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We analyze the modification of the computational properties of a time-delay photonic reservoir computer with a change
of its feedback bandwidth. For a reservoir computing configuration based on a semiconductor laser subject to filtered
optoelectronic feedback, we demonstrate that bandwidth selection can lead to a flat-topped eigenvalue spectrum, for
which a large number of system frequencies are weakly damped as a result of the attenuation of modulational instability
by the feedback filtering. This spectral configuration allows for optimization of the reservoir in terms of its memory
capacity, while its computational ability appears to be only weakly affected by the characteristics of the filter.

Photonic reservoir computers (RC) are neuro-inspired ar-
chitectures with a simplified training process, which offer
state-of-the-art performance in various machine-learning
benchmark tasks. The rich nonlinear dynamical behav-
iors in photonic devices, such as laser diodes, result in a
non-trivial high-dimensional mapping, which is essential
to solve classification and regression tasks correctly. How-
ever, the clear dynamical origin leading to a corresponding
level of performance is an arduous problem as it strongly
depends on the devices’ properties used in the architec-
tures. This study presents an RC system based on a laser
diode with filtered optoelectronic feedback. We are inter-
ested in how the filter’s time scales interact with those of
the laser to create parametric configurations of enhanced
computing capability. We base our analysis on fundamen-
tal bifurcation theory and eigenspectral properties to elu-
cidate this question. We propose a quantitative measure
that characterizes the flatness of the eigenvalue spectrum
and its proximity to the imaginary axis, and find it well-
correlated with the system’s memory capacity. This al-
lows for optimization of the reservoir computer’s memory
capacity.

I. INTRODUCTION

Reservoir computing (RC) is a computational paradigm in
the field of machine learning that exploits the nonlinear, high-
dimensional response of a recurrent neural network (RNN)
to solve complex tasks1. The RC’s attractiveness stems
from a simplified learning process, where only the network’s
output-layer interconnection weights are trained using convex
optimization2. As a result, a drastic reduction in the training
complexity is observed with RC compared to typical RNN-
based approaches. This salient feature makes RC easier to

a)These authors contributed equally to this work

design and implement in hardware because the precise adjust-
ment of interconnection weights, growing quadratically with
the network’s size, is not required anymore. In the last decade,
various physical platforms have demonstrated the potential of
physical RC3 as fast and energy-efficient computational en-
gine using photonic4,5, electronic6, and spintronic devices7.

Within the theoretical frameworks of RC, time-delay RC
(TDRC) was proposed originally as an additional simplifica-
tion whereby a single dynamical node can virtualize an en-
tire spatiotemporal network in a delayed feedback loop via
time-multiplexing8. The only downsides are a preprocessing
stage to distribute the input data to the various virtual nodes
in a feedback loop and a trade-off between speed and scal-
ability. TDRC has been widely studied in photonic systems
considering architectures based on lasers with all-optical9,10

or optoelectronic (OE) feedback11, optoelectronic oscillators
(OEO)12–14, and photonic integrated circuits with feedback15.
Their performance and Gb/s processing bandwidth have made
them prime technological candidates for telecommunication
applications16,17.

Furthermore, using photonic TDRC architectures, it is pos-
sible to include additional band-pass filtering that will impact
the intrinsic node’s dynamics through the nontrivial interplay
of timescales. Examples of such an architecture include OEOs
and laser diode subjected to OE feedback. The primary ex-
pected impact would be a change in memory capacity (MC),
which is a measure quantifying the ability of a system to re-
construct past inputs from present RC states. However, the
nature of the nonlinear interplay and the proper choice of
band-pass characteristics (i.e. resonance frequency, damping)
would have to be carefully chosen to enhance the TDRC per-
formance.

In photonic RC systems, the performance evaluation is usu-
ally performed using exhaustive search in various 2D pa-
rameter planes or advanced model-free optimization tech-
niques (e.g., Bayesian optimization, genetic algorithms, parti-
cle swarm optimization)18,19. However, predicting an accurate
level of performance for an RC and understanding its origin
from a dynamical standpoint remains an open problem, even
if, in recent years, we have gained better insight into criti-



Impact of filtering on photonic time-delay reservoir computing 2

FIG. 1. Schematic setup of the photonic TDRC system based on a
semiconductor laser with filtered OE feedback loop. LD, laser diode;
PD, photodetector; Amp, amplifier; HPF, high-pass filter, LPF, low-
pass filter. Black (red) lines are electric (optical) signals.

cal features in various types of photonic TDRC. For example,
such features are the necessity to have adequate level of dy-
namical consistency20, the choice of an operating point at the
edge of instability (close to a bifurcation point)11,21, regimes
at the edge of injection-locking when input data is optically
injected in laser with optical feedback22.

While TDRCs allow for simple implementation of RC, it
is still important to ascertain optimal performance and, more-
over, to have at hand design tools by which such performance
can be realized. Our focus is on evaluating the impact of feed-
back filtering effects on the performance of a photonic TDRC
and understanding its connection with its dynamical proper-
ties. In particular, we unveil a relation between the memory
capacity (MC) and a measure derived from the RC’s eigen-
spectrum. Our system of interest is a semiconductor laser
with a tunable bandpass filtered OE feedback. The RC’s ar-
chitecture and operation principle are similar to those reported
previously11, except for the the addition of low-pass filter-
ing in the feedback loop, modelling the upper cut-off of the
amplification of the electrical signal. This type of system is
amongst the simplest to quantify the impact of additional fil-
tering effects on the photonic TDRC performance. Our first
observation is that the bandwidth of the bandpass filter con-
trols the MC of the system. An eigenspectrum analysis reveals
how the laser modulational instability characteristics can be
affected by the filtering in order to improve the performance
of the TDRC in terms of MC while preserving its computa-
tional ability.

II. MODEL

The schematic setup of the proposed photonic TDRC archi-
tecture is shown in Fig. 1. The signal detected by the photo-
diode is amplified and subject to tunable band-pass filtering.
This signal is added to or subtracted from the injection cur-
rent driving the laser, hence providing delayed OE feedback.
Feeding the input data to the reservoir is realized by modulat-
ing the pump current with the signal derived from the multi-
plication of the input data by a mask generated from a set of
uniformly distributed random numbers as defined in11. The

impact of different types of temporal masks on the RC perfor-
mance has previously been investigated in23. Dimensionless
equations describing the system were developed based on the
models in24,25 previously used for LDs with OE feedback, in
which high- and low-pass filtering of the photodetected inten-
sity have been included:

İ(t) = 2N(t)I(t), (1)

İFH(t) =−τH
−1IFH(t)+ İ(t), (2)

İFL(t) =−τL
−1(IFL(t)− IFH(t)), (3)

ε
−1Ṅ(t) = P(1+ξ M f (t))+ηIFL(t − τ)−N(t)

−(1+2N(t))I(t), (4)

where I(t) is the normalized intensity of the laser field; N(t)
is the carrier density; IFH(t) is the high-pass filtered intensity
signal and τH is the inverse of the high-pass filter cut-off fre-
quency; IFL(t) is the low-pass filtered intensity signal and τL
the inverse of the low-pass filter cut-off frequency; P is the
pump-above-the-threshold parameter with a modulation func-
tion M f (t) for the masked input data and maximum modula-
tion amplitude ξ ·P ; η is the feedback strength (either positive
or negative); τ is the feedback delay time; and ε is the ratio of
the photon to the carrier lifetimes.

We consider the following set of experimentally relevant
parameters, which were estimated based on the observations
in24, for further numerical analysis: ε = 0.1; τH = 2000;
τ = 1000; N = 48; ξ = 0.1. Our choice for the number of
nodes stems from the fact that for N > 48, the MC tends to sat-
urate because the modulation frequency 1/θ becomes higher
than the relaxation frequency, and system’s response to pump
current modulation becomes damped11. Using N = 48 is rele-
vant for the study of the particular metrics MC and CA. Time
parameters are measured in the units of the photon lifetime
tp = 10 ps. The set of values τL = {1,7.5,10} is explored
for the low-pass filter time-scales, corresponding to the physi-
cal cut-off frequencies 100, 13.3, 10 GHz. We should note
here that the experimentally observed relaxation oscillation
frequency ∼ 5 GHz corresponds to 0.05 in the units of the
inverse photon lifetime.

III. EIGENVALUE SPECTRUM ANALYSIS

The eigenvalues of a dynamical system provide important
information about the response of the system to weak in-
put signals or perturbations applied in different directions of
phase space, which is here an infinite-dimensional functional
space created by the delayed feedback. The real part of an
eigenvalue corresponds to the damping rate of the response to
a perturbation while the imaginary part gives the angular fre-
quency of the oscillations in the response. Köster et al.26 have
demonstrated that the eigenvalues of the system’s equilibrium
without input, could be helpful to estimate RC performance.
Specifically, they introduced the average distance reduction
measure, which is analogous to an average decay time of the
transients during the symbol input time. In this section, we in-
vestigate the variation of the eigenvalue spectrum of the reser-
voir with respect to the low-pass filtering. The characteristic
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FIG. 2. Eigenvalue spectra, from top row to bottom: (a,b) τL = 1;
(c,d) τL = 7.5; (e,f) τL = 10. The values of η and P are such that for
every τL the system operates close to a Hopf bifurcation, and with
maximal MC: (a) P = 0.4, η = −0.61; (b) P = 0.4, η = 0.61; (c)
P = 0.2, η =−0.98; (d) P = 0.2, η = 0.98; (e) P = 0.1, η =−0.99;
(f) P = 0.1, η = 0.99. The other parameters are given in the text.

equation for the system Eqs. (1)–(4) about its only non-trivial
steady state I(t) = P, IFL(t) = IFH(t) = 0, N(t) = 0 reads

[2εP(1+λ )+λ (ε +λ )](1+ τHλ )(1+ τLλ )

−2e−λτ
ηεPλτH = 0, (5)

where λ is an eigenvalue.
We solve numerically the transcendental equation Eq. (5)

and obtain the eigenvalue spectra, shown in Fig. 2 for τL = 1,
7.5 and 10. The three values of τL correspond to decreasing
the low-pass cut-off frequency. We observe that close to the
imaginary axis, the spectra for τL = 1 and 10 are parabolic in
the complex plane which illustrates that the real parts of the
eigenvalues grow fast with the distance from the imaginary
axis. For τL = 7.5, the spectral profile in Fig. 2(c,d) is sig-
nificantly different and includes a relatively large flat-topped
part with a large number of weakly damped eigenvalues hav-
ing a real part close to the imaginary axis. It has been shown
in26 that such a spectral profile may indicate good RC perfor-
mance. The shape of the spectra suggests that there is an opti-
mal value of the low-pass cut-off frequency for an efficient in-
terplay between the intrinsic system’s timescales, namely the
relaxation oscillation (RO) frequency fRO and the RO damp-
ing rate γRO of the free-running laser.

The model of Eqs. (1)–(4) accounts for the two filtering
elements: high-pass and low-pass. However, the impact of
the realistic high-pass filtering in our system is not found pro-
nounced for the chosen parameters as the lower cut-off fre-
quency remains far below, and does not interact with, the sys-

tem’s key frequencies. The impact of the low-pass filtering is
much more pronounced.

To further investigate the relation between the eigenvalue
spectrum profile and the reservoir’s properties, we explore the
eigenvalues in the limit of long delay (i.e. τ ≫ 1). This ap-
proximation, which is consistent with parameter values con-
sidered here and in the experimental implementation of OE
feedback24, allows for an analytic expression for the eigen-
value spectrum, as shown below. Following the approach in
Ref. 27, we introduce the scaling

λ =
λ1

τ
+ iλ0, (6)

where λ0 and λ1 are real numbers. Inserting of the Eq. (6) to
the characteristic equation Eq. (5) and taking the leading order
approximation in τ , we write the real part λ1 of the pseudo-
continuous (PC) eigenvalue spectrum as

λ1 = J+F, (7)

where J defines the part of the spectrum describing the mod-
ulational instability caused by the undamping of the laser RO.
It reads

J = ln
2εP |η |√

ε2λ 2
0 (1+2P)2 +

(
λ0

2 −2εP
)2

, (8)

where λ0 is the imaginary part of the PC eigenvalue spectrum.
The modulational instability has previously been considered
in a semiconductor laser subject to optical feedback in the
frame of the Lang-Kobayashi equation27.

F depends only on filter characteristics and thus describes
the damping of perturbations due to the filtering in the feed-
back loop; it is given by

F = ln
τH |λ0|√(

1+λ0
2
τH 2

)(
1+λ0

2
τL2

) . (9)

As expected, the filtering effect is diminished (F → 0) when
the filter high-pass filter cut-off frequency is large (τH ≫ 1)
and low-pass filter cut-off frequency is small (τL ≪ 1).

The PC spectrum is symmetric with respect to the real axis
and independent of the sign of feedback strength η . The de-
composition of the PC spectrum is illustrated in Fig. 3 for the
three values of τL considered for Fig. 2. The part J, which
characterizes the modulational instability, has a characteristic
resonant shape reminiscent of an under-damped harmonic os-
cillator. The bifurcation frequency λ̂0, which aggregates the
relaxation-oscillation frequency and its damping rate and cor-
responds approximately to the frequency at which J reaches
its maximum, was obtained in24 and is given by

λ̂0 =
√

ω2
RO − γ2

RO, (10)

where ωRO = 2π fRO = 1
2

√
8εP− ε2(1+2P)2 is the RO an-

gular frequency of the free-running laser (η = 0), and γRO =
1
2 ε(1+2P), see25.
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FIG. 3. Decomposition of a PC spectrum real part λ1 (black line)
into the part J defining a modulational instability caused by the re-
laxation oscillations undamping (green line, Eq. (8)) and the part F
accounting for filtering (orange line, Eq. (9)). The dashed grey line
shows the position of the J function maximum at λ̂0. The dashed
green (orange) line shows a slope of a curve J (F) at the point λ̂0/2
(1/(2τL)) for illustrative purposes. The parameters are: (a) P = 0.4,
η = 0.61, τL = 1; (b) P = 0.2, η = 0.98, τL = 7.5; (c) P = 0.1,
η = 0.99, τL = 10. The other parameters are given in the text.

The part F , on the other hand, has the typical shape of a
low-pass filter. For τL = 1 (Fig. 3(a)), the cut-off is much
larger than the bifurcation frequency and the effect of filtering
is minor. For the two other values of τL, the cut-off is lower
than λ̂0, and filtering modifies significantly the spectrum of
the eigenvalues, as observed in Figs. 3(b,c). The flattening
of the eigenvalue spectrum results from the interplay between
the intrinsic system’s timescales related to J and F . The term
F provides the perturbation damping resulting from the filter-
ing which can be described by a negative slope, while the part
J has a positive slope determined by the modulational insta-
bility. Both slopes can be observed in Fig. 3. The optimal
flattening occurs when the two slopes have similar absolute
value. As a result, the filter leads to significant modification
of the damping timescales, and therefore of the small signal
response of the system, manifested by the appearance of a
large number of eigenvalues having nearly equal real parts.
We conclude that the flattening condition, and therefore, RC
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FIG. 4. Graphical representation of the average distance D defined
by Eq. 11. The green line is the PC spectrum given by Eq. 7, where
λ1 = Re(λ )τ , which approximates the numerical eigenvalues (blue
dots) very well. Orange line is Re(λ )τ = −1.5. Purple triangles
denote the points at the PC spectrum corresponding to λ

−
0 and λ

+
0

defining the averaging interval where λ1 ≥ −1.5. The grey shaded
area corresponds to the integral in Eq. 11. The parameters are the
same as in Fig. 2(c).

properties are fully determined by the modulational instability
frequency and the damping rate of the filtering.

As PC spectrum provides an adequate approximation, we
use it to further analyze the spectral properties and we define
the average distance of the spectrum Eq. (7) to the imaginary
axis D, which is illustrated in Fig. 4. It is defined as

D =
1

λ
−
0 −λ

+
0

∫
λ
+
0

λ
−
0

λ1 dλ0, (11)

where λ
−
0 > 0 and λ

+
0 > 0 are the lower and upper bounds of

the averaging interval. As shown below, this quantity is a use-
ful measure of trends in the memory capacity of RC systems
and contrary to the measures introduced in Ref.26, D does not
require to numerically solve the transcendental characteristic
equation Eq. (5), which has an infinite number of solutions.

Figure 5 shows the measure D computed in the (η ,P) plane
for the three values of τL (1, 7.5, and 10). The dashed region
corresponds to where the equilibrium loses its asymptotic sta-
bility. We observe that the upper cut-off frequency signifi-
cantly affects both the contour of the stability region and the
measure D. The smallest values of D are obtained for τL=7.5,
and consistently to what we had observed in Ref. 11, close to
the stability boundary.

In the next part we calculate the memory capacity of the
system, and find that the measure D enables one to trace the
effect of the eigenvalue spectral shape on the memory capac-
ity. We propose that for the estimation of memory capacity
trends, the measure D can be an effective addition to the mea-
sure proposed in26 which is based on the the average distance
reduction during the input symbol time.
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FIG. 5. 2D maps of the average distance from the pseudo-continuous
spectrum to the imaginary axis (measure D defined by Eq. (11)), from
top row to bottom: (a) τL = 1; (b) τL = 7.5; (c) τL = 10. The dashed
region corresponds to the asymptotically unstable spectrum where
λ1 > 0, and the magenta line is the border of this region. The interval
[λ−

0 ,λ+
0 ] is defined as in Fig. 4. The other parameters are given in

the text.

IV. MEMORY CAPACITY

Memory capacity (MC) measures the ability of the RC sys-
tem to reproduce the input at previous delay times, and as such
is a measure of the performance of the RC. The reservoir’s MC
is calculated as28

MC =
∞

∑
m=1

mcm =
∞

∑
m=1

cov2(Oi,Si−m)

σ2(Si)σ2(Oi)
, (12)

where mcm is the memory function, σ2 is the variance, cov is
the covariance, Oi is the output data value at i-th time-step,
Si−m is the input data value delayed by m time-steps.

FIG. 6. Hopf bifurcation boundaries, from top row to bottom: (a,b)
τL = 1; (c,d) τL = 7.5; (e,f) τL = 10. Color bar is for the Lyapunov
coefficients L1. Red circles indicate L1 = 0. The other parameters
are given in the text.

It is known that optimal performance of RC are usually ex-
pected in the vicinity of instability from an equilibrium point,
typically a Hopf bifurcation in our laser with OE feedback.
As a result, we will analyse the bifurcation structure of our
free-running time delay systems to provide a dynamical in-
terpretation of TDRC’s memory capacity. We determine the
Hopf bifurcation structure by means of the DDE-Biftool29

software and we analyze the evolution of the structure de-
pending on the choice of the low-pass cut-off time-scale τL.
The results are shown in Fig. 6. We note that the Hopf bi-
furcation boundaries changes significantly with the variation
of the cut-off frequency. The bifurcation has either supercriti-
cal or subcritical character, and the first Lyapunov coefficient
may substantially change along the boundaries. The ranges of
the feedback strength η and the pump parameter P for the RC
system’s numerical modelling, and used in Fig. 6, are chosen
based on the calculated bifurcation boundary for each low-
pass filter cut-off time scale τL.

Figure 7 shows the 2D maps of the system’s MC in terms
of the pump parameter P and the feedback strength η , close
to the bifurcation borders, for the different values of τL along
with the Hopf bifurcation borders.

A decrease of the cut-off frequency of the low-pass filter
in the feedback loop leads to an increase in MC. The maxi-
mum values are observed in the vicinity of the Hopf bifurca-
tion border and for the intermediate value τL = 7.5. However,
we did not find any pronounced dependency of MC on the
Hopf bifurcation character (super- or sub-critical). While the
filter bandwidth may significantly affect MC, the variation of
the pump current P and the feedback strength η demonstrate
a much less significant impact. A similar behavior has been
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FIG. 7. 2D maps of the system’s memory capacity, from top row to
bottom: (a,b) τL = 1; (c,d) τL = 7.5; (e,f) τL = 10. The magenta lines
are the Hopf bifurcation borders. The other parameters are given in
the text.

observed in a RC based on a semiconductor laser and a short
external cavity, where MC either remains almost constant or
slightly increases with the feedback strength increase30. A
comparison between Figs. 5 and 7 shows that the area with the
largest values of MC for each τL corresponds to the area with
the smallest values of measure D, further confirming its use-
fulness as a predictor of the performance of the RC in terms of
MC. Consistent with observations from Ref. 26, MC is maxi-
mized when many of the system’s eigenvalues have real parts
close to zero. Of note, the eigenvalue spectra represented in
Fig. 2 correspond to the values of η and P that maximize MC,
and thus minimize D, for each value of τL. The asymmetry
with respect to the feedback sign is observed in our 2D maps
of MC, and the maximum value of MC is obtained for the
negative value of feedback strength η for each τL (as in Ref.
11).

At the bifurcation border, MC for the negative feedback is
on the average 1.3 times lager than for the positive one and
the strongest asymmetry is observed for τL = 7.5.

Finally, we compute the Pearson correlation coefficient
r(MC,D) between the average distance D and MC values ob-
tained from simulation, per the formula

r(X ,Y ) =
cov(X ,Y )
σ(X)σ(Y )

. (13)

Figure 8 shows the correlation scatter plots MC vs. D for
the asymptotically stable parameter ranges, and values of D
were computed at grid points where MC was calculated. As
the PC spectrum does not depend on the sign of η , we com-
pare two feedback signs separately. The correlation coeffi-
cient varies from −0.93 to −0.97 confirming the possibility
to infer MC properties from the measure D.
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FIG. 8. The correlation scatter plots MC vs. D for negative (a) and
positive (b) feedback signs. The color corresponds to a value of the
low-pass filtering parameter: τL = 1 (red); τL = 7.5 (green); τL = 10
(blue). The Pearson correlation coefficient values r are given in the
insets.
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FIG. 9. The memory curve for negative (a) and positive (b) feedback:
m is the number of delayed input steps for τL = 1 (red); τL = 7.5
(green); τL = 10 (blue). The other parameters are the same as in
Fig.2.

We examine in Fig. 9 the memory curves, which are the
memory functions mcm vs the delayed input steps m. We
conclude that the maximal MC results from the flattening of
mcm. The memory depth, which is the delayed input step for
which mcm drops to a value close to zero, is also slightly larger
for the optimal value of the low-pass cut-off frequency, and,
therefore, partly contributes to the maximal MC for τL = 7.5.
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V. COMPUTATIONAL ABILITY

Computational ability (CA) accounts for both the ability to
separate and sufficiently generalize the input data28. We cal-
culated it as a difference between the kernel quality rank rkq
and a generalization rank rg, and normalized this value by the
number of nodes N

CA =
rkq − rg

N
, (14)

where rkq is the kernel quality rank, rg is the generalization
rank. The kernel rank rkq demonstrates how linearly indepen-
dent the reservoir is, i.e., how well the RC can discern various
input values. A larger value of rkq means an RC would possess
more degrees of freedom available for the linear readouts.

The generalization rank rg quantifies the reservoir’s abil-
ity to map nonlinearly and consistently distinct inputs to dis-
tinct reservoir’s states. For the details on how to evaluate
these ranks see Ref. 28. The 2D maps of the kernel rank
and the generalization rank are given in Figs. 10 and 11 re-
spectively. Both ranks are maximized near the Hopf bifurca-
tion border and decrease away from it. Overall, kernel rank
demonstrates smoother profile and low variability across the
parameter plane while the generalization rank shows a sharp
decline away from the bifurcation border. This decline results
in the increase of CA.

The 2D maps of systems’s CA in Fig. 12 demonstrate that
the change of cut-off frequency of the low-pass filter leads
to a small enhancement of CA, with maximal values obtained
once again for the intermediate value τL. However, contrary to
what happens for MC, CA decreases in the immediate vicinity
of the Hopf bifurcation borders, as the maximum is obtained
at a relatively small, finite, distance from the borders. In addi-
tion, the maximal CA value is reached for positive feedback,
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FIG. 11. 2D maps of the system’s generalization rank, from top row
to bottom: (a,b) τL = 1; (c,d) τL = 7.5; (e,f) τL = 10. The other
parameters are given in the text.
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FIG. 12. 2D maps of the system’s computational ability, from top
row to bottom: (a,b) τL = 1; (c,d) τL = 7.5; (e,f) τL = 10. The other
parameters are given in the text.

contrary to the case of MC. Overall, we observe a limited im-
pact of feedback filtering on CA when compared to its effect
on MC.

The correlation scatter plots in Fig. 8 confirm a strong lin-
ear relationship between MC and D for all the values of τL
and both feedback signs. Similar plots for CA in Fig. 13 are
significantly different: they do not indicate a general trend for
correlation and do not provide any evidence of a sustained lin-
ear relationship between CA and D.
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FIG. 13. The correlation scatter plots CA vs. D for negative (a) and
positive (b) feedbacks. The color corresponds to a value of the low-
pass filtering parameter: τL = 1 (red); τL = 7.5 (green); τL = 10 (blue).
The Pearson correlation coefficient values r are given in the insets.

VI. CONCLUSION

In this study, we have shown that altering the low-pass filter
cut-off frequency profoundly changes the bifurcation structure
and the eigenvalue spectrum of a reservoir computing system
based on a laser with optoelectronic feedback. As this fre-
quency is decreased well below the relaxation oscillations fre-
quency, the memory capacity and computational ability tend
to increase before decreasing again. Optimum performance is
observed for an intermediate value of the cut-off frequency,
where a compensation between modulational instability and
filtering effects occurs. In this case, the filter leads to sig-
nificant modification of the damping timescales and therefore
of the small signal response of the system manifested by the
appearance of a large number of eigenvalues having having
nearly equal real parts. Interplay between modulational insta-
bility and filtering can thus make numerous eigenvalues, well
beyond those involved in modulational instability, be just be-
low the imaginary axis and contribute to the memory of the
system for different timescales. We find indeed that the re-
duction of the distance between the pseudo-continuous spec-

trum and the imaginary axis correlates well with an increase
in memory capacity of a time-delay OE feedback reservoir
computer. Computational ability can also be tuned with filter-
ing, but the effect is limited. In conclusion, careful design of
filtering properties can thus lead to significant improvement
in the memory of a reservoir computer and we expect related
improvement in memory-intensive tasks.
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