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Abstract. Circularly polarized light is a fundamental tool in magnetic studies, notably for 

magnetization dynamics. It is less common in magneto-optics to exploit the orbital angular 

momentum (OAM) of value ℓ carried by light beams possessing a helical wavefront. After 

finding many applications in the visible range, recently OAM pulses with ultra-short duration 

and XUV wavelengths became available, widening the range of experiments that can be 

envisaged. We modelled the interaction of an XUV OAM beam with non-uniform magnetic 

structures, showing that the far field scattered intensity profile encodes the symmetry of the 

magnetic structure in a way that depends on the sign and value of ℓ. In analogy with magnetic 

circular dichroism, this effect, named magnetic helicoidal dichroism (MHD), can be observed 

by inverting the sign of either the orbital momentum or of the magnetization. We obtained 

experimental evidence of MHD by measuring ℓ-dependent resonant scattering from a magnetic 

vortex. The results of recent complementary experiments match well the theoretical predictions, 

confirming the potential of the new toolset provided by MHD for studying the laser-triggered 

ultrafast dynamics of complex magnetic materials. 

1.  Introduction 

The interaction of polarized light beams, ranging from infrared to hard-x-rays, with magnetic materials 

defines the rich set of analytical tools used in magneto-optics and it is also widely employed for studying 

magnetization dynamics in time-resolved experiments. Photons carrying a spin angular momentum 

(SAM) σℏ, with σ = ±1 corresponding to left or right circular polarization (figure 1a), have been used 
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intensely for decades in circular dichroism experiments to discriminate and study the properties of 

magnetic, as well as of chiral, molecules and materials. It is less common, in magnetic dichroism studies, 

to exploit the fact that a photon beam can also carry an orbital angular momentum (OAM) with 

topological charge equal to ℓℏ (with ℓ ϵ ℤ), which corresponds to featuring a helical wavefront [1]. Such 

OAM beams, also called light vortices, develop a distinctive corkscrew shape of the wavefront (see 

figure 1b) determined by an azimuthal angular dependence of the electric field phase and show a well-

defined handedness. The analogy between quantum mechanics and paraxial optics suggests that modes 

with such an azimuthal dependence are eigenvalues of the angular momentum operator Lz and carry an 

OAM of ℓℏ per photon [2].  

 

 

 
 

Figure 1. Sketches of SAM and OAM photon beams. On the left, blue arrows 

represent the electric field vectors defining the polarization, circular in (a) and 

linear vertical in (b). On the right, phase wavefronts are shown in orange for 

SAM (a) and OAM (b) photon beams. Blue maps on black background 

represent the intensity in a given transverse plane.  

 

 

OAM beams in the visible range have been generated and intensely exploited for decades as a tool 

for manipulating physical systems and probing their properties [3,4]. More recently, OAM beams with 

shorter wavelengths, from the extreme ultraviolet (XUV) [5-7] to the soft X-ray [8] range, became 

available at high-harmonic generation (HHG) [5,6], free-electron laser (FEL) [7] and synchrotron [8] 

sources, widening considerably the range of experiments that can be envisaged. Moreover, HHG and 

FEL sources produce light pulses with femtosecond and attosecond durations, ideally suited for dynamic 

studies. 

In this framework, it has been theoretically predicted that OAM beams should prompt novel kinds 

of dichroism experiments, paving the way for new spectroscopic tools in the fields of orbital physics 

and magnetism [9]. In particular, after the scattering of an OAM beam from magnetic structures 

featuring non-uniform magnetization (like magnetic vortices), it is expected that the far field intensity 

profile encodes the symmetry of the magnetization distribution in a way that depends on the sign and 

value of ℓ [10], giving rise to magnetic helicoidal dichroism (MHD). As for magnetic circular dichroism, 

MHD can be observed by inverting the sign of either the orbital momentum or of the magnetization, i.e. 

by switching the handedness of either the light vortex or of the magnetic vortex. 
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2.  Experimental details 

The first experimental demonstration of MHD at XUV wavelengths was reported recently by measuring 

the scattering of an OAM photon beam from a magnetic vortex [11]. In order to support these findings 

and to prepare for more complex time-resolved measurements in pump-probe mode, a new series of 

experiments was planned and performed.  

A new set of permalloy dots was prepared by magnetron sputtering and lithography, using either ion-

etching or lift-off methods. The shape of the dots was the same as in the original experiment, pacman-

like and optimized by means of micromagnetic simulations [12] in order to form at remanence a stable 

magnetic vortex whose sense of rotation, either clockwise (CW) or counter-clockwise (CCW), could be 

deterministically defined by an external magnetic field pulse (see figure 2). With respect to the original 

15 µm, their lateral size was varied from 5 to 20 µm, allowing for a trade-off between ease of alignment 

of the XUV beam (~3 µm FWHM) on the dot and ease of formation of a clean vortex (favoured for 

smaller sizes). Dots were prepared in four sizes and two orientations (π-rotated). They formed a 12×12 

matrix of 144 dots, 100 µm spaced, on each Si substrate in order to have at one’s disposal fresh new 

samples in situ, since in the previous experiment radiation damage was observed after ~12 hours of 

exposure to the FEL beam. Preliminary MOKE measurements showed that samples prepared by lift-off 

provided better performance in terms of vortex formation and were selected for the final measurements. 

As in the original experiment [11], the light source was the FERMI FEL-1 free-electron laser [13], 

tuned to produce 52.8 eV photons, i.e. to match the Fe-3p core resonance, in order to enhance magneto-

optical effects at XUV wavelengths. The scattering experiment was performed at the DiProI end-station 

[14], equipped with high-precision translation and rotation stages for the sample alignment, with an 

electromagnet capable of generating field pulses in excess of 500 Oe along any direction within the 

sample surface, and with a charge-coupled device (CCD) for two-dimensional (2D) imaging of the 

scattered intensity. Well-defined OAM values up to ℓ=±3 were imparted to the XUV beam by using 

specially designed spiral zone plates (SZPs, prepared at PSI - Villigen) that worked at the same time as 

focusing elements (all with the same focal distance) and as phase plates [7]. 

 

 

 

Figure 2. (a-c): Scanning electron microscopy image of a 15 µm wide permalloy dot 
(a). The colored circles correspond to the XUV beam size. Positioning the beam at the 
crossing of the straight edges produces a characteristic scattering pattern (b), used for 
aligning at the correct position for measurements (c). (d): Sequence of magnetic 
configurations prepared for each measurement (arrows represent the results of 
micromagnetic simulations). (e-f): magnetic signal obtained by combining two 
measurements performed in saturated (e) and remanent (f) conditions.  
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3.  Results 

A first part of the experiment was dedicated to designing a more reproducible procedure for aligning the 

photon beam at the desired position on the dots, corresponding to the nominal vortex center, since this 

point raised criticisms to our previous results. To do this, we took advantage of the intense scattering 

produced by the two straight edges of the pacman-shaped permalloy dot (see figure 2a,b), which make 

it possible to position precisely the beam at their intersection, then move the sample vertically to the 

desired position (figure 2c). The experiment was performed following a sequence of four measurements 

(figure 2d) for each sample and OAM value. The MHD signal was then obtained by taking the difference 

divided by the sum of two images of the scattered intensity collected either for opposite saturation 

directions (figure 2e) or for CW and CCW configurations of the magnetic vortex (figure 2f). These 

configurations were always obtained just by applying magnetic pulses, without any sample or SZP 

realignment in between the two acquisitions, minimizing possible spurious effects in the MHD signal. 

 

 

 

Figure 3. MHD signal measured (a) 
and calculated (b) in magnetic vortices 
for ℓ = -1 (top) and ℓ = +1 (bottom). 
The photon energy is 52.8 eV, the 
polarization is linear-p and the angle of 
incidence is 48 degrees. The three pairs 
of images in (a) correspond to three 
different permalloy samples. 

 

Examples of data obtained using linear p-polarized radiation and a scattering angle close to the 

Brewster extinction condition are shown in figure 3a for ℓ = -1 and for ℓ = +1. The experimental results 

are compared to the calculated MHD intensity patterns (figure 3b) based on a previously developed 

theoretical model [10], showing an overall good agreement. In order to assess the reproducibility of the 

measurements and the reliability of the alignment procedure, we measured different dots, of either the 

same or of different size, prepared on different substrates, obtaining rather equivalent results (see figure 

3a). Measurements on the smallest objects (5 µm) showed some scattering from the edges, hampering 

data analysis.   

Finally, we tested also a setup for the pump-probe scheme. The 800 nm wavelength laser beam was 

made to arrive at the sample almost collinear with the FEL beam also in presence of the SZP and order-

sorting aperture necessary for imparting the OAM to the incoming XUV radiation. Test measurements 

were performed, showing the expected demagnetization of permalloy after the laser pulse. The results 

are too preliminary for a full scientific discussion, but they demonstrate the feasibility of pump-probe 

experiments with XUV-OAM beams at DiProI. 

 

4.  Conclusion 

The primary goal of our experiment was to confirm that magnetic structures can yield, in the XUV 

range, strong MHD signals, which depend on the exact topology of their magnetization configuration. 

We had obtained the first experimental evidence of MHD by measuring ℓ-dependent scattering from 

permalloy magnetic vortices at the FERMI FEL source [11]. We have now given support to our findings 

in a new series of more systematic experiments with results that match well our theoretical predictions 

[10] and confirm the potential of the new toolset provided by MHD for studying the laser-triggered 

ultrafast dynamics of complex magnetic materials. This novel effect has the potential to open up new 

perspectives for fundamental spectroscopic studies, both in the static and in the dynamic regimes, 

allowing for instance a dynamical mapping of the spin texture. 
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Understanding the interaction of OAM XUV-light with a complex magnetic structure has many 

potential interests. At a fundamental level, it allows to observe a new kind of dichroism, to study the 

role of photon spin-orbit coupling [15], as well as to explore new possibilities of angular momentum 

transfer between light and matter, as already observed in the visible range [3,16]. In terms of 

applications, MHD in reflection can be exploited as a new spectroscopic tool joining the family of 

magnetic dichroism techniques. For their symmetry and size, magnetic vortices can be considered as an 

ideal benchmark sample to explore the interaction with OAM beams; moreover, given their rich 

dynamical response in the ultrafast domain, they are promising structure for light-driven manipulation 

of the magnetization. 
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