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Introduction- The Changing Face of Algal Genomes  8 
 9 
Almost half of photosynthesis on Earth occurs in marine and freshwater environments, hence aquatic 10 
photosynthetic organisms have an enormous impact on food webs and on the biogeochemistry of the 11 
entire Earth System. Photosynthesis in marine and freshwater habitats is supported by cyanobacteria and a 12 
diverse range of eukaryotic algae that acquired photosynthesis through the endosymbiotic uptake of 13 
chloroplasts (Raven, Chapter 3). These eukaryotic algae are highly important for global environmental 14 
processes, accounting for over one-third of planetary primary production (Dorrell and Smith 2011), and 15 
may be particularly sensitive to environmental change (Li et al. 2009; Hinder et al. 2012). Eukaryotic 16 
algae, however, comprise huge functional diversity, ranging from tiny single-celled organisms of less than 17 
one micrometre diameter to giant seaweeds many hundreds of metres in length; and including obligate 18 
phototrophs, predators, and symbionts of other organisms (Fig. 1). The phylogenetic relationships and 19 
evolutionary histories of these groups are also extremely complex; with different algal groups separated 20 
by one another, and from plants, by hundreds of millions of years of evolution, and multiple horizontal 21 
and endosymbiotic gene exchanges (Fig. 1) (Dorrell and Smith 2011; Sibbald and Archibald 2017; Novák 22 
Vanclová et al. 2020). The diversity of eukaryotic algae renders understanding their biology extremely 23 
challenging; dependent on resolving the genomic content of multiple, distantly related lineages, even 24 
before this information can be placed into a functional or environmental context. 25 
 26 
The advent of next-generation sequencing has revolutionised our understanding of microbial evolution, 27 
physiology and ecology. Within the context of microalgae, this commenced with the completion of 28 
chloroplast (Kowallik et al. 1995; Reith and Munholland 1995) and mitochondrial genomes (Wolff et al. 29 
1994; Ohta, Sato, and Kuroiwa 1998) in the 1990s, followed by the complete nuclear genomes of the red 30 
alga Cyanidioschyzon merolae and the diatom Thalassiosira pseudonana, and the green algae 31 
Chlamydomonas reinhardtii and Ostreococcus tauri in the early 2000s (Armbrust et al. 2004; Matsuzaki 32 
et al. 2004; Derelle et al. 2006; Merchant et al. 2007). At the date of writing this publication, well over a 33 
hundred eukaryotic algal genomes have been completed (Grigoriev et al. 2020; Hanschen and 34 
Starkenburg 2020; Nelson et al. 2021). Alongside these, hundreds of transcriptome libraries, that is to say 35 
a survey of expressed genomic sequences through high-throughput sequencing of cellular RNA, have 36 
been completed for eukaryotic algae (Fig. 2), providing unprecedented insight into the macro- and micro-37 
diversity, and physiological genetics of marine photoautotrophs. 38 
 39 
Despite the impressive scale of sequence information assembled in the last three decades, the genomes 40 
and transcriptomes of cultured algae may provide somewhat limited insights into the functional biology 41 
of algae in their native environment. Many of the algal species in the world’s ocean rest uncultured, and 42 
may remain unculturable (Mangot et al. 2017; Absolon, Smith, and Helliwell 2019). Here, environmental 43 
data, exemplified by ambitious projects such as the BioMarKs, Malaspina and Tara Oceans expeditions 44 



(Karsenti et al. 2011; Dunthorn et al. 2014; Fernández-Castro et al. 2014; Bork et al. 2015) can provide 45 
valuable insights into this microbial dark matter, which can then be correlated to spatial information and 46 
environmental parameters. In thic chapter, we provide an overview of the main groups of aquatic 47 
photoautotrophs; exploring their complex evolutionary histories, and the diversity and limitations of 48 
genome and transcriptome data from cultured species for understanding algal biology. Subsequently, we 49 
consider how meta-genomic and meta-transcriptomic data generated by the Tara Oceans expeditions 50 
(Carradec et al. 2018; Pierella Karlusich, Ibarbalz, and Bowler 2020a) has unveiled patterns of algal 51 
biogeography and mechanisms of adaptation and acclimation to the marine environment, changinf our 52 
understanding of how the dominant groups of algae function in the open ocean. 53 
 54 

1. Diversity of Algae and their Chloroplasts  55 
 56 
The advent of genome sequencing has provided substantial insights into the taxonomy and diversity of 57 
eukaryotic algae (Fig. 1). The earliest-evolving eukaryotic algal groups are found within the 58 
archaeplastids (glaucophytes and green and red algae), which are unified by the presence of chloroplasts 59 
surrounded by two membranes. Sequencing of archaeplastid chloroplast genomes confirmed the long-60 
established hypothesis that they derived from the primary endosymbiosis of a free-living beta-61 
cyanobacterium (Margulis 1975; Reith and Munholland 1995).  62 
 63 
Archaeplastids notably include multicellular red algae that form important crop species (e.g., Pyropia 64 
yezoensis, or nori seaweed; the model single-celled freshwater alga Chlamydomonas within the 65 
chlorophyte lineage; and land plants within the streptophyte lineage, both in the green algae (Merchant et 66 
al. 2006; Umen 2014; Skokan et al. 2019; Wang et al. 2020; Fig. 1). The most abundant of the 67 
archaeplastid groups in the contemporary ocean are the prasinophytes, tiny single-celled chlorophytes 68 
considered particularly to dominate photosynthetic biomass and production in oligotrophic open ocean 69 
systems. Well studied genera include Ostreococcus, considered to be the smallest (ca. 0.95 µm) free-70 
living eukaryote (Derelle et al. 2006), and Micromonas, both of which are found worldwide.  71 
 72 
The dominant eukaryotic algal groups in the oceans today, however, are distantly related to the 73 
archaeplastids; including groups such as cryptomonads, haptophytes, dinoflagellates, and the various algal 74 
groups that comprise the ochrophytes (Fig. 1). The majority of these algae contain chloroplasts that are 75 
red or brown in colour (dependent on the accessory pigments they contain; typically phycobilisomes in 76 
red-coloured cryptomonads, and fucoxanthin in brown-coloured dinoflagellates, haptophytes and 77 
ochrophytes) and are surrounded by three or four membranes, as compared to the two found in 78 
archaeplastids (Dorrell and Smith 2011). Consideration of the membrane ultrastructure of these 79 
chloroplasts (Cavalier-Smith 2003), alongside phylogenetic analysis of their genomes (Kowallik et al. 80 
1995), suggests that they have arisen through the secondary or higher (e.g., tertiary) endosymbioses of 81 
eukaryotic algae, as opposed to the primary endosymbiosis underpinning archaeplastid chloroplasts; and 82 
that the majority of algal groups in the ocean today possess chloroplasts of red algal origin. The secondary 83 
red chloroplasts are closely related to one another, although their underlying hosts are not (Dorrell and 84 
Smith 2011; Fig. 1). 85 
 86 
Specific groups of algae with secondary red chloroplasts have risen to positions of particular ecological 87 
importance. The diatoms, for example, which are members of the ochrophytes, are of unmatched 88 



dominance in marine ecosystems, probably performing well over one-fifth of total planetary 89 
photosynthesis (Bowler, Vardi, and Allen 2010; Dorrell and Smith 2011). The characteristic highly 90 
elaborate siliceous cell walls of diatoms, known as frustules, are easily recognizable and are well 91 
preserved in the fossil record, and many species form chains of interlocking cells which are also easily 92 
recognizable (Fig. 1). Diatoms tend to thrive in nutrient-rich turbulent systems such as those found in 93 
coastal upwelling regions and at high latitudes, and their life histories are often characterized by rapid 94 
proliferations, followed by die-offs, in spring and autumn following nutrient injection events (Malviya et 95 
al. 2016; Tréguer et al. 2018). 96 
 97 
The haptophytes are mainly composed of small planktonic unicellular species, occurring either as single 98 
cells or colonies (Fig. 1). This group includes the coccolithophores, which are covered by small regular 99 
calcareous plates (coccoliths) and are extremely important in biogeochemical cycles because they are 100 
responsible for about half of all modern precipitation of CaCO3 in the ocean, forming the basis of 101 
calcareous rocks such as limestone (Milliman 1993). The most well-known representative is the 102 
coccolithophore Emiliania huxleyi, which is the most numerically abundant and widespread 103 
coccolithophore species, and can form giant blooms visible from space (Tyrrell and Merico 2004; Durak, 104 
Brownlee, and Wheeler 2017). 105 

The dinoflagellates are a species rich group, with taxa inhabiting both planktonic and benthic 106 
environments, and with lifestyles ranging from photoautotrophy to heterotrophy, as well as symbionts and 107 
parasites (Steidinger and Jangen 1997; Simon et al. 2009). Some species can form highly resistant spores 108 
that are preserved in the geological record. Many others are endosymbionts of marine animals, the most 109 
well-known being Symbiodinium, the zooxanthellae of reef-building corals; while others can form toxic 110 
algal blooms, such as the red tide-causing Alexandrium (Cumbo et al. 2013; González-Pech et al. 2019). 111 
Dinoflagellates are known for their divergent and bizarre evolutionary trajectories, for example not using 112 
histones for packaging their nuclear DNA, in contrast to all other known eukaryotic lineages; and 113 
possessing dramatically expanded nuclear genomes and dramatically shrunken chloroplast and 114 
mitochondrial genomes (Dorrell and Howe 2015; Gornik et al. 2019).  115 

Alongside these three major groups are many others; for example within the ochrophytes the 116 
pelagophytes (typified by the harmful algal bloom-causing Aureococcus anophagefferens), chrysophytes 117 
(golden algae, e.g. Ochromonas) and phaeophytes (containing giant kelps); the cryptomonads and 118 
chromerids, which also contain red-derived chloroplasts (Cumbo et al. 2013); and euglenids and 119 
chlorarachniophytes (Fig. 1). The euglenids and chlorarachniophytes differ from the other groups 120 
described, possessing chloroplasts derived from the secondary endosymbiosis of green algae, although 121 
analysis of euglenid and chlorarachniophyte chloroplast genomes indicate that they are distantly related to 122 
one another on the green algal tree (Kamikawa et al. 2015; Jackson et al. 2018).  123 

Finally, alongside other aspects of their unusual evolutionary history, dinoflagellates have acquired 124 
chloroplasts on multiple occasions, from multiple sources. These include the red-derived chloroplasts 125 
found in most dinoflagellate species, but also alternatives derived from green algae, and explicitly from 126 
the tertiary endosymbiosis of diatoms and haptophytes (themselves containing secondary, red-type 127 
chloroplasts) (Dorrell and Howe 2015; Sarai et al. 2020). This extreme promiscuity in chloroplast 128 
diversity is the result of rampant serial endosymbiosis, in which the original dinoflagellate chloroplast has 129 
been lost and replaced multiple times; and may be linked to the extreme propensity of dinoflagellates for 130 



phagotrophy and photo-mixotrophic life strategies (Dorrell and Howe 2015; Sarai et al. 2020; Cohen et al. 131 
2021; Jeong et al. 2021) (Fig. 1). 132 

2. Genomic Insights into Algal Evolution 133 
 134 
The annotation of eukaryotic algal nuclear genome sequences, particularly within a phylogenetic context, 135 
has yielded an even more complex story. Large numbers of genes, which may be the footprints of 136 
endosymbiont-derived genes transferred to the nucleus (Henze, Martin, and Schnarrenberger 2002; Bock 137 
2017), phylogenetically link together different groups of algae with secondary chloroplasts, suggesting 138 
that several of them have in fact originated via sequential secondary, tertiary and even quaternary 139 
endosymbiosis (Stiller et al. 2014; Dorrell et al. 2017). For example, different phylogenetic investigations 140 
of algal genomes have suggested that the chloroplasts of ochrophytes originate from cryptomonad algae 141 
(Stiller et al. 2014); the chloroplasts of haptophytes may originate from pelagophytes within the 142 
ochrophytes (Dorrell et al. 2017; Dorrell et al. 2021); the chloroplasts of dinoflagellates may originate 143 
from haptophytes (Yoon, Hackett, and Bhattacharya 2002; Dorrell et al. 2021); and the chloroplasts of 144 
chromerids may originate from chrysophytes within the ochrophytes (Ševčíková et al. 2015).  145 
 146 
In addition, nuclear genome sequences have revealed cryptic genetic signals in many eukaryotic algae 147 
that are not related to their current chloroplasts. For instance, many of the algae with chloroplasts of 148 
purported red algal origin (e.g., cryptomonads, haptophytes, and ochrophytes) contain large numbers of 149 
genes of green algal origin (Moustafa et al. 2009; Dorrell et al. 2017); whereas chlorarachniophytes and 150 
euglenids, which possess chloroplasts derived from the secondary endosymbioses of green algae, also 151 
contain genes derived from red algae, or their endosymbiotic progeny (Ponce-Toledo et al. 2018; Novák 152 
Vanclová et al. 2020). Many of these genes encode chloroplast-associated proteins, suggesting that their 153 
origin is in some way connected to chloroplast endosymbiosis (Dorrell et al. 2017); although it is not 154 
known whether these signals are the relics of ancient endosymbioses that have subsequently been 155 
replaced, similarly to the serial endosymbiotic replacements known in dinoflagellates (Dorrell and Howe 156 
2015; Sarai et al. 2020); or may have other origins entirely, e.g., the endosymbiotic acquisition of algae 157 
that themselves contained mixtures of red and green genes (Dorrell et al. 2017; Ponce-Toledo et al. 2018). 158 
 159 
Alongside endosymbiotic signals, algal nuclear genomes can contain large numbers of genes derived from 160 
non-endosymbiotic horizontal gene transfer events, which are known to occur between eukaryotic algae 161 
(Raymond and Kim 2012; Kazamia et al. 2018); and from bacterial and viral donors (Rossoni et al. 2019; 162 
Vancaester et al. 2020; Dorrell et al. 2021; Nelson et al. 2021). These horizontally-acquired genes may 163 
dramatically affect the functions of eukaryotic algae in the environment. For example, inspection of 164 
diatom genomes has identified unique combinations of genes of bacterial and eukaryotic origin that 165 
collectively encode non-canonical pathways of nutrient assimilation and metabolite management 166 
(Wilhelm 2006), including a urea cycle that is integral to nitrogen metabolism (Allen et al. 2011; Smith et 167 
al. 2019; Dorrell et al. 2021), and high-affinity iron uptake systems not known in other eukaryotic groups 168 
(Kazamia et al. 2018; McQuaid et al. 2018). 169 
 170 
Finally, the genomes of eukaryotic algae may also undergo complexification and simplification events 171 
pertaining to lifestyle transitions. Diatom genomes, for example, have been found to encode expanded 172 
sets of cyclins (Huysman et al. 2010), key regulators of cell division, as well as light-harvesting 173 



chlorophyll binding proteins (Bailleul et al. 2010; Mock et al. 2017) that may be important in, 174 
respectively, driving proliferation and stress responses in the ocean environment. In contrast, many 175 
lineages of eukaryotic algae have secondarily reverted from photoautotrophic to exclusively heterotrophic 176 
lifestyles, accompanied by the loss of large numbers of genes associated with photosynthesis. This is 177 
particularly notable in the chrysophytes, within the ochrophytes; as well as the dinoflagellates, in which 178 
fewer than half of all documented species are photosynthetic (Sournia 1986; Gomez 2005; Simon et al. 179 
2009; Dorrell et al. 2019).  180 
 181 

3. Limitations of Cultured Algal Sequencing Projects 182 
 183 

In Figs 2 and 3, we present the current (as of end-2020) phylogenetic and biogeographical diversity of 184 
available algal nuclear genomes and transcriptomes; based on the manually verified isolation sites of the 185 
source cultures sequenced (Vaulot et al. 2004; Gachon et al. 2013; Guiry et al. 2014; Boundy-Mills et al. 186 
2015; Nelson et al. 2021). The greatest numbers of genomes have been sequenced from green algae and 187 
diatoms (Fig. 2), reflecting their interest as models for plant evolution (in the case of green algae), 188 
aquaculture (both lineages) and ecological prominence in the contemporary ocean (diatoms in particular) 189 
(Bowler, Vardi, and Allen 2010; Kumar, Singh, and Sharma 2017; One Thousand Plant Transcriptomes 190 
Initiative 2019); however, multiple genome sequences have now been completed for many other algal 191 
groups, including haptophytes, pelagophytes and dinoflagellates (Grigoriev et al. 2020; Nelson et al. 192 
2021).  193 
 194 
Alongside this genomic diversity, hundreds of algal transcriptomes have been completed, either through 195 
individual projects or consortium efforts, as described above (Keeling et al. 2014; One Thousand Plant 196 
Transcriptomes Initiative 2019). Transcriptome libraries carry some major advantages over genome 197 
assemblies, not least that coding sequences can be easily annotated without considering introns (which 198 
can be large and difficult to infer in some major algal groups, e.g., dinoflagellates (Gornik et al. 2019)); 199 
and that preliminary insights can be made into gene expression patterns. However, transcriptomes cannot 200 
provide insights into non-coding DNA, or genes typically removed by poly(A) selection (e.g., organelle 201 
transcripts, Smith and Sanitá Lima 2017); and may be more heavily impacted by biological contamination 202 
than genomes, in the absence of a possibility to assemble gene sequences into contigs (Carpenter et al. 203 
2019). Nonetheless, transcriptomes used in partnership with genome sequences can radically expand our 204 
breadth of understanding of algal genome diversity, and allow exploration of algal lineages (e.g., 205 
dictyochophytes or silicoflagellates, bolidophytes; Fig. 2) and biogeographical regions (the Arctic and 206 
Pacific Oceans, Fig. 3) for which reference algal genomes remain in preparation. 207 
 208 
Despite this vast amount of resources, some biases and limitations are still visible. For example, the 209 
overwhelming majority of complete algal genomes and transcriptomes are from species isolated from 210 
North American and European oceanic regions (Fig. 3), and many are from coastal and terrestrial 211 
environments, while open-ocean algae, which may be less easily accessible, are under-represented 212 
(Lommer et al. 2012) (Fig. 3). Moreover, many of the algal species for which we have genome sequences, 213 
even if biologically interesting, may not be particularly representative of those that grow in the oceans. 214 
For example, the first sequenced red alga, C. merolae, was an extremophile isolated from acidic hot 215 
sulphur springs, with a growth temperature (up to 56 °C) and pH (as low as 1.5) very different to most 216 
marine red algal relatives (Matsuzaki et al. 2004; Brawley et al. 2017), and may accordingly have very 217 



different core metabolic pathways to other red algal species (e.g., Helliwell et al. 2011; Rossoni et al. 218 
2019).  219 
 220 
Even within well-sampled oceanic regions, there may be limitations in what genomic information is 221 
available. Comparisons between observational (e.g., microscopy) and culturable data under a variety of 222 
environments have long pointed to the presence of an uncultured majority of marine micro-organisms 223 
(Razumov 1932; Jannasch and Jones 1959; Zimmermann, Iturriaga, and Becker-Birck 1978); with only 224 
between 0.01 and 1% microbial taxa being cultivable (Amann, Ludwig, and Schleifer 1995; Rappé and 225 
Giovannoni 2003). Within the context of algae several major groups of organisms have been identified 226 
from environmental sampling, such as MOCHs, within the ochrophytes (Massana et al., 2014) and 227 
rappemonads, which are related to haptophytes (Kim et al. 2011); that have largely eluded successful 228 
culture in laboratory conditions (Absolon, Smith and Helliwell 2019).  229 
 230 
Finally, even the laboratory conditions in which algal genomes and transcriptomes are realised may be 231 
highly non-naturalistic (Fig. 4). Laboratory growth chambers may be unable to approach the extremely 232 
low environmental temperatures encountered in polar oceanic environments (Raymond and Kim 2012; 233 
Terrado et al. 2015); and the growth media necessary to facilitate dense cultures for sequencing may 234 
contain nutrient concentrations many hundreds of times those experienced by algae in the open ocean 235 
(Fig. 4), although admittedly the concentrations of these nutrients that are biologically available to algae 236 
in the lab and in the wild remain poorly understood (Lommer et al. 2012; Kazamia et al. 2018). Reference 237 
strains may have been cultured for many years or decades under replete conditions in the laboratory since 238 
isolation, and the somatic mutations that have occurred naturally to algae during their time in laboratory 239 
culture may impact on our understanding of their physiology (Schaum and Collins 2014; Flowers et al. 240 
2015; Rastogi et al. 2020). These biases, while necessary for the generation of algal sequence libraries in 241 
the first place, may limit our understanding of which genes truly underpin inducible responses to 242 
environmental stresses, or facilitate the acquisition of growth-limiting nutrients in the ocean (Browning et 243 
al. 2017).  244 
 245 

4. History of Omics-Based Approaches Applied to Environmental Plankton Samples 246 
 247 
As discussed above, the application of next-generation sequencing to cultured algae has allowed us to 248 
understand algal diversity more accurately, but with less insight into functional biology in the 249 
environment. ‘Omics data generated directly from the natural environment may provide an interesting 250 
perspective, offering genomic contexts for taxa not represented in laboratory collections, and direct 251 
insights into organisms’ experiences in the wild. 252 
 253 
Community assessment of plankton samples has occurred for over 100 years (Karlusich, Ibarbalz, and 254 
Bowler 2020b), starting with data collection from the Western Channel Observatory, and the Continuous 255 
Plankton Recorder in the early 20th century (Reid et al. 2003; Southward et al. 2005); yielding large 256 
amounts of microscopic abundance and diversity data, that may even be transformable into genomic 257 
information via sequencing of preserved samples (Stern et al. 2018). Community assessment of plankton 258 
samples based on DNA sequencing itself started in the 1990s (Giovannoni et al. 1990; Fuhrman, 259 
McCallum, and Davis 1995), but bloomed with the advent of high-throughput sequencing in the 2000s. A 260 
global-scale metagenomic sampling of the ocean began with J. Craig Venter’s Global Ocean Sampling 261 



expeditions between 2003 and 2008, which included the collection of bacterial size fractions from surface 262 
waters from the North–West Atlantic and Eastern Tropical Pacific Oceans from 2004 to 2006, generating 263 
a 6.1 million gene set using Sanger sequencing (Rusch et al. 2007). Later, in the context of the Census of 264 
Marine Life (http://www.coml.org/), a consortium of researchers deployed the International Census of 265 
Marine Microbes (Amaral-Zettler et al. 2010) to provide a detailed inventory of marine microbial 266 
diversity. Further projects of large spatial coverage came subsequently with the Malaspina expedition, led 267 
by Carlos Duarte, which targeted principally the deep ocean but also the epipelagic layers in a worldwide 268 
sampling campaign from 2010 to 2011 (Duarte 2015), and the Ocean Sampling Day initiative, which 269 
began with a simultaneous global sampling campaign on 21 June 2014 at 191 different sites, mostly in 270 
coastal areas (Kopf et al. 2015). 271 
  272 
In 2008, Eric Karsenti led a consortium of scientists that organized a circumglobal expedition on board 273 
the 36-m-long schooner SV TARA (Fig. 3). The expedition was specifically designed for studying 274 
microscopic plankton ecosystems at global scale. Based on a holistic approach, the Tara Oceans pan-275 
oceanic expedition sampled plankton ranging in size from viruses to small metazoans, coupled with 276 
comprehensive in situ biogeochemical measurements (Karsenti et al. 2011). A wide range of contrasting 277 
ecosystems were targeted, using sampling protocols that were highly standardized and consistent at each 278 
site. Tara Oceans is in fact derived from two research expeditions performed between 2009 and 2013. 279 
The first expedition (named Tara Oceans) lasted two years and eight months and sampled all of the 280 
principal ocean basins with the exception of the Arctic Ocean; the second (named Tara Oceans Polar 281 
Circle) lasted seven months and circumnavigated the Arctic Circle in 2013. An additional expedition 282 
denoted Tara Pacific, currently under analysis, retrieved sites across the Pacific Ocean, with a particular 283 
focus on the biology of coral ecosystems (Planes et al. 2019) (Fig. 3). The Tara Oceans expeditions 284 
consisted in the collection of >35 000 plankton samples from 210 sampling sites, which were used to 285 
generate >60 terabases of DNA and RNA sequences and ~7 million images (Sunagawa et al. 2020).  286 
 287 

5. Biogeographical Insights of Algae from Tara Oceans Metabarcoding 288 
 289 

Environmental sequencing initiatives such as the Tara Oceans expedition have provided unprecedented 290 
insight into the biological diversity of ocean communities, placed within a geographical context. This 291 
diversity has been most clearly resolved by amplicon sequencing or barcoding, in which a fragment of the 292 
small subunit of the rRNA gene (16S for prokaryotes, 18S for eukaryotes) is universally amplified and 293 
massively sequenced from an environmental sample (Le Bescot et al. 2016). Most studies of eukaryotes 294 
have so far focused on hypervariable regions of the 18S rRNA gene, which are universal, taxonomically 295 
informative, flanked by conserved regions for primer binding, short enough for current sequencing 296 
technologies, and are by far the most represented in reference databases (Pawlowski et al., 2018); 297 
although alternatives exist (e.g., chloroplast rbcL, 16S and 23S rDNA; Djemiel et al., 2020). The V9 and 298 
V4 regions are the most commonly used (Stoeck et al., 2010; Pernice et al., 2016; Tragin et al., 2018). 299 
This approach enabled a tremendous expansion of richness estimates in the microscopic realm, in spite of 300 
recurrent and unresolved problems (e.g., definition of species in the absence of data from sexual crosses, 301 
and artefacts introduced by the polymerase chain reaction and sequencing methods; Bhadury and Austen 302 
2010; Berruti et al. 2017).  303 
 304 



The first metabarcoding survey of eukaryotes from Tara Oceans consisted of the sequencing of >1.7 305 
million reads belonging to the 18S rRNA gene (V9 region) from 334 samples from 47 different 306 
geographical sites and revealed the occurrence of approximately 110,000 distinct eukaryotic operational 307 
taxonomic units (OTUs, a proxy for species in molecular surveys), of which approximately 20% could be 308 
assigned to photosynthetic species (i.e., phytoplankton, and hosts of photosynthetic symbionts (de Vargas 309 
et al. 2015; Le Bescot et al. 2016)). Among phytoplankton, the largest numbers of OTUs were assigned to 310 
dinoflagellates and diatoms, followed by prasinophytes within the green algae and haptophytes (Fig. 5). 311 
Other photosynthetic groups, principally other members of the ochrophytes (dictyochophytes, 312 
chrysophytes) and cryptomonads were detected at >1% total abundance (Fig. 5). In contrast, many other 313 
lineages of algae that have formed important references for genomic study, for example red algae, 314 
glaucophytes and phaeophytes, represented relatively minor components of the marine microbial 315 
communities sampled (Figs 2, 5). 316 
 317 
In addition to biodiversity, molecular methods can give information into the habitat preferences and 318 
morphologies of different algal groups. For example, metabarcoding libraries generated from seawater 319 
samples filtered with different exclusion filters can be used to gain insight into the repartition of different 320 
algal groups into different size fractions (de Vargas et al. 2015), each of which may have very different 321 
functional physiologies and respond differently to environmental perturbations (Li et al. 2009). The 322 
largest size fractions considered by Tara Oceans (between 180 and 2,000 µm) are dominated by diatoms, 323 
due to the presence of chain-forming (e.g., Hyalosira and Fragilaria) and epizoic (e.g., 324 
Pseudohimantidium) species; while the phytoplankton in the 5–20 µm and 20–180 µm fractions 325 
principally consist of diatoms and dinoflagellates (Fig. 5; Malviya et al. 2016). Abundance in the smaller 326 
0.8–5-µm size fraction is much more heterogeneous, with haptophytes, dinoflagellates, diatoms (Leblanc 327 
et al. 2018), prasinophytes, pelagophytes, dictyochophytes, and cryptomonads all making substantial 328 
contributions. 329 
 330 
In relation to their biogeographical distribution, in general terms picophytoplankton (0.2–2 µm, mainly 331 
the cyanobacteria Prochlorococcus and Synechococcus; but also eukaryotes such as pelagophytes) are 332 
found in warm, nutrient-poor waters in the tropical and subtropical ocean, while nanophytoplankton (2–333 
20 µm) can be detected potentially year-round in temperate regions (Fig. 6). By contrast, 334 
microphytoplankton (20–200 µm) bloom mainly at higher latitudes at the beginning of spring and 335 
sometimes also in the late summer, as well as in upwelling regions (Fig. 6) (Li et al. 2009). Diatoms are 336 
particularly prevalent at high latitudes and in upwelling environments (Fig. 6), where they are able to 337 
bloom and outcompete other marine phytoplankton when nitrate and silicate are abundant (Malviya et al. 338 
2016). The contrasting environmental distributions of diatoms and pelagophytes is particularly notable 339 
given their close relationship to one another within the ochrophytes (Fig. 1). 340 
 341 
In contrast to the clear spatial trends shown by picophytoplankton and diatoms, the abundance patterns of 342 
prasinophytes, dinoflagellates, and haptophytes are less straightforward to contextualize, and may vary 343 
between different members of each group. For example, the haptophyte Phaeocystis is a dominant 344 
component of microalgal communities at high latitudes (shown in the corresponding map of Fig. 6a the 345 
larger circles with colors indicating lower diversity values), whereas other haptophytes (e.g., Emiliania) 346 
constituting diverse communities show predominantly temperate or even tropical distributions (Bendif et 347 
al. 2014; Pfaff et al. 2016). Within the prasinophytes, members of the Mamiellophyceae (e.g., 348 



Ostreococcus, Micromonas) are prominent in coastal waters (Monier, Worden, and Richards 2016; 349 
Vannier et al. 2016), while clade VII prasinophytes dominate oceanic waters (Lopes Dos Santos et al. 350 
2017). The high diversity and broad biogeographical distribution of dinoflagellates, including coastal, 351 
oceanic, polar, temperate and tropical abundance (Le Bescot et al. 2016) (Fig. 6) is indicative of the broad 352 
ecological strategies employed by different genera. 353 
 354 

6. Functional Studies of Algae from Tara Oceans Metagenomes and Metatranscriptomes 355 
 356 

In addition to taxonomic analyses based on metabarcoding data, the functional analysis of natural 357 
phytoplankton communities can be carried out by metagenomics and metatranscriptomics. The current 358 
version of the Tara Oceans eukaryotic gene catalog consists of 116 million non-redundant transcribed 359 
sequences mainly from eukaryotic plankton ranging from 0.8 to 2000 µm (Carradec et al. 2018). It was 360 
generated by assembling 441 poly-A+ metatranscriptomes from samples across the main ocean basins and 361 
has no apparent saturation (Carradec et al. 2018). Among the most abundant transcripts found in the 362 
catalogue are the chlorophyll a/b binding proteins, involved in light harvesting and considered the most 363 
abundant membrane proteins on Earth (Dittami et al. 2010).  364 
 365 
The variability of the gene and transcript levels of all these sequences across different environmental 366 
conditions can give clues about functional responses in phytoplankton communities. The environmental 367 
response of phytoplankton on short timescales (over the lifetime of the cell) is called acclimation and 368 
includes the modulation of gene expression. By contrast, adaptation to an environmental niche refers to 369 
genetic changes (e.g., in gene copy number) that accumulate over many generations. Responses to 370 
environmental cues also include shifts in the community structure, changes of broad taxonomic groups as 371 
well as changes of genotypes of the same species adapted to local conditions. These links were detected in 372 
diatoms, for example with nitrogen (Busseni et al. 2019) and iron uptake systems (Caputi et al. 2019).  373 
 374 
Fig. 7 shows the correlations in Tara Oceans data between conditions of high productivity and the 375 
expression of gene families containing members involved in photosynthesis and carbon fixation. Among 376 
the displayed set of photosynthetic genes are those coding for ferredoxins, iron-containing proteins that 377 
can be replaced by flavodoxins, which are iron-free versions of less efficiency (Pierella Karlusich et al., 378 
2014). Although diatoms can concentrate up to 30-40% of their cellular iron into ferredoxin (Pierella 379 
Karlusich et al., 2014), they show an extreme positive correlation between its expression and conditions 380 
of primary production (Fig. 7). Furthermore, while quantification of ferredoxin-encoding transcripts 381 
among poly-A+ metatranscriptomes can be affected by the fact that the gene is plastid encoded in many 382 
diatom species (Lommer et al. 2012; Dorrell et al. 2017), the strong correlation with primary production 383 
might reflect the iron uptake and usage efficiency in diatoms, avoiding high investment in flavodoxins 384 
due to the presence of other strategies (Carradec et al. 2018; Kazamia et al. 2018; Caputi et al. 2019).  385 
 386 
Metatranscriptome data can even provide information regarding the broader life strategies used by 387 
different phytoplankton groups, for example in the context of mixotrophy (Burkholder, Gilbert, and 388 
Skelton 2008). Fig. 7 shows that obligate photoautotrophs, such as diatoms and prasinophytes, exhibit 389 
high positive correlations between conditions of high productivity and the expression of gene families 390 
containing members involved in photosynthesis (i.e., light harvesting, photosynthetic electron transport, 391 
and carbon dioxide assimilation through the Calvin cycle); while haptophytes and dinoflagellates show 392 



weak or no correlations (Fig. 7). Indeed, dinoflagellates show high positive correlations to primary 393 
production for the expression of gene families encoding cell lytic components, such as proteases and 394 
lipases, suggesting that dinoflagellates in the most productive marine communities function 395 
predominantly as heterotrophs and predators (Carradec et al. 2018). This might reflect switches in the 396 
trophic strategy of dinoflagellates under mixotrophic conditions, e.g., the replacement of autonomous 397 
amino acid assimilation pathways with scavenging from prey or dissolved external organic material 398 
(Johnson 2015; Li et al. 2020; Cohen et al. 2021). Similar positive correlations to peptidases for 399 
haptophytes might also reflect previously reported facultative mixotrophy in this group (Unrein et al. 400 
2014; Anderson et al. 2018).  401 

 402 
7. Applying Genome-Resolved Metagenomics to Phototrophic Eukaryotes  403 

 404 
Initial studies of environmental datasets have focused either on the study of single marker genes (e.g., 18S 405 
rDNA) or functional genes, based on comparison to reference genomes and transcriptomes. While these 406 
data can provide deep insights into the diversity and functions of lineages with well annotated cultured 407 
representatives, they necessarily provide fewer insights into taxa for which reference libraries from 408 
cultured species do not exist, as discussed above (Absolon, Smith, and Helliwell 2019).  409 
 410 
Recently, environmental sequence data has been harnessed to provide insights into the complete genome 411 
sequences of species and lineages that are not yet cultivable in the lab. Two major types of genomic data 412 
can be generated from natural samples: single amplified genomes (SAGs) and metagenome-assembled 413 
genomes (MAGs). The former are generated by isolating individual cells, amplifying their genomes using 414 
whole genome amplification (WGA) and sequencing their DNA, with the first environmental SAG 415 
generated in 2007 for microbes of the human mouth (Marcy et al. 2007). Conversely, MAGs are obtained 416 
by assembling metagenomic reads into contigs (continuous DNA segment) with the help of specific 417 
algorithms, then grouped using nucleotide sequence signatures such as GC content, tetra-nucleotide 418 
frequencies, marker gene phylogenies, depth of DNA sequence coverage, and abundance across the 419 
samples (Iverson et al. 2012). The grouped samples are then assigned to individual populations using both 420 
their coverage and composition as proxies.  421 
 422 
The first MAGs were reconstructed from prokaryotic communities in an acid mine drainage (Tyson et al. 423 
2004). This technique has subsequently been widely applied to marine viral, archaeal and bacterial 424 
populations (Parks et al. 2017; Tully et al. 2017; Delmont et al. 2018; Tully, Graham, and Heidelberg 425 
2018; Gregory et al. 2019; Cao et al. 2020; Reji and Francis 2020); and for some heterotrophic eukaryotes 426 
(Yoon et al. 2011; Mangot et al. 2017; Seeleuthner et al. 2018); but very few examples have been 427 
available from eukaryotic algae. This bias reflects the size and complexity of eukaryotic genomes, which 428 
makes them difficult to assemble from limited environmental sequencing data (Tyson et al. 2004; 429 
Gregory 2005), particularly in the case of genomes without closely related reference genomes (Bowers et 430 
al. 2017; Nelson, Tully, and Mobberley 2020); and historical priority in funding biases for less easily 431 
cultivable heterotrophic protists (del Campo et al. 2014). Moreover, the absence of standardised meta-432 
data, e.g., environmental parameters, for assembled metagenomes can limit their direct comparability to 433 
one another (Sibbald and Archibald 2017).  434 
 435 



Nonetheless, new methods are emerging to improve the recovery of eukaryotic genomes from 436 
environmental data (West et al. 2018). For instance, among the MAGs generated for marine phototrophic 437 
eukaryotes are small species such as Micromonas (Delmont et al. 2015, 2018), Bathycoccus, 438 
Ostreococcus and Emiliania (Delmont et al. 2018), as well as other prasinophyte and diatom species 439 
(Duncan et al. 2020). Such studies allow us to gain insight into the diversity and ecology of these groups 440 
based on their natural populations.  441 
 442 
Very recently, an important database has been released that represents 713 marine eukaryotic SMAGs 443 
(both MAGs and a few SAGs) from a wide range of organisms, generated from Tara Oceans samples, 444 
including from the Arctic Ocean (Delmont et al. 2020). In this, more than 270 SMAGs (~30% of the 445 
database) have been assigned as marine eukaryotic algae, dramatically expanding the number of algal 446 
genomes available (Fig. 2A). For instance, it increases by 18 times the number of available genomes for 447 
haptophytes, by 15 for cryptomonads, by 6 for prasinophytes, diatoms and chrysophytes, and enables 448 
access for the first time to genomic data for taxonomic groups (e.g., dictyochophytes and bolidophytes; 449 
Fig. 2A) for which no genomes were previously available. Moreover, this Tara Oceans SMAGs database 450 
gathers highly contextualized data, is freely available, and the genomes have relatively elevated 451 
completeness (~40% on average and up to 94% BUSCO completion, a measure of genome completedness 452 
based on the detection of broadly conserved marker proteins; Simão et al. 2015, Hanschen and 453 
Starkenburg 2020). This new database will be a very important resource to gain insight into the genomic 454 
diversity of previously under-sampled branches of the eukaryotic tree of life. 455 
 456 

8. Perspectives  457 
 458 
In this chapter, we have explored the dramatic changes in eukaryotic algal genome resources that have 459 
become available within one generation of scientific research; starting with the completion of the first 460 
chloroplast genomes of cultured algae in the mid-1990s (Kowallik et al. 1995; Reith and Munholland 461 
1995) and currently extending to ecologically contextualised genomes and transcriptomes of uncultured 462 
algae from environmental sequence metadata (Carradec et al. 2018; Delmont et al. 2020). This is 463 
revolutionising our understanding of algal diversity, evolution, and functional biology, but challenges 464 
nonetheless remain.  465 
 466 
The quality of the assembly and annotation of cultured algal genomes and transcriptomes may vary 467 
substantially (Hanschen and Starkenburg 2020), and indeed assembly is only the start of the much more 468 
complex process of functional annotation of genome content, which may depend on the development of 469 
transformation strategies enabling reverse genetics (Faktorová et al. 2020). However, an increasing 470 
number of genomes from transformable algal species (e.g., the diatom Phaeodactylum tricornutum; 471 
Rastogi et al. 2018; Yang et al. 2018) have undergone multiple rounds of revision, integrating 472 
transcriptomic and even proteomic data to completely annotate the encoded complement of genes. An 473 
additional question to consider is the genomic representativeness of individual isolates for an entire 474 
species. Recent projects, focusing on within-species genomic diversity, have shown that genomic content 475 
and organisation can vary dramatically even between strains of the same algal species, isolated from 476 
different environments (Read et al. 2013; Flowers et al. 2015; Rastogi et al. 2020). This micro-evolution 477 
may be as significant as the phylogenetic distances between major groups for underpinning genomic 478 
diversity in eukaryotic algae (Blanc-Mathieu et al. 2017). 479 



 480 
The environmental sequence datasets available through projects such as Tara Oceans expand our insights 481 
into the biodiversity of previously unexplored oceanic regions, although with notable gaps (e.g., the Bay 482 
of Bengal; much of the southern Indian Ocean; and the Atlantic African coast; Fig. 3). We hope that 483 
future sequencing projects may be able to further redress some of the geographical discrepancies in what 484 
marine sequence data are available; and may involve more direct participation from researchers in 485 
transitional and developing economies, which may be highly phycologically diverse and 486 
disproportionately affected by anthropogenic pollution and climate change (Msuya and Hurtado 2017; 487 
Lee 2019). These projects may also form the starting point for groundbreaking explorations of algal 488 
diversity in freshwater and terrestrial environments, which have very different chemical properties (e.g., 489 
extreme nutrient limitations and enrichments, highly variant pH, lower salinity, and large diurnal and 490 
annual fluctuations in temperature), and in which very different patterns (e.g., a more dominant role for 491 
chrysophytes and cryptomonads, and of mixotrophic and obligately heterotrophic species) are observed 492 
(Dorrell et al. 2019; Djemiel et al. 2020; Singer et al. 2020; Nelson et al. 2021).  493 
 494 
The identification and assembly of SMAGs raises new challenges concerning assembly and quality; for 495 
example concerning the minimum information about single-amplified and metagenome-assembled 496 
genomes (MISAG, MIMAG) acceptable for deposition in public repositories (Bowers et al. 2017). 497 
Certain lineages, particularly dinoflagellates, are currently not represented at all in SMAG data (Fig. 2); 498 
reflecting their large and highly complex nuclear genomes (Gornik et al. 2019). These may require deeper 499 
sequencing than currently feasible for genome-resolved metagenomics. Finally, the metagenomic 500 
identification of poorly culturable organisms, some of which may correspond to novel branches of the 501 
algal tree of life (Delmont et al. 2020), may open up new chapters in laboratory research. SMAGs may be 502 
particularly important in this regard, revealing possible undocumented auxotrophies (e.g., for vitamins; 503 
Helliwell et al. 2011; Absolon, Smith, and Helliwell 2019) that may eventually allow us to bring some of 504 
the previously uncultured lineages, such as MOCHs and rappemonds (Kim et al. 2011; Massana et al. 505 
2014), into the laboratory for more detailed observation. 506 
 507 
The genome revolution has already transformed our understanding of eukaryotic algal biology, but this 508 
revolution is ongoing. Understanding the genomics and biodiversity of eukaryotic algae will be essential 509 
in meeting conservation and biofuels targets agreed within the COP21 climate agreement (Pires 2017); 510 
and is a central objective of the upcoming UN Decade for Ocean Science (Lee 2019; Nash et al. 2020). 511 
Further exploration, and new sequence assembly and analysis, may help expose new patterns of diversity 512 
and functions in marine algal communities 513 
 514 

Glossary Box 515 
 516 
Genome: an assembled sequence of all DNA found in a genome, including both coding and non-coding 517 
regions. After sequencing and assembly, genomes have to be annotated to define where genes are located, 518 
and predicted probable coding content. 519 
 520 
Transcriptome: a survey of all expressed sequences in a cell, based on next-generation sequencing of 521 
cellular RNA (via cDNA). Transcriptomes can provide direct insight into the sequences of coding regions 522 



(i.e., genes) in eukaryotic genomes, and (by allowing consideration of the levels of different gene 523 
expression) reveal physiological responses to environmental stimuli. 524 
 525 
Phytoplankton and Algae: typically refer to single-celled or colonial (chain-forming) photosynthetic 526 
organisms, which can either include bacteria (i.e., cyanobacteria) or refer only to eukaryotes (e.g. 527 
diatoms, dinoflagellates, and haptophytes). Algae are evolutionarily diverse, with many of the main 528 
eukaryotic groups distantly related to plants, to us, and even to one another, although all eukaryotic algae 529 
share chloroplasts, derived through endosymbiosis. 530 
 531 
Endosymbiosis: the process by which mitochondria and chloroplasts originate, proposed in 1904 by 532 
Konstantin Mereschkowsky and revitalised in the 1960s by Lynn Margulis. Free-living organisms 533 
(photosynthetic in the case of chloroplasts; and either bacteria or single-celled eukaryotes) are swallowed 534 
up by a predatory eukaryote, and converted into permanent bioenergetic organelles. While only one 535 
mitochondrial endosymbiosis is known, at the origin of eukaryotes, chloroplasts have been acquired 536 
through endosymbiosis at least ten times across the eukaryotic tree. 537 
 538 
Horizontal Gene Transfer: also referred to as HGT or Lateral Gene Transfer; the non-sexual exchange 539 
of genetic information between cells, typically of different species. Horizontal Gene Transfer may occur 540 
as a continuous process over evolution, and may involve both prokaryotic and eukaryotic partners; and 541 
may be a driving force in rapid environmental adaptations. 542 
 543 
Photo-mixotrophy: a lifestyle in which an organism both derives energy through photosynthesis, and 544 
through the phagotrophic consumption of other organisms or the uptake of dissolved organic nutrients. 545 
This strategy, while rare in plants (c.f., carnivorous plants) is widespread in algae, and is particularly 546 
important for the biology of dinoflagellates. 547 
 548 
Diatoms: “the rainforests of the oceans”, diatoms are typically rather large, sessile algae living inside 549 
silica shells, which contribute up to one-fifth of total planetary photosynthesis. Diatoms are particularly 550 
abundant at high latitudes (e.g. the Arctic, and the Antarctic), where they can exploit abundant seawater 551 
nutrients to underpin the marine food chain. 552 
 553 
Haptophytes: also referred to as coccolithophorids; typically small, eukaryotic algae that live inside 554 
calcium carbonate shells, and can form highly abundant seasonal “blooms” visible from space. The 555 
haptophyte shells, if deposited on the seafloor and compressed, can be converted over geological 556 
timescales into calcareous rocks, e.g. limestone and chalk. 557 
 558 
Dinoflagellates: a highly heterogeneous and diverse group of algae, encompassing photosynthesisers, 559 
mixotrophs and heterotrophs. Dinoflagellates include the principal photosynthetic symbiont of coral 560 
(Symbiodinium) alongside harmful “red tide” species, which can produce toxic compounds that result in 561 
mass shellfish and marine vertebrate die-offs. 562 
 563 
Barcode: a short region of sequence (typically from the nuclear small subunit rDNA) that has been 564 
sequenced in many cultured organisms. Sequencing DNA barcodes amplified from environmental 565 



samples, and comparing to databanks of equivalent sequences from cultured species, allows us to profile 566 
the probable species diversity in the wild. 567 
 568 
Meta-genome and meta-transcriptome: sequencing of all DNA or RNA in an environmental sample, 569 
e.g. seawater. This will provide the sequences of not just one species, but a coexisting community of 570 
different organisms; which allows insights into ecological interactions at the expense of resolving 571 
sequence origin. 572 
 573 
SMAGs: Assembled Genome sequences obtained from uncultured organisms, either by intensive 574 
sequencing of Single isolated cells (SAGs) or the mathematical resolution of large amounts of sequence 575 
data from multiple Metagenome datasets (MAGs). 576 
 577 

Figures 578 
 579 



580 
Fig. 1. Diversity of eukaryotic algae. Top: exemplar photos of eukaryotic algae. Images are (i) 581 
Nephroselmis sp. RCC1805 (prasinophyte); (ii) Rhodella maculata RCC655 (proteorhodophytinan red 582 
alga); (iii) Hemiselmis sp. RCC4215 (cryptomonad); (iv) Lotharella reticulosa RCC376 583 
(chlorarachniophyte); (v) Karlodinium veneficum RCC2539 (fucoxanthin-containing dinoflagellate); (vi) 584 
Heterosigma akashiwo RCC1502 (raphidophyte); (vii) Ochromonas sp. RCC2350 (chrysophyte); (viii) 585 
Asterionellopsis glacialis RCC2636 (diatom); (ix) Pelagococcus subviridis RCC5644 (pelagophyte); and 586 
(x) Isochrysis sp. RCC1956 (haptophyte). Scale bars: 10 µm. All images kindly supplied by the Roscoff 587 
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Culture Collection. Bottom: schematic tree of eukaryotic algae, summarising key phylogenetic 588 
relationships and endosymbiotic gene transfers that underpin the evolution of algal genomes. Branch 589 
colours correspond to the box colours in the photo above. Data in this figure is summarised from Stiller et 590 
al. 2014; Dorrell et al. 2017; and Dorrell et al. 2021. 591 

 592 
Fig. 2. Diversity of published algal sequence libraries. Top: number of published algal genomes 593 
(Grigoriev et al. 2020; Hanschen and Starkenburg. 2020; Nelson et al. 2021) and Tara Oceans single 594 
amplified genomes and metagenome-assembled genomes (SMAGs, Delmont et al. 2020); and bottom: 595 
number of equivalent from the MMETSP and OneKp sequencing projects (Keeling et al. 2014; Carpenter 596 
et al. 2019). Dots that shade each other (e.g. for chrysophyte and euglenid transcriptomes) denote a same 597 
value. Taxa are shaded by phylogenetic origin, using the same scheme as Fig. 1.  598 



 599 
Fig. 3. Isolation sites of sequenced algal genomes (solid shapes) and MMETSP transcriptomes (open 600 
shapes), compared to sampling sites for the Tara Oceans and Tara Oceans Polar Circle expeditions. 601 
Isolation sites were manually verified from culture collection accession for each strain (Vaulot et al. 2004; 602 
Gachon et al. 2013; Guiry et al. 2014; Boundy-Mills et al. 2015). Algal sequence libraries are coloured by 603 
phylogenetic origin, using the same scheme as fig. 1. 604 
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 605 
Fig. 4. Maximum and minimum values (blue lines) and interquartile ranges (blue sectors) of 606 
measured total concentrations at 5 m depth of nitrogen, phosphorus and silicon in different Tara 607 
Oceans regions; compared to supplemented concentrations of each nutrient in three growth media 608 
(ASW, f/2 and Aquil; red lines) commonly used for growth of laboratory algal cultures. The authors 609 
acknowlege Elena Kazamia for the calculation of growth media nutrient concentrations. 610 
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 611 
Fig 5: Taxonomic distribution, abundance, and richness of marine eukaryotic phytoplankton based 612 
on 18S rRNA gene (V9) metabarcoding across different size fractionated Tara Oceans samples. The 613 
area of each circle corresponds to the average abundance relative to total eukaryotic read counts, while 614 
the color gradient varies according to the number of operational taxonomic units (OTUs). Data are 615 
derived from the complete Tara Oceans data set for 18S rRNA gene (V9 region) metabarcoding (de 616 
Vargas et al. 2015, Ibarbalz et al. 2019). Size-fractionated samples were generated via membrane 617 
filtration with different pore sizes.  618 



 619 
Fig 6: Biogeography and environmental distribution of photosynthetic algae inferred from Tara 620 
Oceans samples. A: Biogeography of the major photosynthetic protists based on 18S rRNA gene (V9 621 
region) metabarcoding data from the 0.8–2,000-µm size fraction (de Vargas et al. 2015). The size of each 622 
circle corresponds to the abundance at each location, and the fill color refers to the Shannon diversity 623 
index (dark blue for low diversity and light blue for high diversity). B: Correlation analysis between 624 
relative abundances of the main phytoplankton groups and a selection of productivity-related parameters. 625 
Color represents Spearman’s rho coefficients. Empty spaces refer to nonsignificant correlation values (p > 626 
0.05). Chlorophytes and dinoflagellates are not shown due to absence of significant correlations. 627 
 628 



 629 
Fig. 7: Functional insights into global ocean communities of algae using Tara Oceans 630 
metatranscriptomes. This figure shows the distribution of Pearson correlation values of Pfam domains 631 
with measurements of net primary productivity in the five major photosynthetic planktonic groups. The 632 
profiles illustrate the density distribution of all the correlation values of the Pfams having a relative 633 
expression value at least equal to 0.05% (relative expression value is indicated by the size of the grey 634 
dots). Pfam representatives of three main functional classes (CO2 fixation through the Calvin Cycle, 635 
photosynthetic light reactions/ light harvesting, and proteolysis) are coloured. Adapted from Carradec et 636 
al. (2018). 637 
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