Shulim Kaliman 
email: kaliman@math.miami.edu
  
Mikhail Zaidenberg 
  
GROMOV ELLIPTICITY AND SUBELLIPTICITY

Keywords: Algebraic variety, Gromov ellipticity, subellipticity, spray, flexible variety, G a -action. 2020 Mathematics Subject Classification. Primary 14R10, 14D99; Secondary 32Q56

de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction 0.1. Ellipticity versus subellipticity. We are working over an algebraically closed field K of characteristic zero; and A n = A n K stands for the affine n-space over K. All varieties and vector bundles in this note are algebraic; a variety is always reduced and irreducible. Abusing the language, in this paper the terms spray and (sub)ellipticity stand for algebraic spray resp. algebraic (sub)ellipticity.

The notion of ellipticity was introduced, both in analytic and algebraic setting, in [Gro89, Sect. 0.5 and 3.5.A]. In the Localization Lemma (see [START_REF] Gromov | Oka's principle for holomorphic sections of elliptic bundles[END_REF]Sect. 3.5.B]) Gromov actually considers a local version of ellipticity. The subellipticity (implicitly present in [Gro89, Sec. 3.5]) was introduced in [START_REF] Forstneric | The Oka principle for sections of subelliptic submersions[END_REF]; see [START_REF] Forstneric | Stein manifolds and holomorphic mappings. The homotopy principle in complex analysis[END_REF]Sect. 5.1] and [START_REF] Forstneric | Recent developments on Oka manifolds[END_REF] for a historical account. Recall these notions.

A spray of rank r over a smooth algebraic variety X is a triple (E, p, s) consisting of a vector bundle p : E → X of rank r and a morphism s : E → X such that s| Z = p| Z where Z ⊆ E stands for the zero section of p. This spray is dominating at x ∈ X if the restriction s| Ex : E x → X to the fiber E x = p -1 (x) is dominant at the origin 0 x of the vector space E x where {0 x } = Z ∩ E x . The variety X is called elliptic if it admits a spray (E, p, s) which is dominating at each point x ∈ X.

A local spray (E, p, s) with values in X at a point x ∈ X consists of a vector bundle p : E → U over a neighborhood U of x and a morphism s : E → X such that s| Z U = p| Z U where Z U stands for the zero section of p : E → U . One says that X is locally elliptic if for any x ∈ X there is a local spray in a neighborhood of x dominating at x. The variety X is called subelliptic if it admits a family of sprays (E i , p i , s i ) defined over the whole X which is dominating at each point x ∈ X, that is,

T x X = n i=1 ds i (T 0 i,x E i,x ) ∀x ∈ X.
Thus, an elliptic variety is both locally elliptic and subelliptic. In this note we establish the converse implications.

Theorem 0.1. For a smooth algebraic variety X the following are equivalent:

• X is elliptic; • X is subelliptic;

• X is locally elliptic.

Theorem 0.1 answers a question in [START_REF] Forstneric | Stein manifolds and holomorphic mappings. The homotopy principle in complex analysis[END_REF]p. 230]. The equivalence of the first two properties is well known for homogeneous spaces of a linear algebraic group, see [For20, Proposition 6.7]. It is unknown however whether this equivalence also holds in the analytic category; cf. [START_REF] Kusakabe | Oka complements of countable sets and nonelliptic Oka manifolds[END_REF].

Comparing Theorem 0.1 with [LT17, Theorem 1] and [For20, Corollary 6.6] we deduce the following results, see [START_REF] Lárusson | Algebraic subellipticity and dominability of blow-ups of affine spaces[END_REF] and [START_REF] Forstneric | Recent developments on Oka manifolds[END_REF] for the terminology.

Corollary 0.2. For a smooth algebraic manifold X the following conditions are equivalent:

(a) X is elliptic;

(b) X is locally elliptic; (c) X is subelliptic; (d) X satisfies Gromov's condition aEll 1 ;
(e) X satisfies the algebraic homotopy Runge principle.

See [For20, Sec. 6.2] for relations of (d) and (e) to approximation, interpolation and Oka-Grauert h-Principle in the algebraic setting.

As another immediate corollary we mention the following version of [Kus22, Corollary 1.5], see also [START_REF] Forstneric | Recent developments on Oka manifolds[END_REF]Corollary 6.26].

Corollary 0.3. The universal cover of a smooth (sub)elliptic variety is an elliptic algebraic variety.

Examples of elliptic varieties.

Recall that a variety X of dimension ≥ 2 is flexible if through any smooth point x ∈ X pass onedimensional orbits of G a -actions on X whose velocity vectors spend the tangent space T x X, see [START_REF] Arzhantsev | Flexible varieties and automorphism groups[END_REF]. It is known that every smooth flexible variety is elliptic, see [Gro89, 0.5.B] and [For17, Proposition 5.6.22(C)]; cf. also [START_REF] Arzhantsev | Flexible varieties and automorphism groups[END_REF]Appendix]. There are numerous examples of flexible varieties; see e.g. [START_REF] Arzhantsev | Flexible varieties and automorphism groups[END_REF] and survey articles [START_REF] Cheltsov | Cylinders in Fano varieties[END_REF] and [START_REF] Arzhantsev | Automorphisms of algebraic varieties and infinite transitivity[END_REF].

The complement of a closed subset Y of codimension ≥ 2 in a flexible smooth quasi-affine variety X of dimension ≥ 2 is again flexible, see [FKZ16, Theorem 1.1]. In particular, X \ Y is elliptic.

Recall that an algebraic variety X of dimension n belongs to class A 0 if it can be covered by a finite number of copies of A n . It belongs to class A if it is the complement of a closed subvariety of codimension at least 2 in a variety of class A 0 . Any variety of class A is subelliptic, see [For17, Proposition 6.4.5]. By Theorem 0.1 it is elliptic.

For example, the Grassmann manifold

X = G(k, n) of k-dimensional subspaces in A n belongs to class A 0 . Hence X \ Y is elliptic for any closed subset Y ⊆ X of codimention ≥ 2, see [For17, Corollary 5.6.18(D)]. This answers a question in [ibid ].
Furthermore, a variety of class A blown up along a smooth closed subvariety is subelliptic. The same concerns a smooth locally stably flexible variety, see [START_REF] Lárusson | Algebraic subellipticity and dominability of blow-ups of affine spaces[END_REF], [START_REF] Kaliman | On subelliptic manifolds[END_REF] and [For17, Theorem 6.4.8]. By Theorem 0.1 all these varieties are elliptic. See also [START_REF] Gromov | Oka's principle for holomorphic sections of elliptic bundles[END_REF]Sec. 3.4(F)] for further potential examples. 0.3. Ellipticity versus rationality. By definition, any smooth (sub)elliptic variety is dominated by an affine space, hence is unirational and rationally connected. Notice, however, that there are examples of flexible and so, elliptic smooth affine varieties that are not stably rational, see [START_REF] Popov | On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties[END_REF]Example 1.22]. Gromov asked in [START_REF] Gromov | Oka's principle for holomorphic sections of elliptic bundles[END_REF] whether any rational projective variety is elliptic. The same question can be asked for unirational projective varieties, see [START_REF] Bogomolov | Unirationality and existence of infinitely transitive models[END_REF].

Composing and extending sprays

In this section X stands for a smooth algebraic variety. We develop here several technical tools for the proof of Theorem 0.1. Clearly, p : E → X is a fiber bundle whose general fiber is isomorphic to an affine space A N viewed as a variety. In general, p : E → X does not admit a vector bundle structure. However, it admits a natural section σ : X → E (which plays a role of zero section) such that s| σ(X) = p| σ(X) , see [For17, Definition 6.3.5]. If p i : E i → X are trivial vector bundles for all i, then the composition (E, p, s) is a spray over X with a trivial vector bundle p : E → X, see [For17, Lemma 6.3.1]. Furthermore, we have the following fact.

1.1. Composition of sprays. The composition (E 1 * E 2 , p 1 * p 2 , s 1 * s 2 ) of two given sprays (E 1 , p 1 , s 1 ) and (E 2 , p 2 , s 2 ) over X is defined via 1 E 1 * E 2 = {(e 1 , e 2 ) ∈ E 1 × E 2 | e 1 ∈ p -1 (X), s 1 (e 1 ) = p 2 (e 2 )} = s * 1 (E 2 ), p 1 * p 2 (e 1 , e 2 ) = p 1 (e 1 )
Proposition 1.1. Consider the composition (E, p, s) = (E 1 * E 2 , p 1 * p 2 , s 1 * s 2 ) of sprays (E 1 , p 1 , s 1 ) and (E 2 , p 2 , s 2 ) over X. If (E 2 , p 2 , s 2 ) is of rank 1, then (E, p, s) is a spray over X.
Proof. By the preceding it suffices to show that p : E → X is a vector bundle. The pullback via the projection p 1 : E 1 → X yields an isomorphism Pic(X) ∼ = Pic(E 1 ), see [START_REF] Magid | The Picard sequence of a fibration[END_REF]Theorem 5]. Therefore, the line bundle

s * 1 (E 2 ) → E 1 is isomorphic to p * 1 (L 1 ) for a line bundle L 1 → X.
Choose an affine open cover {U i } of X which is trivializing simultaneously for p 1 : E 1 → X and for L 1 → X and consider the cylinders

Y i := p -1 1 (U i ) U i × A r and p * 1 (L| U i ) U i × A r × A 1 . Up to these triv- ializations the composition p * 1 (L 1 | U i ) → U i coincides with the standard projection pr 1 : U i × A r+1 → U i . The transition function ϕ i,j between p * 1 (L 1 | U i ) → U i and p * 1 (L 1 | U j ) → U j over U i ∩ U j is of the form ϕ i,j : (x, v, t) → (x, f i,j (x, v), g i,j (x, v)t), (x, v, t) ∈ (U i ∩ U j ) × A r × A 1 where f i,j ∈ GL(r, O(U i ∩ U j )) and g i,j ∈ O * (Y i ∩ Y j ) = p * 1 (O * (U i ∩ U j ))
, that is, the functions g i,j (x, v) = g i,j (x) do not depend on v ∈ A r . Finally ϕ i,j ∈ GL(r+1, O(U i ∩U j )), which proves that p = p 1 * p 2 : E → X is a vector bundle.

Corollary 1.2. The composition (E, p, s) of r rank 1 sprays (L i , q i , s i ) over X is a spray of rank r over X. If the family (L i , q i , s i ) is dominating, then also the spray (E, p, s) is.

Proof. The first assertion is immediate from Proposition 1.1; see [For17, Lemma 6.3.6] for the second. 1.2. Extension lemma. The following lemma and its proof follow closely Gromov's Localization Lemma and its proof, see [Gro89, 3.5.B].

Lemma 1.3. Let U ⊆ X be a dense open subset and (E, p, s) be a local spray on U with values in X dominating at a point x ∈ U . Then there exists a spray ( Ẽ, p, s) on X dominating at x.

Proof. Shrinking U we may suppose that

• U = X \ supp(D) where D is a reduced effective divisor on X, and • p : E = U × A r → U is a trivial vector bundle on U . We extend p : E → U to a trivial vector bundle p : E = X × A r → X on X. Let p : Ẽ = E ⊗ O X (-nD) → X where n ∈ N. Thus, Ẽ is a direct sum of r samples of the line bundle O X (-nD). We have

Hom(O X (-nD), O X ) = Hom(O X , O X (nD)) = H 0 (X, O X (nD)).
Pick a section σ ∈ H 0 (X, O X (D)) with div(σ) = D. Then σ n defines a homomorphism of line bundles O X (-nD) → O X identical on X which vanishes to order n on p-1 (supp(D)) and restricts to an isomorphism over U . The direct sum of these homomorphisms yields a homomorphism of vector bundles ψ : Ẽ → E identical on X with similar properties. Extend s to a rational map s : E X. Then for all n 1 the composition s = s • ψ : Ẽ → X is a morphism such that s| Z = p| Z where Z is the zero section of p : Ẽ → X. The resulting spray ( Ẽ, p, s) on X is clearly dominating at x.

The following corollary is immediate. It is implicitly present in the proof of the Localization Lemma in [Gro89, 3.5.B], cf. also [START_REF] Gromov | Oka's principle for holomorphic sections of elliptic bundles[END_REF]3.5.B ] and [For17, Proposition 6.4.2].

Corollary 1.4. If X is locally elliptic, then it is subelliptic.

Next we deduce the following useful fact.

Lemma 1.5. Any subelliptic smooth variety X admits a dominating family of sprays of rank 1. Proof. Let (E i , p i , s i ) be a dominating family of sprays over X. For a point x ∈ X we can find a neighborhood U such that p i | U : E i | U → U is a trivial bundle of rank, say r i . Choose a decomposition E i | U = r i j=1 L i,j where p i,j = p i | L i,j : L i,j → U are trivial line bundles. Letting s i,j = s| L i,j : L i,j → X yields a family of local rank 1 sprays (L i,j , p i,j , s i,j ) j=1,...,r i on U . It is easily seen that this family is dominating at x. Shrinking U and proceeding in the same way as in the proof of Lemma 1.3 we extend the latter family to a family of rank 1 sprays ( Li,j , pi,j , si,j ) j=1,...,r i on the whole X which is still dominating at x. In this way we can construct a family ( Li,j , pi,j , si,j ) i,j which is dominating at each point of X.

1.3. Proof of the main theorem. In view of Corollary 1.4 the following proposition ends the proof of Theorem 0.1 from the Introduction.

  * . . . * E m , p 1 * . . . * p m , s 1 * . . . * s m )of a sequence of m sprays (E i , p i , s i ) over X, see[ibid ] or [For17, Definition 6.3.5].

	,	s 1 * s 2 (e 1 , e 2 ) = s 2 (e 2 ),
	see [Gro89, 1.3.B]. One considers also the iterated composition
	(E, p, s) = (E 1	

Abusing notation, we do not distinguish between a vector bundle and its total space.

Proposition 1.6. Let X be a smooth algebraic variety. If X is subelliptic, then it is elliptic.

Proof. By Corollary 1.2 it suffices to construct a dominating family of rank 1 sprays on X. However, Lemma 1.5 provides such a family.
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