives and using di = ri − r and τ ′i = 03×1, yields

n′rod +

m∑
i=1

τit
′
i + n̄ext = 03×1 ,

c′rod + r′ × nrod +

m∑
i=1

di × (τit
′
i)

+

m∑
i=1

(r′ + d′i)× (τiti) + c̄ext = 03×1 .

(57)

Finally, using the relations r′ + d′i = r′i = ∥r′i∥ ti and ti ×
ti = 03×1 in (57), leads to the two stress balances of a TACR
in the Newtonian approach (24) (with nrod = n, crod = c),
from which we deduced the BVP (28). Therefore, modeling
the effect of tendons as external loads as in the Newtonian
approach or as internal stress as in the Lagrangian approach
leads to equivalent continuous models. In more details, the
BVP (28) with the BCs of (17), with (29), of the Newtonian
approach, is equivalent to the closed continuous formulation
(46), with (41), (42), and (51), exploited by the Lagrangian
approach.

VII. NUMERICAL IMPLEMENTATION

Sections VII-A and VII-B deal with numerical implemen-
tation of the Newtonian and Lagrangian approaches, respec-
tively. They both start with the case of a single-segment TACR
and then extend the resolution to the multi-segment case.

A. Numerical Implementation of the Newtonian Approach

In the Newtonian approach, the simulation of a TACR
is achieved by solving the forward kineto-static BVP (28).
Although this can be done by different numerical methods
(finite differences, shooting, spectral methods ...), this paper
adopts the shooting method, since it is largely dominant in the
community.

1) Newtonian Resolution of a Single-Segment TACR: Solv-
ing the forward statics BVP (28) with the shooting method
consists in finding the unknown proximal BCs Γ(0) and K(0)
such that the known distal BCs Γ(l) and K(l), defined by
(17), are fulfilled (see bottom left area of Fig. 2). This search
is achieved iteratively by applying a root finding algorithm to
the residual vector

R(Γ⋆(0),K⋆(0)) =

(
Γ(l)− Γ⋆(l)
K(l)−K⋆(l)

)
, (58)

where Γ⋆(l) and K⋆(l) are the distal values of Γ and K
obtained by forward integrating the ODEs of (28) from the
known proximal BCs (r,R)(0) — supplemented with the
guessed values (Γ⋆,K⋆)(0) of the missing ones — to X = l.

This resolution proposes to iterate over the values of Γ(0)
and K(0) but the relations (7) permit to equivalently iterate
over N(0) and C(0) or any combination of these variables.
Changing the state variables can be of interest, for instance,
when the rod is very stiff for shear and extension, which may
cause convergence issues. When computing the residual vector
at each iteration, the kinematic ODE R′ = RK̂ is integrated

using quaternions, which ensures that R remains in SO(3).
Note also that other methods based on Magnus expansions in
SO(3)× R3 or SE(3) can be used [33], [44].

Choosing the initial guess is a crucial step that may de-
termine the outcome of the implemented algorithm. When
the initial guess is too far from the solution, algorithms may
converge to a local minimum or fail to converge due to
gradients that lead to infeasible points. Nonetheless, finding a
good initial guess may be a tricky task. A solution to address
this issue is to start from a vector of zeros. If the TACR is
subject to small loads, the solution will be close to zero and
the solver will likely converge. If, on the contrary, the TACR
is subject to higher loads, the strategy consists in dividing the
total load of the problem in a number of increasing loading
steps such that the first step can be solved starting with the
zero vector. Then, the subsequent steps are solved for, using
the previous solution as input for the following guess. Another
advantage of specifying the loading history is that the final
solution can be controlled in the case of multiple possible
solutions for a given load [45].

2) Newtonian Resolution of a Multi-Segment TACR: In
a multi-segment robot, the poses as well as the internal
forces and couples propagate from one segment to the next.
Consequently, their values at the distal end of the first segment
are used as inputs for the ODEs of the second segment and
so on, until the most distal segment, where the BCs are
evaluated. The implementation of multi-segment robots is thus
straightforward based on the single-segment case and does not
increase the size of the problem’s state vector.

One particular case that, to the authors’ knowledge, has not
previously been reported in the literature, deserves a special
focus: when a tendon undergoes a slope discontinuity. The
tension applied to such a tendon will create a force, acting at
the location of the discontinuity, which needs to be taken into
account in the implementation. This happens for instance in
a multi-segment TACR where a tendon is routed following
a convergent routing path in the distal segment but runs
parallel to the backbone in the proximal segments (see Fig. 3-
Scenario C.). Practically, for a tendon i undergoing a slope
discontinuity between the segments j and j + 1, the shift in
routing orientation is equal to

JtiKj = lim
ε→0

(
ti(X

+
j )− ti(X

−
j )
)
, (59)

where X±
j = Xj ± ε, Xj is the arc length abscissa of

the backbone cross-section to which is attached the disk
connecting segments j and j + 1, and JfKj denotes the jump
of any field f when crossing the junction between segments
j and j + 1. Let us remind that ti = r′i/∥r′i∥ denotes the unit
tangent vector to the ith tendon. Applying Newton’s laws to
the tendon at the junction point, provides the jump of force
and couple transmitted to the backbone by a tendon i subject
to a slope discontinuity at junction j

JnKj = τi JtiKj , JcKj = di × JnKj . (60)

Note that (60) is no more than a discrete version of (23).
(60) will need to be added to the static balance (29) while
forward integrating the BVP (28), each time a tendon slope
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discontinuity is encountered. The slope discontinuity JtiKj can
be obtained with the relation JΓi/ ∥Γi∥Kj = RT JtiKj . Hence,
(60) is rewritten in its cross-sectional frame version

JNKj = τi

s
Γi

∥Γi∥

{

j

, JCKj = Di × JNKj , (61)

where Γ±
i is computed similarly to (26), with

Γi(X
±
j ) = Γ(X±

j ) + K̂(X±
j )Di(Xj) +D′

i(X
±
j ) . (62)

In practice, this calculation is achieved by using the following
jump relations on the space-rates:(

Γ
K

)
+

=

(
Γ
K

)
−
+

(
Hl +A G
B Ha +H

)−1

−

s(
c
d

){

j

,

(63)
where the expressions of A, G, B, H , c, and d are again
given by Appendix A, except that the continuous X-derivatives
D′

i and D′′
i are replaced by their jumps JDiKj = 03×1 and

JD′
iKj ̸= 03×1, respectively while, owing to the continuity of

poses, all other quantities are evaluated at X = X−
j . The

contribution of this term can be observed in simulations in the
accompanying video where the Newtonian approach is shown
to fail without the slope discontinuity compensation term.

Finally, using (63) from segment to segment while piece-
wise integrating the ODEs of (28) from X = 0 to l, allows
calculating the residual vector of (58) in the general case with
possible tendon slope discontinuities between segments.

B. Numerical Implementation of the Lagrangian Approach

Following the standard numerical techniques of the La-
grangian approach, the quasi-static simulation of a TACR is
performed here by solving the implicit system of non-linear
algebraic equations defined in (46). Note that this is different
from [32], where the resolution is performed by the explicit
time integration of an overdamped equivalent system. Also,
compared to [32]–[34] regarding the Lagrangian approach, this
paper further extends the simulations to Reissner rods (i.e.
considering shear and extension).

1) Lagrangian Resolution of a Single-Segment TACR:
In the Lagrangian approach, the numerical resolution of the
static problem consists in calculating the vector of generalized
strain coordinates q = (q1 .. qk)

T that fulfills the reduced
static balance (46), for any imposed vector of tendon tensions
τ = (τ1 .. τm)

T (see bottom right area of Fig. 2). Since this
balance defines a set of algebraic nonlinear equations, one
can apply any root finding algorithm to solve for the vector
of residuals R that takes the generic form

R(q, τ) = 0k×1 , with: R(q, τ) = Qext+Kϵϵq−Qact . (64)

It is of common use in nonlinear structural statics (and
dynamics) to use Newton-Raphson’s method, which allows to
update the q-vector at each step of a loop, iteratively reducing
the residual, according to the linear relation

q+ = q − J−1(q)R(q, τ) , (65)

where J(q) = ∂R
∂q denotes the Rk×k Jacobian matrix of the

residual vector, and q+ is the updated value of q. Therefore,

applying this method requires to calculate the vector of resid-
uals R and its Jacobian matrix J .

To numerically compute the residual vector R from any q-
vector, the expressions (47), (48), and (50), are added to the
inverse BVP (51) through the state variable

y(X) = −
∫ l

X

ΦT (Λact − Λ +HΦq) dY (66)

such that y(0) = R. The state variables (g,Λ, y) are then
governed by the augmented inverse BVP, which is fed with
ξ = ξ0 +Φq, and readsgΛ

y

′

=

 g (ξ0 +Φq)
∧

adT(ξ0+Φq)Λ− F̄

ΦT (Λact − Λ +HΦq)

 ,

g(0) = 14×4 , Λ(l) = F+ , y(l) = 0k×1 ,

(67)

where Λact is a function of q and τ , given by (41), while
F̄ depends on the context. For instance, if the robot is only
subject to gravity, F̄ =

(
01×3, R

TaTg Aρ
)T

, with ag the
acceleration gravity field expressed in the inertial frame, A
the area of the robot’s section, and ρ its density.

Note that, similarly to the inverse kineto-static BVP (51),
(67) possesses interesting properties that makes its resolution
straightforward compared to that of the forward BVP (28). In
particular, it can be solved with two decoupled passes (i.e.
without resorting to the shooting algorithm), with standard
explicit space integrators. One can first integrate forward (from
X = 0 to l), the ODE in g, and then integrate backward
(from X = l to 0) the two other ODEs in Λ and y producing
R(q) = y(0). This method has been proposed and interpreted
as a Newton-Euler computed torque algorithm in [32], similar
to those developed for rigid multi-body systems [46]. In this
article, we exploit a further property of the inverse BVP, and
remark that since the q-vector is an imposed input, (67) is
linear with respect to the state variables (g,Λ, y). As a result,
one can apply a spectral collocation method and replace the
previous explicit ODE integrations, by the resolution of some
linear algebraic systems with respect to the vector of the state
variables on a Chebyshev grid [37].

In the continuum robotics community, Jacobian matrices
are often calculated numerically. This paper proposes a more
accurate calculation of J , based on the exact linearization of
the residual vector. To this end, the BVP (67) is linearized
with respect to its input q by propagating the differential
consequences of a variation ∆q as∆ζ

∆Λ
∆y

′

=

 −ad(ξ0+Φq)∆ζ +Φ∆q
adTΦ∆qΛ + adT(ξ0+Φq)∆Λ−∆F̄

ΦT (∆Λact −∆Λ+HΦ∆q)

 ,

∆ζ(0) = 06×1 , ∆Λ(l) = ∆F+ , ∆y(l) = 0k×1 ,

(68)

where ∆ζ is the differential of g in se(3) defined by ∆ζ =(
g−1g

)∨
, while ∆Λact, ∆F̄ , and ∆F+ are the differentials of

the model of actuation stress and external forces, respectively.
Note here that, the variation ∆ being only generated by the
variation of the configuration ∆q, ∆τ = 0m×1 in ∆Λact.
Moreover, the dependence of Λact on q is very weak and
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may be neglected in the calculation of the Jacobian. Thus,
∆Λact = 06×1 when solving (68).

The BVP (68) defines the augmented inverse tangent BVP
(TBVP) of the robot. The full BVP obtained by gathering
(67) and (68) is linear, and can, once again, be solved with a
spectral method applied forward and backward, as for the BVP.
Now, by virtue of the linear identity ∆y(0) = ∆R = J(q)∆q,
applying the unit input vector ∆q = δα to (68), where δα is a
Rk×k vector of zeros, except the entry α, which is equal to 1,
(68) yields the column α of J . Hence, repeating the process for
α = 1 .. k allows the Jacobian to be filled column by column.
As a last remark, due to its nonlinearity, the spectral method
cannot be directly applied to the forward statics BVP (17).

2) Lagrangian Resolution of a Multi-Segment TACR:
The Lagrangian model of a multi-segment TACR is simply
obtained by applying the principle of virtual work to the
system defined by the serial connection of the χ segments.
All segments are subject to the external forces applied by the
environment (e.g. gravity), those exerted by the tendons across
the basis, as well as the restoring internal forces. Such a virtual
work balance takes the generic form

χ∑
j=1

δW̃ext,j + δWact,j + δWint,j = 0 , (69)

with j the index of segments and where each of the three con-
tributions can be defined and detailed as in the single-segment
case of (38). In particular, applying the same strain reduction
segment by segment provides the vector of generalized strain
coordinates of the entire robot q = (q(1) .. q(χ))

T . From now
on, "•(j)" denotes a generalized vector or matrix, related to
the segment j. Introducing these reduced virtual works in (69)
allows to write, for any δq,

δqT (Qext +Kϵϵq −Qact) = 0k×1 , (70)

where Kϵϵ = diag(Kϵϵ,(1) ..Kϵϵ,(χ)), Qext =
(Qext,(1) .. Qext,(χ))

T , and Qact = (Qact,(1) .. Qact,(χ))
T .

In other words, the multi-segment TACR model is simply
obtained by appending the matrices and vectors of each
segment one after another.

To numerically solve this multi-segment model, the above
single-segment method can be extended by considering a
BVP of the form (67) for each of the segments, and its
associated TBVP (68). Using normalized arc-length variables
along each segment, these χ BVPs and TBVPs, are now
connected through their BCs as follows:

gj(1) = gj+1(0) , Λj(1) = Λj+1(0) , (71)
∆ζj(1) = ∆ζj+1(0) , ∆Λj(1) = ∆Λj+1(0) . (72)

Note that, as it is usually the case in Lagrangian mechanics,
the above relations introduce no jumps on the stress. Indeed,
the inter-segment forces of (60) are considered as internal
forces of the multi-segment system that do not work in any
virtual displacement field compatible with the inter-segment
connections. Finally, the multi-segment solution is obtained
by solving (65) applied to the whole structure. The Jacobian
and the residual are computed, as in the single-segment case,
by forward and backward integrations of (67) and (68), and
starting from g1(0) = 14×4 and Λχ(1) = F+, respectively.

Table II
GEOMETRY AND MATERIAL PARAMETERS OF THE SIMULATED ROBOT.

Parameter Name Parameter Symbol Value

Backbone diameter Rb 0.4mm

Backbone length (A, B, C) l 242mm

Backbone length (D, E) l = lj × 3 300mm

Tendon offset Rt 8mm

Gravity constant ∥ag∥ 9.81N/kg

Robot equivalent density2 ρ =
0.47N/m

∥ag∥π(Rb)
2 95 · 103kg/m3

Young’s modulus E 210GPa

Poisson’s ratio ν 0.3125

VIII. PERFORMANCE COMPARISON

The objective of this section is to compare the behavior of
both approaches when modeling various TACRs. This paper
proceeds through the comparison of five example scenarios of
increasing complexity and that are representative of the TACRs
studied in the literature and numerous other configuration
possibilities. The robots and their routings are represented in
Fig. 3 and 3D views are shown in the accompanying video.
To confront our simulations with results from the literature,
we chose to model the TACR presented in [22], but with
various tendon routings. Its geometry and material parameters
are given in Table II. In all scenarios, the robot is oriented with
its base pointing upwards, opposite to the action of gravity.

Both approaches also involve some numerical parameters.
For the Newtonian approach, all segments’ ODEs are inte-
grated using the Runge-Kutta Dormand–Prince method with
Matlab’s ode45 function. The 'ResTol' and 'AbsTol'
parameters are both specified to 10−8. The global BVP (28) is
solved using Matlab’s fsolve function with the Levenberg-
Marquardt algorithm with all parameters set to defaults. For
the Lagrangian approach, the ODEs are integrated using a
spectral method over a Chebyshev grid of 10 nodes. The
strain distributions are projected on Legendre polynomials of
orders 5 for torsion; 7 for bending in both directions; and 3
for extension and shearing in both directions. Summing all
polynomial orders results in a total of 28 shape functions.
Finally, the residual of the BVP (67) is brought to < 10−8

with Newton-Raphson’s method3.
When running simulations, particularly in the case of high

loads, the algorithms may fail to converge if the actuation load
is applied as a single step. Progressively increasing the tension
in the tendons and iteratively building upon the previous
solutions may solve this problem. This method will be used
for some of the simulated cases and will be referred to as the
number of needed loading steps.

As none of the codes for either approach were fully opti-
mized, the computation times of the simulations are not pro-
vided. Information regarding which approach is more efficient
for which case is discussed in Section IX.

2The equivalent density is the density applied to the backbone capturing
the weight of the backbone itself, disks, and tendons. The value of the robot’s
self-weight is from [22].

3The algorithm parameters were chosen empirically during preliminary
experiments such that the simulation results had converged for each approach.
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Figure 3. Left, front view (positive y-axis pointing upwards) of the different routings corresponding to the investigated scenarios. Right, top view of the
robots’ routing disks, with the tendon offset Rt. The top views of the first three scenarios are superimposed. The numbers next to the tendons correspond to
their index in each scenario. For details on each specific routing, please refer to the corresponding section.

A. Single-Segment Parallel Routing

Let us start with a simple case: a single-segment TACR
with 3 tendons routed parallel at 120◦ around (Rt = 8mm)
the backbone (see Fig. 3-Scenario A.). 216 simulations are
run with each approach corresponding to the possible combi-
nations of the integer values of tension between 0 and 5N for
each tendon. The simulations are analyzed by pair (Newtonian
and Lagrangian approaches) and the position and orientation
of the tip are compared in Table III. This table also displays the
main robot characteristics for each simulated scenario. Fig. 4a
shows a sample of 20 pairs of the 432 simulations. One can
see how both approaches render the same robot shape.

For this scenario, depending on the load combination in the
tendons, all cases in both methods could be solved with only
1 loading step, except 3 cases (1.39%) with the Newtonian
approach that required 2 loading steps.

B. Single-Segment Convergent Routing

Let us now change the parallel routing from the TACR
above to convergent routing. Examples of existing physical
robots with this kind of routing can be found in [24], [47].
In this case, 2 tendons are routed at opposite positions of the
robot, linearly convergent towards its end, starting at offset
Rt = 8mm at the proximal end of the robot and ending
coincident with the backbone at its tip (see Fig. 3-Scenario
B.). The cross-sectional frame position of the tendons now
depends on the reference length parameter X as follows:

Di(X) = (0,±Rt(1−X/l), 0)
T
.

Simulations are run for all combinations of tendon tensions
over the integer values between 0 and 8N. The maximum
tension is higher than in Section VIII-A in order to operate
the robot over a comparable workspace. With the two-tendon
robot described, these combinations yield 162 simulations.
Fig. 4b displays a sample of 20 pairs of these simulations.
As in the previous case, one can see how both approaches
render the same robot shapes. The values for the differences

between tip positions and orientations are similar to those
for the previous scenario (see Table III). As for the previous
scenario, a majority of cases of this scenario could be solved
with 1 loading step. 6.17% of the cases with the Newtonian
approach required 2 loading steps.

C. Single-Segment Helical Routing

In this scenario, the routing is set to 2 helically routed
tendons in a full turn around the length of the backbone, lying
opposite to each other (see Fig. 3-Scenario C.). As such, the
cross-sectional frame position of the tendon i is equal to

Di(X) = Rt

(
0, cos

(
2π

l
X + iπ

)
, sin

(
2π

l
X + iπ

))T

,

with Rt = 8mm.
The simulation results for tendon tensions varying over the

integer values between 1 and 10N for each tendon indepen-
dently for both approaches are shown in Fig. 4c. The tension
range is increased compared to the previous scenarios in order
to cover a comparable workspace with the studied routing.
Similar existing physical robots of the literature can be found
in [22], [23]. The differences in position and orientation are
still several orders of magnitudes lower than the robot’s length
(see Table III). For this batch of simulations, all cases of both
approaches were solved with a single loading step.

D. Multi-Segment Parallel Routing

As the implementation of multi-segment TACRs consid-
erably varies from one approach to the other (see Sec-
tions VII-A2 and VII-B2), it is interesting to compare simu-
lation results with multi-segment TACRs as well. This section
starts with a multi-segment TACR scenario involving no rout-
ing path discontinuities, thus not being subject to the matter.
The next section follows up with a scenario that does involve
routing path discontinuities (59).

The multi-segment TACR studied is a three-segment robot
with 3 parallel routed tendons per segment at 120◦ around
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(a) (b) (c)

Figure 4. A sample of 20 random pairs of the simulation results for single-segment TACRs with (a) parallel routing, (b) convergent routing, and (c) helical
routing. The geometry and material parameters of the simulated robot are given in Table II. Full and dashed lines represent simulations obtained using the
Newtonian approach and the Lagrangian approach, respectively.

Table III
SYNTHESIS OF RESULTS FOR THE FIVE SIMULATED SCENARIOS.

Scenario** A B C D E

Robot characteristics Type of routing Parallel Convergent Helical Parallel Convergent
Number of segments 1 1 1 3 3
Robot length [mm] 242 242 242 300 300

Tip position difference*** [mm] Median value 5.43 · 10−4 9.40 · 10−3 1.42 · 10−1 3.42 · 10−1 6.93 · 10−2

Lower bound 95% confidence interval 2.41 · 10−9 8.77 · 10−15 4.48 · 10−3 1.00 · 10−5 1.11 · 10−2

Upper bound 95% confidence interval 3.13 · 10−3 2.32 · 10−2 7.21 · 10−1 1.29 2.76 · 10−1

Tip orientation difference*** [◦] Median value 3.26 · 10−4 1.10 · 10−3 1.99 · 10−1 5.56 · 10−2 1.32 · 10−2

Lower bound 95% confidence interval 1.03 · 10−7 5.42 · 10−8 8.09 · 10−3 3.39 · 10−7 2.78 · 10−3

Upper bound 95% confidence interval 1.65 · 10−3 3.20 · 10−3 5.74 · 10−1 2.14 · 10−1 4.74 · 10−2

** The letters of the scenarios correspond to the subsections in Section VIII.
*** Differences between the results that are obtained with both approaches.

the backbone. Tendons (1,2,3) terminate in the first segment,
tendons (4,5,6) in the second segment, and tendons (7,8,9) in
the third segment (see Fig. 3-Scenario D.). The robot geometry
and material parameters are the same as for the previous
robots, except for the length of the segments, shortening them
to lj = 100mm for a total robot length of l = 3lj = 300mm.
Indeed, a too slender robot is subject to instabilities and for
some tendon load combinations, multiple solutions would be
possible. This simulation scenario can be compared to the
physical multi-segment TACR examples of the literature [7],
[10], [25].

505 tendon tension combinations that cover the workspace
are simulated with integer values of tendon tensions varying
from 0 to 5N. Fig. 5a displays a sample of 20 pairs of
these 1010 simulations. The robot shapes with both approaches
superimpose and the differences in position and orientation of
the tip remain very small (0.43% of the robot’s length) (see
Table III). In this scenario, 1.58% of the cases required 2
loading steps with the Newtonian approach. All other cases
were solved with 1 loading step.

E. Multi-Segment Convergent Routing
Here, the same robot as in the previous scenario is simu-

lated, but with 2 convergent tendons per segment. The tendons
are only routed convergent in their terminating segment and
are routed parallel to the backbone elsewhere, following:

Di,j(X) = (−1)
i
Rt φj(X) (0, cos (θj) , sin (θj))

T
,

with

φj(X) =


1 for X < (j − 1) lj

1− X−(j−1)lj
lj

for (j − 1) lj ≤ X ≤ j lj

0 for X > j lj ,

where Di,j(X), stands for the routing path of tendon i = 1 .. 6
that ends in segment j = 1 .. 3 and θj = (j − 1) 2π/3. As
such, the pair of tendons of each segment run on opposite
sides of the backbone. The tendons of the first segment are
aligned with the xy-plane. For the following segments, the
tendons are shifted 120◦ counterclockwise with respect to the
previous segment (see Fig. 3-Scenario E.).

Fig. 5b displays a sample of the 686 simulations, cor-
responding to 343 actuation combinations covering the
workspace with integer values of tendon tensions ranging from
0 to 4N. The differences in position and orientation of the tip
are reported in the last column of Table III. For this batch of
simulations, all cases of both approaches were solved with a
single loading step. Building upon a design featuring conver-
gent routings, as presented in [24], this scenario, with multiple
such segments, involves tendon slope discontinuities between
the segments. Still, the values are similar to those of other
scenarios. The accompanying video shows how the Newtonian
approach fails without the slope discontinuity compensation
term. In some cases, the discrepancies can go up to 50% of
the robots’ length.
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(a) (b)

Figure 5. A Sample of 20 random pairs of the simulation results for the three-segment TACRs with (a) parallel routing and (b) convergent routing. The
geometry and material parameters of the simulated robot are given in Table II. Full and dashed lines represent simulations obtained using the Newtonian
approach and the Lagrangian approach, respectively.

IX. DISCUSSION

In terms of mathematical modeling, the Newtonian approach
makes use of Newton’s action-reaction principle and gathers
ad hoc equations to form the global BVP of the problem.
The main challenge consists in reshaping the BVP, to find an
explicit form suited for solving with a shooting method. This
challenge is addressed through complex algebraic manipula-
tions [22]. On the other hand, the philosophy of Lagrangian
mechanics is to consider the system as a whole, removing
the need for isolating subsystems and making them interact.
The difficulty here resides in reducing the infinite dimensional
problem to a finite dimensional problem in both the spaces
of kinematics and statics, the latter involving evolved calcu-
lus [32]. The advantage of this approach is that the reduced
form of the problem resembles that of a classical rigid series
manipulator. As such, the generalized strain coordinates are
analogous to the joint coordinates, which is particularly useful
for control purposes. Another advantage of the Lagrangian
approach is that it can be applied systematically to a wide
variety of systems (closed loops, lumped joints, etc.) without
having to redefine the vector of residuals for each specific case.
Redefining residuals may be delicate as soon as one deviates
from the simple case of the multi-segment robots studied here.

Numerically, the results from Section VIII show that both
approaches produce almost identical results. The differences
can partially be explained by the way the external distributed
loads are taken into account in each approach. In the New-
tonian approach, these loads are included in (28), which is
integrated from X = 0 to X = l, whereas in the Lagrangian
approach, the distributed loads F̄ are defined over X ∈ ]0, l[.
Still, all tip position differences are comprised between 0 and
1.29mm which is 8.00% of the robots’ diameters and stays
within 0.43% of the robots’ lengths. These discrepancies are
negligible compared to the modeling errors that are reported
in studies that involve experimental setups, which go over 7%
of the robots’ lengths [23].

The Lagrangian approach proposes a reduction of the prob-
lem that can be adapted for each particular system. Shape
functions that determine the size of the residual must be
specified to represent the strains in the various segments of

the modeled robot. A great variety of choices are available,
and it may be challenging to find the strain basis that is best
suited to a particular problem while keeping the computational
cost low. Including the routing schemes of the tendons as
shape functions was proven to be an efficient choice [33], but
complex interactions between the robot and its environment
will however require including higher dimension generic shape
functions. Moreover, when modeling multi-segment robots,
a number of shape functions must be added for every new
segment. Thus, the combination of high dimension shape
functions and multiple segments may lead to excessively
long residual vectors. The benefit of this reduction is that
the variational principles are transferred to the numerical
implementation, which are proven to be numerically robust.
As such, for virtually any given number of degrees of freedom,
the problem remains well conditioned and can be solved with
Newton-Raphson’s method, even for very high actuation and
external loads. In our simulations, the benefit of preserving the
variational principles through the reduction is demonstrated
by the fact that all simulations could be solved with a single
loading step.

The Newtonian approach is the easiest to implement, par-
ticularly for those not familiar with Lagrangian mechanics. Its
infinite configuration space removes the need for determining
shape functions. The consequence is that the robustness of the
mechanical principles is lost at the implementation. Therefore,
the approach is particularly dependent on the initial guess that
is fed to the solver. This approach is thus well suited for
problems where an approximation of the solution is known
(which is seldom the case) or for problems whose solution
is close to zero. In other words, the method is efficient
for solving non-complex cases with small deformations, but
increasing the problem complexity or modeling high strains
requires proceeding in steps, which is computationally costly.
In the Newtonian approach, multi-segment robots require more
complex action-reaction considerations (see Section VII-A).
Moreover, increasing the number of segments entangles the
problem without providing more degrees of freedom to the
state vector or the residual, and therefore makes the conver-
gence less certain for this kind of robots. On the other hand,
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the constant residual size goes together with an approximately
linear relation between the number of segments and the
computational cost. Besides, in this approach, computing the
Jacobian matrix of the residual vector is complicated and using
finite differences to estimate the gradient is less efficient and
may lead to inaccuracies.

Let us note that the above discussed reduction, influencing
the size of the residual of the problem in the Lagrangian
approach, must not be confused with the spatial discretization.
Both approaches require to numerically integrate the ODEs
along the backbones, requiring to discretize the backbones
over a number of nodes or integration points. Increasing the
number of these integration points contributes to the accuracy
of the simulations but also increases the computational cost,
meaning an equilibrium must be found. On this point, note that
the spectral integration benefits from an exponential conver-
gence, compared to the polynomial convergence of the usual
Runge-Kutta integrators. This enhanced convergence permits
to integrate over a reduced number of integration points with
the Lagrangian approach (typically 10 to 20).

We now draw conclusions from the whole processes used
to model and simulate the presented scenarios and more gen-
erally from our experience with these processes. Apart from
the numerical implementations presented in this paper, other
numerical methods can be used. For instance, the BVP of the
Newtonian approach can be solved with finite differences or
spectral methods, while [32]–[34] present different numerical
methods for the Lagrangian approach. In what follows, we
compare the derivation of the Newtonian approach solved
with a shooting method and the derivation of the Lagrangian
approach solved with Newton-Raphson’s method. Overall,
the Newtonian approach is more efficient for two types of
problems: (i) problems that include one or only a few segments
and involving low tendon tensions, and (ii) problems solved
iteratively with a known close solution as can be the case in
robot control. Indeed, starting from a close solution favors the
convergence, especially for complex structures. These more
complex structures with many segments and tendons, and
problems involving large deformations for which the solution
is completely unknown have a better chance on convergence
with the Lagrangian approach. As for the Newtonian approach,
the Lagrangian approach is more efficient when solving prob-
lems iteratively. And even more so, considering the fact that
establishing the generalized stiffness matrix Kϵϵ, the most
costly operation, is a constant function of the shape functions
Φ and, therefore, is computed only once.

X. CONCLUSION

In this paper, we show how the Newtonian approach and
the Lagrangian approach derive from the same kineto-static
model of a Cosserat rod. We have unified the derivation to
highlight the similarities between both approaches, which was
previously a strenuous task due to their different frameworks
and community backgrounds [22], [32]. Substantial additional
material is formulated in the derivation of the Lagrangian
approach presented in this paper to improve its intelligibility.
Also, we address the implementation of tendon slope discon-

tinuities in the Newtonian approach, which was missing from
the literature [22], [23], [48].

It is, for the first time, proved mathematically that both
approaches are equivalent. The simulation results show that
either of the approaches can be used interchangeably to model
TACRs and obtain identical solutions (all tip positions differ
within of 0.43% of the simulated robots’ lengths). Still, some
considerations summarized in Section IX, are to be taken into
account when choosing one or the other approach.

Finally, the developments and findings presented in this
paper apply to TACRs but can be extrapolated to model other
types of continuum robots. Our simulations did not take into
account any other external forces than gravity, but future work
including interactions with the environment can incorporate
them easily as described in the developments of Sections IV,
V, and VII. Also, building on the present paper that compared
the two approaches for robots in their quasi-static regime,
future work will focus on the dynamic case. We hope the
availability of the code will serve as a building block for the
continuum robotics community.

APPENDIX A
DETAILED EXPRESSIONS AND NOTATIONS USED IN (27)

AND (28)

The ODEs (27) make use of the notations

Ai = −τi
Γ̂i

2

∥Γi∥3
, A =

m∑
i=1

Ai ,

Bi = D̂iAi , B =

m∑
i=1

Bi ,

G = −
m∑
i=1

AiD̂i = BT , H = −
m∑
i=1

BiD̂i ,

ai = Ai

(
K̂Γi + K̂D′

i +D′′
i

)
, a =

m∑
i=1

ai ,

bi = D̂iai , b =

m∑
i=1

bi .

The BVP (28) makes use of the above notations, as well as

c = HlΓ
′
0 − K̂Hl (Γ− Γ0)−RT n̄ext − a ,

d = HaK
′
0 − K̂Ha (K −K0)

−Γ̂Hl (Γ− Γ0)−RT c̄ext − b .

APPENDIX B
DERIVATION OF THE COMMUTATION RELATION

Let us recall the definitions δg = gδζ̂ and g′ = gξ̂ of (4)
and (34), respectively. To derive (35), these definitions are
introduced in (36) as follows:

δ
(
gξ̂
)
=
(
gδζ̂
)′

⇔ δgξ̂ + gδξ̂ = g′δζ̂ + g
(
δζ̂
)′
. (73)

Using the same definitions, once more, leads to

g
(
δζ̂ ξ̂ + δξ̂

)
= g

(
ξ̂δζ̂ +

(
δζ̂
)′)

, (74)
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which, holding for any g, yields

δξ̂ =
(
δζ̂
)′

+ ξ̂δζ̂ − δζ̂ ξ̂ =
(
δζ̂
)′

+ [ ξ̂, δζ̂ ] , (75)

where [•, •] denotes the usual commutator of matrices. Fi-
nally, using the anti-hat (•∨) operation, one can show that
[ ξ̂, δζ̂ ]

∨
= adξδζ, and get the expected commutation relation

in terms of twists (35).

APPENDIX C
PROOF OF (39)

The expression of the length of a tendon

li =

∫ l

0

∥r′i∥ dX =

∫ l

0

(r′Ti r
′
i)

1/2 dX (76)

leads to

δli =

∫ l

0

δ ∥r′i∥ dX =

∫ l

0

δr′Ti r
′
i

∥r′i∥
dX . (77)

In order to rewrite the last term of (77), recall that r′i = RΓi,
δr′i = δ(RΓi), and thus

δr′Ti r
′
i = (δRΓi +RδΓi)

T (RΓi) = (RT δRΓi)
TΓi + δΓT

i Γi .

Now remark that, since R ∈ SO(3), there always exists a
vector δψ ∈ R3 such that RT δR = δψ̂. As a result

δr′Ti r
′
i

∥r′i∥
=

(δψ × Γi)
TΓi + δΓT

i Γi

∥Γi∥
=
δΓT

i Γi

∥Γi∥
. (78)

Finally, introducing the expression Γi = Γ+K×Di+D
′
i into

(78) and the result of this substitution into (77) provides, after
factorization of δϵ = (δKT , δΓT )T , the expected expression
(39).

APPENDIX D
PROOF OF (50)

The relation Ad′g = Adg adξ, leads to

adTξ = −AdTg Ad−T ′
g . (79)

Then, introducing this relation in the balance (13), one can
integrate it, and obtain the balance of wrenches

Λ(X) = AdTg(X)

∫ l

X

Ad−T
g(Y )F̄ (Y ) dY +AdTg(X)Ad

−T
g(l)F+ .

(80)
Projecting this balance on the strain basis (pre-multiplying by
ΦT and integrating the products over [0, l]), and using by-part
integrations, yields the reduced balance of stress

−
∫ l

0

ΦTΛ dX = −
∫ l

0

JT F̄ dX − J(l)TF+ , (81)

which is no more than the expression of Qext given by (49).
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