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The sensitivity analysis of electromagnetic quantities such as the magnetic force and torque is a crucial step when optimizing
electromagnetic devices with gradient-based optimizers. This paper provides an analytical derivation of those two quantities using
the virtual work principle in a finite element package. It is suitable for any kind of optimization. A focus on the particular use of
this sensitivity on shape optimization is presented. The development and validation of the method is detailed in this case. Finally,
it is applied to the shape optimization of a switch reluctance motor (SRM) to improve its performances.

Index Terms—Sensitivity analysis, Virtual work method, Shape optimization, Electrical machine design.

I. INTRODUCTION

T
The virtual work method [6] is another method to compute the
force as the derivative of the magnetic energy. It is known to
have a better accuracy [7]. Another advantage compared to the
Maxwell tensor is that it does not require the additional choice
of a path surrounding the region where the force is computed.

In [8], the adjoint method was used on a virtual work
formulation, but it uses the finite difference method. This paper
provides a fully analytical sensitivity analysis of the magnetic
force and torque via the virtual work method using the adjoint
method. To our knowledge, this has never been done before.

Section II presents the magnetostatic context of the study,
and the state of the art of the sensitivity analysis using the
adjoint method. Section III presents the specific application
of the adjoint method to the magnetic force and torque sen-
sitivity computed using the virtual work method in a general
optimization setup. Section IV details the specific application
of section III to shape optimization and finally section V shows
an example of its use on the optimization of a SRM built with
a nonlinear ferromagnetic material.

II. STATE OF THE ART

A. Magnetostatic context

Let Ω be the 2D domain of study. A current supply is
represented using a density J = Jzez in a region ΩS and zero
elsewhere. Let ΩF be a domain filled with a ferromagnetic
material, possibly with nonlinear characteristics. The current J
creates a magnetic force or torque on ΩF .

The magnetostatic equations with 2D assumptions satisfied
in Ω are :

∇×H = 0 in Ω\ΩS ,

∇×H = J in ΩS , (1)
H = νB ; B = ∇×Az,

Az = 0 on ∂Ω,

where H is the magnetic field, B is the magnetic induction,
Az = Azez is the 2D potential vector and ν is the magnetic re-
luctivity. In the air regions, one has ν = ν0 with ν0 the vaccum
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HE optimization of electromagnetic devices is a popular
topic. It allows to improve existing devices or to find new

ones which may not be intuitive. Three types of optimization
can be distinguished: parametric, shape and topology optimiza-
tion. The main difference between those setups is the nature of
the design space. In a parametric context, one mainly aims at
optimizing predefined parameters [1], for instance geometric
parameters. For shape optimization, it is the border nodes of
an initial design which are considered [1], [2]. In the case of
topology optimization, the goal is to distribute a given amount
of ferromagnetic material in the mesh elements of a chosen
optimization region. The SIMP method [1] or the Level-set
method [3] can be used.

Regardless of the optimization type, genetic algorithms
can be numerically used. They converge towards the global
optimum but are known to use unreasonable computation time
when the number of optimization parameters becomes large.
Another choice is the use of gradient-based algorithms. They
converge faster but might be stuck in local optimums. A crucial
step when using those algorithms is a precise computation
of the sensitivity with respect to the design variables of the
optimization. A basic finite difference method can be used,
which is easy to implement but numerically slow and unstable.
A widely used alternative is an analytical derivation of the
optimization objective, coupled with the adjoint method in
order to keep an acceptable computation time. The adjoint
method is presented in many papers, for instance in [1], [2]
and [3].

A classical optimization for electromagnetic devices such
as actuators or motors is to maximize the magnetic force or
torque in their mobile part while constraining the volume of
the device and possibly other electromagnetic quantities.

In [4] and [5], the Maxwell tensor method is used to
compute the force and its sensitivity using the adjoint method.



reluctivity. In the regions filled with ferromagnetic materials,
including ΩF , ν is described by nonlinear laws ν = ν(|B|).

This nonlinear scalar equation (1) is solved using the
Newton-Raphson algorithm which iteratively solves the fol-
lowing matrix system :

S(A(k−1))A(k) = b(k−1) (2)

where A(k) is the vector of values of the potential vector Az

discretized on the mesh nodes of the domain Ω at the kth

current iteration of the Newton-Raphson algorithm.

B. The adjoint method

Let F be a scalar function of interest that has to be
optimized and (Xi)1≤i≤n some design variables in a general
optimization context. F is a function of the design variables
and of the state variable: F = F (A, X1, . . . , Xn) with
A = (Aj)j=1,..,m the nodal values of the vector potential.
Assuming that the Newton-Raphson algorithm (2) converges
in K+1 iterations, the state variable A is obtained by solving a
linear system S(K)A = b(K). The sensitivity using the adjoint
method reads [1]:

dF

dXi
=

∂F

∂Xi
+ λT

(
db(K)

dXi
− dS(K)

dXi
A

)
. (3)

with λ the adjoint vector defined as the solution of :

S(K)λ =
∂F

∂A
=

(
∂F

∂Ai

)
1≤i≤m

. (4)

The strength of this method is that λ is the solution
of a linear matrix system already built during the physical
solving (2). The terms db(K)

dXi
and dS(K)

dXi
can be analytically

expressed from the finite element assembly.

III. SENSITIVITY ANALYSIS WITH THE VIRTUAL WORK
METHOD

A. The virtual work method for magnetic force and torque

The virtual work method allows to compute the mag-
netic force on ΩF as the derivative of the magnetic energy
W =

∫
Ω

∫ B

0
H(b)dbdΩ along a direction s at constant state

variable A. After breaking down the integral over the mesh,
its expression is [6]:

Fs = −∂W
∂s

= ν0
∑
e

∫
Ωe

BTMeB dΩ (5)

with Me = −G−1
e

∂Ge

∂s
+

1

2|Ge|
∂|Ge|
∂s

I,

where Ge is the Jacobian matrix of the transformation from
the mesh element Ωe to the reference element ∆e [6], |Ge| its
determinant and I is the identity matrix.

The terms ∂Ge

∂s and ∂|Ge|
∂s are the derivatives of Ge and |Ge|

with respect to the translation of the mesh nodes of ΩF in the
direction s. They are zero everywhere except in the first air
layer of mesh elements surrounding ΩF .

The same formula remains true for the torque around an
axis ω, but in this case the mesh nodes of ΩF are moved with
a rotating movement around ω.

B. Expression of the sensitivity
As the adjoint vector λ is the solution of the linear prob-

lem (4), the term ∂Fs

∂A has to be expressed in the case of the
force (5). One has:

∂Fs

∂A
=

(
∂Fs

∂B

)T
∂B

∂A
. (6)

Since B =
∑m

j=1Aj∇× τj with τj the 2D nodal shape
function at node j, the vector ∂B

∂A can be immediately written
as : (

∂B

∂A

)
1≤j≤m

= (∇× τj)1≤j≤m . (7)

The magnetic force has an explicit formula in term of B
field (5) that can be directly differentiated.

∂Fs

∂B
= ν0

∑
e

∫
Ωe

(Me +MT
e )B dΩ. (8)

Combining the two last equations, it is possible to build ∂Fs

∂A
and to solve the adjoint equation (4). The adjoint state is the
same regardless of the chosen type of optimization. Then, the
sensitivity can be computed using (3).

However, the term ∂Fs

∂Xi
in (3) depends on the considered

optimization type. Since the support of the magnetic force is
the first air mesh layer surrounding ΩF , ∂Fs

∂Xi
is non zero only

when the parameters (Xi)1≤i≤n influence the mesh elements
of this layer. For instance, when the SIMP method is used
in the case of topology optimization, ∂Fs

∂Xi
is always zero. The

next section details the case of shape optimization, where ∂Fs

∂Xi

can be non-zero.

IV. SPECIFIC CASE OF SHAPE OPTIMIZATION

A. Explicit dependency of the force on the design variables
In the case of shape optimization, the design variables are

the nodes (Xi)1≤i≤n of the border lines of an initial design.
The adjoint state can be solved using (4) and (6). The term ∂Fs

∂Xi

in (3) is zero in general except when optimizing the border
lines of ΩF . In this case, the optimization is performed at the
same place where the force is computed. It means that there
is an explicit dependency of the force on the Xi variables and
the term ∂Fs

∂Xi
is non-zero. It must be taken into account but

its development and implementation is tedious.
The term has been expressed by applying twice the virtual

work principle on the magnetic energy W , which leads to :

∂Fs

∂Xi
= − ∂2W

∂s∂Xi
=

N∑
e=1

∫
∆e

(
∂2|Ge|
∂s∂Xi

∫ H

0

BdH (9)

−BTH
∂|Ge|
∂s

∂|Ge|
∂Xi

1

|Ge|

+BT ∂Ge

∂Xi

T

G−T
e H

∂|Ge|
∂s

+BTG−1
e

∂Ge

∂s
H
∂|Ge|
∂Xi

−BTG−1
e

∂2Ge

∂s∂Xi
H|Ge|

−BTG−1
e

∂Ge

∂s

∂Ge

∂Xi

T

G−T
e H|Ge|

)
d∆e,
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Fig. 1: Geometry of the academic test case

where the terms ∂Ge

∂Xi
, ∂|Ge|

∂Xi
, ∂2Ge

∂s∂Xi
and ∂2|Ge|

∂s∂Xi
are respectively

the derivatives of the previous terms Ge, |Ge|, ∂Ge

∂s and
∂|Ge|
∂s with respect to the virtual translation of the node Xi

in the direction of computation of the sensitivity. They are
zero everywhere except on the elements that contain Xi. This
formula is deduced using the specificity of the potential vector
formulation. Indeed, the transformation to the reference space
requires the use of a Piola transform which is not the same
for scalar and vector formulations [9]. Using a scalar potential
formulation H = −∇ψ would lead to a different formula.
See [6] for a detailed use of the scalar formulation on the
virtual work method.

B. Validation

The sensitivity (3) of the magnetic force and torque has
been implemented in the case of shape optimization, includ-
ing (6) and the tedious term (9). A validation step has been
performed on a simple bidimensional academic test case using
the following (central) finite difference method to confirm the
implementation :

dFs

dXi
≈ Fs(Xi + ϵ)− Fs(Xi − ϵ)

2ϵ
. (10)

In the context of shape optimization, Xi + ϵ stands for a
slight disturbance of the coordinates of Xi either in the
horizontal or the vertical direction, depending on the direction
of computation of the sensitivity.

The geometry of the test case is presented in Figure 1. A
current supply is represented by the orange coil. A region ΩF

is filled with a nonlinear ferromagnetic material. The sensi-
tivities of the force and torque on ΩF are calculated on the
n = 77 mesh nodes of ΩF (thick lines on figure 1). The finite
difference method is really slow since it requires 2n nonlinear
finite element solvings per sensitivity computation direction.
In contract, the adjoint method (3) is much faster because
it only needs the additional solving of (4). Figures 2 and 3
compare the sensitivity values obtained with the two methods.
The maximum relative error is lower than 1%. The use of the
Maxwell tensor instead of the virtual work method would lead
to a similar computational cost.

V. APPLICATION

A. Optimization workflow

After the concluding validation step, the sensitivity code has
been included in a gradient-based shape optimization workflow
using the softwares Altair FluxTM and OptistructTM. Starting
from a given design, the sensitivity is used to update the
current optimization nodes in a descent direction. Then, the
process iterates until the optimization converges to an optimal
design or a maximum number of iteration is reached.
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Fig. 2: Sensitivity with respect to an horizontal displacement
of the nodes obtained with the finite difference method (FD)

and the adjoint method (AM)
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Fig. 3: Sensitivity with respect to a vertical displacement of
the nodes obtained with the finite difference method (FD)

and the adjoint method (AM)

B. Optimization problem

This optimization algorithm is applied on a realistic SRM
model presented in figure 4. The stator (in orange) and rotor
(in grey) are made of a laminated nonlinear ferromagnetic
material. The current supply in the stator has three winding
phases represented in red, blue, green and brown. Thanks to
the geometrical and electrical symetries, only one quarter of
the motor can be represented. The light blue color represents
the air regions of the device.

The torque depends on the position of the rotor. Thus, the
angular position of the rotor is discretized in N = 30 positions
(θi)1≤i≤N to compute it in every rotor configuration.

The main objective is to maximize the mean torque value
Tmean over all the rotor positions :

Tmean =
1

N

N∑
i=1

T (θi), (11)

with T (θi) the torque computed at the angular position θi.
The SRM are known to have a large torque amplitude over

a rotation. This leads to noisy motors. A relative measure of
this amplitude is given by the torque ripple Tr :

Tr = 100× Tmax − Tmin

Tmean
, (12)

where Tmin = min
1≤i≤N

T (θi) and Tmax = max
1≤i≤N

T (θi).

The torque ripple must remain under an acceptable
value Tmax

r in the optimized design. The sensitivity of the



Fig. 4: View of the initial SRM rotor design

mean torque and torque ripple are easily computed since they
are basic functions of the T (θi) values.

A constraint on the rotor volume V is also enforced to
reduce by 20% the initial volume V0 of the rotor represented
in figure 4 and avoid the use of the expensive ferromagnetic
material. The design variables of the shape optimization are
the nodes (Xi)1≤i≤886 of the lines inside the rotor in contact
with the air regions. The final optimization problem is the
following :

maximize
Xi

Tmean(Xi)

subject to Tr(Xi) ≤ Tmax
r ,

V ≤ 0.8× V0

(13)

C. Results
After thirty optimization iterations and about two hours of

computation, the optimized design shown in figure 5 has been
obtained. The final design has a mean torque 38% higher than
the initial one, while the mass of its rotor has decreased by
20% and its torque ripple decreased by 31%. Figure 6 shows
the torque as a function of the angular position of the rotor
for the initial and final designs. The optimized electrotechnical
features are really interesting, however the final design clearly
lacks of mechanical strength. It could be adressed by adding
structural constraints to the optimization problem (13).

VI. CONCLUSION

The sensitivity analysis of the magnetic force and torque
is analytically derived using the virtual work method. The
expression of the sensitivity relies on the well known adjoint
method, but it had never been applied to the virtual work
method before. The sensitivity expression is presented in a
general optimization context. Then, it is applied to the specific
case of shape optimization. Finally, the use of this sensitivity
analysis on the shape optimization of a SRM shows an
interesting final design with an improved torque and reduced
volume and torque ripple. An application of this method in
the 3D case could be studied with a cautious adaptation of the
explicit dependency (9) depending on the formulation (vector
or scalar) which is used.

Fig. 5: View of the optimized SRM rotor design
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Fig. 6: Comparison of torque value as a function of the
angular rotor position before and after the optimization
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