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We consider a many-body system of 2D anyons, free quantum particles with general statistics parameter ∈ ]0, 2[. In the magnetic gauge picture they are described as bosons attached to Aharonov-Bohm fluxes of intensity 2 , generating long-range magnetic forces. A dimensional reduction to 1D is obtained by imposing a strongly anisotropic trapping potential. This freezes the motion in the direction of strong trapping, leading to 1D physics along the weak direction. The latter is governed to leading order by the Tonks-Girardeau model of impenetrable bosons, independently of .

Quasi-particle excitations of many-body systems confined to reduced dimensionalities are not in principle constrained by the symmetry dichotomy which sorts all fundamental particles into bosons and fermions [START_REF] Goldin | Representations of a local current algebra in nonsimply connected space and the Aharonov-Bohm effect[END_REF][START_REF] Leinaas | On the theory of identical particles[END_REF][START_REF] Myrheim | Topological aspects of low dimensional systems[END_REF][START_REF] Wilczek | Magnetic flux, angular momentum, and statistics[END_REF]. In 2D, manybody quantum wave-functions may be classified by the phase picked upon exchanging/braiding two particles. It is of the form i for ∈ [0, 2[, the standard cases of bosons and fermions being recovered for = 0, 1 respectively. Equivalently one may think of these so-called anyons in terms of standard bosons (or fermions), coupled to infinitely thin magnetic flux tubes of strength 2 (or 2 ( -1)). This point of view is referred to as the magnetic gauge picture [START_REF] Forte | Quantum mechanics and field theory with fractional spin and statistics[END_REF][START_REF] Fröhlich | Statistics of fields, the Yang-Baxter equation, and the theory of knots and links[END_REF][START_REF]Quantum statistics and locality[END_REF][START_REF] Iengo | Anyon quantum mechanics and Chern-Simons theory[END_REF][START_REF] Khare | Fractional Statistics and Quantum Theory[END_REF]42,[START_REF]Anyons and lowest Landau level anyons[END_REF][START_REF]Fractional Statistics and Anyon Superconductivity[END_REF]. In 1D there does not seem to be a unique agreed-upon model for anyonic exchange statistics. Depending on how one proceeds to quantization, they have historically been described [START_REF] Leinaas | On the theory of identical particles[END_REF][START_REF] Leinaas | Intermediate statistics for vortices in superfluid films[END_REF][START_REF]Anyons and lowest Landau level anyons[END_REF][START_REF] Polychronakos | Non-relativistic bosonization and fractional statistics[END_REF][START_REF] Posske | Second quantization of leinaas-myrheim anyons in one dimension and their relation to the lieb-liniger model[END_REF] as ordinary particles with either contact interactions (Lieb-Liniger model) or inverse-square interactions (Calogero-Sutherland model) but other formalisms exist [START_REF] Andrić | Quantum fluctuations of the chern-simons theory and dynamical dimensional reduction[END_REF][START_REF] Fresta | Approaching off-diagonal longrange order for 1+1-dimensional relativistic anyons[END_REF][START_REF] Girardeau | Anyon-fermion mapping and applications to ultracold gases in tight waveguides[END_REF][START_REF] Moosavi | Exact Dirac-Bogoliubov-de Gennes dynamics for inhomogeneous quantum liquids[END_REF]. In particular, the chiral BF/Kundu model [START_REF] Aglietti | Anyons and chiral solitons on a line[END_REF][START_REF] Batchelor | Onedimensional interacting anyon gas: Low-energy properties and haldane exclusion statistics[END_REF][START_REF] Rabello | 1d generalized statistics gas: A gauge theory approach[END_REF][START_REF] Kundu | Exact solution of double function Bose gas through an interacting anyon gas[END_REF] and the anyon-Hubbard model [START_REF] Bonkhoff | Bosonic continuum theory of one-dimensional lattice anyons[END_REF][START_REF] Santos | Anyon Hubbard model in one-dimensional optical lattices[END_REF][START_REF] Tang | Ground-state properties of anyons in a one-dimensional lattice[END_REF] have attracted attention recently. Our main purpose here is to ask which one, if any, of the different theoretically possible descriptions of 1D anyons, is singled out as the dimensional reduction of the 2D theory.

The main candidates for real-world implementation of 2D anyon statistics remain the charge carriers of fractional quantum Hall systems [START_REF] Arovas | Fractional statistics and the quantum Hall effect[END_REF][START_REF] Halperin | Statistics of quasiparticles and the hierarchy of fractional quantized Hall states[END_REF][START_REF] Lambert | On quantum statistics transmutation via magnetic flux attachment[END_REF][START_REF] Rougerie | Emergence of fractional statistics for tracer particles in a Laughlin liquid[END_REF] or their counterparts e.g. in cold atom emulations [START_REF] Clark | Observation of density-dependent gauge fields in a bose-einstein condensate based on micromotion control in a shaken two-dimensional lattice[END_REF][START_REF] Correggi | Vortex patterns in the almost-bosonic anyon gas[END_REF][START_REF] Edmonds | Simulating an interacting gauge theory with ultracold bose gases[END_REF][START_REF] Valentí-Rojas | Synthetic flux attachment[END_REF][START_REF] Yakaboylu | Quantum impurity model for anyons[END_REF][START_REF] Yakaboylu | Anyonic statistics of quantum impurities in two dimensions[END_REF]. See [START_REF] Goerbig | Quantum Hall effects[END_REF][START_REF] Jain | Composite fermions[END_REF][START_REF] Laughlin | Nobel lecture: Fractional quantization[END_REF][START_REF] Rougerie | Some contributions to many-body quantum mathematics[END_REF] for reviews and [START_REF] Bartolomei | Fractional statistics in anyon collisions[END_REF][START_REF] Nakamura | Direct observation of anyonic braiding statistics[END_REF] for experimental evidence. Said charge carriers are 2D objects described in the bulk via the usual, aforementioned, anyon model [START_REF] Lambert | On quantum statistics transmutation via magnetic flux attachment[END_REF][START_REF] Rougerie | Emergence of fractional statistics for tracer particles in a Laughlin liquid[END_REF]. Much of fractional quantum Hall physics is however probed via the transport of charge carriers along 1D edge channels, which connects to our main question.

In another direction, the coupling of cold atoms to optical fields can lead, in the adiabatic limit, to the effective implementation of density-dependent gauge fields [START_REF] Cardarelli | Engineering interactions and anyon statistics by multicolor lattice-depth modulations[END_REF][START_REF] Edmonds | Simulating an interacting gauge theory with ultracold bose gases[END_REF][START_REF] Valentí-Rojas | Synthetic flux attachment[END_REF]. Key proposals in this direction have recently been experimentally realized [START_REF] Clark | Observation of density-dependent gauge fields in a bose-einstein condensate based on micromotion control in a shaken two-dimensional lattice[END_REF][START_REF] Frölian | Realizing a 1d topological gauge theory in an optically dressed BEC[END_REF][START_REF] Yao | Domain-wall dynamics in Bose-Einstein condensates with synthetic gauge fields[END_REF]. In particular, signatures of the chiral BF model, connected to 1D Kundu anyons, have been observed [START_REF] Chisholm | Encoding a one-dimensional topological gauge theory in a Raman-coupled Bose-Einstein conden-sate[END_REF][START_REF] Frölian | Realizing a 1d topological gauge theory in an optically dressed BEC[END_REF] by generating a magnetic-like vector potential proportional to matter density. On the other hand, the magnetic gauge picture of 2D anyons corresponds to to a magneticlike field proportional to matter density. Indeed, in this note we explain (full mathematical details will be provided elsewhere) that the magnetic-gauge picture Hamitonian for 2D anyons of statistical parameter ∈]0, 2[ converges, in the limit of a tight confinement along one spatial dimension, to the impenetrable boson model of the Tonks-Girardeau gas, soluble by Bose-Fermi mapping [START_REF] Girardeau | Relationship between systems of impenetrable bosons and fermions in one dimension[END_REF][START_REF] Minguzzi | Strongly interacting trapped one-dimensional quantum gases: Exact solution[END_REF][START_REF] Mistakidis | Cold atoms in low dimensions -a laboratory for quantum dynamics[END_REF]. Thus, at leading order, the physics does not depend on and is given by an extreme case of the Lieb-Liniger [START_REF] Lieb | Exact analysis of an interacting Bose gas. II. The excitation spectrum[END_REF][START_REF] Lieb | Exact analysis of an interacting Bose gas. I. The general solution and the ground state[END_REF] model. The behavior is always essentially fermionic [START_REF] Ouvry | The Lieb-Liniger model in the infinite coupling constant limit[END_REF].

These results might be interpreted in light of the enhanced effect of interactions in reduced dimensionalities. However, it is remarkable that the long-range magnetic interactions of the original model result in a limiting purely local theory. This finding is consistent with [START_REF] Hansson | Dimensional reduction in anyon systems[END_REF][START_REF] Sen | Dimensional reduction of two-dimensional anyons to a one-dimensional interacting Bose gas[END_REF] although our approach differs and seems more systematic. In particular it clarifies the vanishing of the long-range magnetic interaction. A particular, discontinuous, phase is acquired by the 2D wave-functions, gauging the interaction away when particles are aligned.

MODELS AND MAIN RESULT

Consider a (multi-valued) wave function Ψ ∶ ℝ 2 → ℂ with anyonic exchange behavior, i.e.

Ψ( 1 , ..., , ..., , ..., ) = i Ψ( 1 , ..., , ..., , ..., )

(1) with ∈ ]0, 1] (by periodicity and complex conjugation, considering this range is sufficient). It is convenient to perform a singular gauge transformation

Ψ( 1 , ..., ) = ∏ < i Φ( 1 , ..., ) with = arg - | -|
with Φ a bosonic wave function, symmetric under particle exchange. We have denoted arg( . ) the angle of a planar vector with the horizontal axis. Applying this transformation, one finds

⟨ Ψ| -i∇ 2 |Ψ ⟩ = ⟨ Φ| 2 |Φ ⟩
where the momentum operator for particle has changed as

-i∇ ⇝ ∶= -i∇ + (2) 
with, denoting ( ,

) ⟂ = (-, ) ∈ ℝ 2 , ∶= ∑ ≠ - ⟂ | -| 2 . ( 3 
)
In this picture we have traded the non-trivial exchange symmetry of wave-functions for a density-dependent magnetic field.

Particle sees all the others as carrying an Aharonov-Bohm flux, leading to the magnetic field

( ) = curl = 2 ∑ ≠ =
We adopt this point of view throughout the note, using (the Friedrichs extension [START_REF] Yang | On the Aharonov-Bohm effect[END_REF][START_REF] Correggi | Magnetic perturbations of anyonic and Aharonov-Bohm Schrödinger operators[END_REF][START_REF] Oddis | Hamiltonians for two-anyon systems[END_REF][START_REF] Solovej | Hardy and Lieb-Thirring inequalities for anyons[END_REF][START_REF]Local exclusion principle for identical particles obeying intermediate and fractional statistics[END_REF][START_REF]Local exclusion and Lieb-Thirring inequalities for intermediate and fractional statistics[END_REF] of)

2D ∶= ∑ =1 2 + ( ) (4) 
acting on bosonic wave-functions as our starting point, where

( ) = ( , ) = 2 + 2 2 (5) 
is a convenient way of enforcing 1D behavior along the horizontal axis in the limit → 0. This is arguably a crude description (but, perhaps, also an instructive toy model) if one has a fractional quantum Hall edge in mind. There is however no difficulty in imposing such a potential on emerging anyons in cold atoms systems. The choice of a harmonic trapping is only out of convenience. Our results remain true with different choices, but the harmonic trapping has the virtue of leading to exactly soluble limit models. We denote

2D = min ⊂ 2 ℝ 2 dim = max Ψ∈ ,‖Ψ‖ 2 =1 ⟨ Ψ| 2D |Ψ ⟩ (6) 
the eigenvalues of (4), defined by standard Courrant-Fisher min-max formulae. Let Ψ be associated eigenfunctions, i.e.

2D Ψ = 2D Ψ .

There can be degeneracies, in which case we count eigenvalues with their multiplicities.

For small > 0 one expects the motion in the two spatial directions to decouple (which is true only to some extent in this particular case, see below). The motion in the direction will be frozen in the ground state of the harmonic oscillator

HO ∶= -2 + 2 2 . ( 7 
)
It turns out that the motion in the direction reduces to the free Hamiltonian

1D ∶= ∑ =1 -2 + 2 (8) 
but acting on the domain (of the Friedrichs extension)

 1D ∶= ∈ 2 (ℝ ), ( = ) ≡ 0 for all ≠ . ( 9 
)
This restriction is equivalent to the addition of a delta pairpotential of infinite strength to [START_REF] Bonkhoff | Bosonic continuum theory of one-dimensional lattice anyons[END_REF]. It is well-known that this impenetrable boson model can be mapped to a free fermionic one [START_REF] Girardeau | Relationship between systems of impenetrable bosons and fermions in one dimension[END_REF][START_REF] Minguzzi | Strongly interacting trapped one-dimensional quantum gases: Exact solution[END_REF][START_REF] Mistakidis | Cold atoms in low dimensions -a laboratory for quantum dynamics[END_REF]. In turn, this leads to an exact solution in the particular case above. However, our approach does not rely on this exact solution, and we could in fact have added extra interactions to our model. For simplicity, we do not consider this explicitly.

Let and be respectively the lowest eigenvalue and eigenfunction of [START_REF] Rabello | 1d generalized statistics gas: A gauge theory approach[END_REF]. Let ( 1D ) ∈ℕ be the eigenvalues of ( 8), with associated eigenfunctions , = 1, 2 …. In the model above, 1D is a sum of eigenvalues of the harmonic oscillator

-+ 2 and = ∏ < sgn( -)det , ( ( )) 
where are the associated one-particle eigenfunctions and is a normalization constant.

We state our main finding as a theorem.

Theorem 1 (Dimensional reduction for anyons).

For all ∈ ℕ, in the limit → 0,

2D = + 1D + (1). ( 10 
)
Moreover, one can choose the 2D and 1D eigenbases (Ψ ) and ( ) in such a way that

∫ ℝ 2 | | | | | | Ψ -( 1 , … , ) ∏ =1 ( ) | | | | | | 2 → →0 0 (11) 
Although it seems from (11) that a standard decoupling between the two space directions takes place, the actual ansätze for the eigenfunctions Ψ leading to the correct energy are more subtle. Essentially they are of the form

( 1 , … , ) ∏ =1 ( ) ∏ < -i ( -) (12) 
where we denote

( ) = ( , ) = arctan . ( 13 
)
The above trial states have the correct bosonic symmetry because ( ) = (-), but they are not of the form "function of times function of " that is more common in dimensional reductions. Note that ( ) has a discontinuity along the line = 0, so that it is crucial for [START_REF] Chisholm | Encoding a one-dimensional topological gauge theory in a Raman-coupled Bose-Einstein conden-sate[END_REF] to be well-defined that ( 1 , … , ) vanishes whenever = , ≠ . The phase factors -i ( -) modify the energy dramatically, gauging away the original magnetic interaction (see below). For this effect it is crucial to take advantage of the finite, albeit small, extension of our wave-guide, as shown by the discussion below.

A CASE FOR THE CALOGERO-SUTHERLAND MODEL

Before we sketch the proof of the above, it is instructive to examine an argument that would rather point in the direction of the Calogero model with inverse square interactions (which is also a proposed model for 1D anyons) as effective description. This will emphasize two things:

• That quantization and dimensional reduction do not commute in this particular case. Classical particles with the above magnetic interactions would experience Calogero-like interactions if confined on a line.

• The role of the phase factors -i ( -) in the main result. Indeed, if one chooses a simpler ansatz of the form

= ( 1 , … , ) ∏ =1 ( ),
the 1D function indeed experiences a Calogero-type Hamiltonian.

The possible connection between 2D anyons and Calogerolike models have already been pointed out in a similar context [START_REF] Li | Mapping of the Sutherland hamiltonian to anyons on a ring[END_REF][START_REF] Vathsan | Reduction of anyons to one dimension and Calogero-Sutherland-type models[END_REF]. It also arises for lowest Landau level anyons [START_REF] Brink | Explicit solution to the n-body calogero problem[END_REF][START_REF] Veigy | Equation of state of an anyon gas in a strong magnetic field[END_REF][START_REF]One-dimensional statistical mechanics for identical particles: the Calogero and anyon cases[END_REF][START_REF] Hansson | Dimensional reduction in anyon systems[END_REF][START_REF] Ouvry | On the relation between the anyon and Calogero models[END_REF][START_REF]Anyons and lowest Landau level anyons[END_REF][START_REF]Mapping the Calogero model on the anyon model[END_REF]] via very different mechanisms.

Consider classical particles with magnetic interactions akin to those of (4). We constrain them to move on the line = 0, like perls on a necklace. Expanding the square in (4), the Hamilton function for this system is

( 1 , … , ; 1 , … , ) = ∑ =1 | | 2 + 2 + 2 ∑ ≠ ⋅ ( -) ⟂ | -| 2 + 2 ∑ ≠ ≠ ( -) ⟂ | -| 2 ⋅ ( -) ⟂ | -| 2 + 2 ∑ ≠ 1 | -| 2
where = ( , 0) and = ( , 0) are momenta and positions, respectively. The cross-term on the second line is clearly null. The term on the third line is null as well, as follows from grouping terms as in [START_REF] Hoffmann-Ostenhof | Many-particle Hardy Inequalities[END_REF]Lemma 3.2

] ∑ cyclic in 1,2,3 ( 1 -2 ) ⟂ | 1 -2 | 2 ⋅ ( 1 -3 ) ⟂ | 1 -3 | 2 = 1 2( 1 , 2 , 3 ) 2
with ( 1 , 2 , 3 ) the circumradius of the triangle with summits 1 , 2 , 3 . This is the radius of the circle on which the three points lie, which is infinite for aligned points. Hence the Hamilton function boils down to

∑ =1 2 + 2 + 2 ∑ ≠ 1 ( -) 2
which, once quantized, gives a Calogero Hamiltonian, albeit not with the expected ( -1) coefficient [START_REF] Brink | Explicit solution to the n-body calogero problem[END_REF][START_REF] Leinaas | Intermediate statistics for vortices in superfluid films[END_REF][START_REF] Polychronakos | Non-relativistic bosonization and fractional statistics[END_REF] in front of the two-body term for particles of statistics parameter . Note that this reduction could in any case not be correct for all because the 2D anyon energy is periodic in , but the Calogero energy is not [START_REF] Brink | Explicit solution to the n-body calogero problem[END_REF][START_REF] Calogero | Solution of the one-dimensional -body problems with quadratic and/or inversely quadratic pair potentials[END_REF][START_REF] Sutherland | Quantum Many-Body Problem in One Dimension: Ground State[END_REF][START_REF] Sutherland | Quantum many-body problem in one dimension: Thermodynamics[END_REF].

ARGUMENT FOR THE MAIN RESULT

We turn to sketching the main insights of the proof of Theorem 1. Turning them into a rigorous mathematical proof is somewhat lengthy, and will be done elsewhere [START_REF] Yang | Dimensional reduction for a system of 2D anyons[END_REF].

The crucial observation is that for particles close to the line = 0, the vector potential of the Aharonov-Bohm fluxes in (4) can be gauged away. The vector potential

0 ( ) = ⟂ | | 2 = - 1 2 + 2
for a unit Aharonov-Bohm flux at the origin has a non-zero curl and thus cannot be written as the gradient of a regular function globally. But, with defined as in [START_REF] Clark | Observation of density-dependent gauge fields in a bose-einstein condensate based on micromotion control in a shaken two-dimensional lattice[END_REF] ∇ ( ) = 0 ( ) -=0 sgn( ) 0 .

Hence, for any continuous function Ψ( ) of finite kinetic energy vanishing on the line = 0

∫ ℝ 2 | | | -i∇ + 0 ( ) Ψ( ) -i ( ) | | | 2 = ∫ ℝ 2 |∇Ψ| 2
and this will be our model calculation (here performed in the relative coordinate of a particle pair).

The main point of our argument is the behavior

( ) ≃ | |≪| | .
Indeed if one sets instead

̃ ( ) ∶= one finds ∇ ̃ ( ) = -∕ 2 1∕ ≃ | |≪| | 0 ( )
and more precisely

| | | ∇ ̃ -0 | | | ≤ | | 2 . ( 14 
)
The singularity around = 0 of the right-hand side would have to be tamed if we used ̃ instead of in our trial state. Hence the latter choice is actually simpler, and we stick to it in the sequel. Consider now a trial state Ψ for (4) and write it as

Ψ( 1 , … , ) = ∏ < -i ( -) Φ (15) 
( 1 , … , ) = ∏ =1 ( )
with a new, continuous, unknown function Φ vanishing whenever = , ≠ . A direct calculation yields

⟨ Ψ| 2D |Ψ ⟩ = + ∑ ∫ ℝ 2 2 2 |Φ| 2 + ∑ ∫ ℝ 2 2 | | | ∇ Φ | | | 2 (16) 
and we now seek critical points of this functional of Φ. For energy upper bounds it will clearly be favorable for Φ not to depend on 1 , … , and we then recognize the energy functional corresponding to [START_REF] Bonkhoff | Bosonic continuum theory of one-dimensional lattice anyons[END_REF].

We then need to prove a lower bound of the correct form for the energy of a true eigenstate Ψ of the 2D model. We do not know a priori that the corresponding Φ vanishes when = , ≠ , but [START_REF] Oddis | Hamiltonians for two-anyon systems[END_REF] can in this case be replaced by

⟨ Ψ| 2D |Ψ ⟩ ≥ + ∑ ∫ Λ 2 2 |Φ| 2 + ∑ ∫ Λ 2 | | | ∇ Φ | | | 2 (17) 
where

Λ = ( 1 , … , ) ∈ ℝ 2 , | -| > , ∀ ≠ .
Extracting the singular phase is unproblematic on the latter set, and we can then pass to the limit in the above, → 0 and → 0, obtaining an energy lower bound essentially of the desired form. More precisely, in [START_REF] Yang | Dimensional reduction for a system of 2D anyons[END_REF]Proposition 4.3] we prove the following: where the limit 0 has no dependence on the -coordinates, and satisfies

Lemma 2. Let ( 1 , 1 , … , , ) ∶= Φ( 1 , √ 1 , … , , √ ). (18 
lim inf →0 ⟨ Ψ| 2D |Ψ ⟩ - ≥ ∑ =1 ∫ ℝ | | | 0 | | | 2 + ∫ ℝ | | 2 | | 0 | | 2 . ( 19 
)
The main difficulty is now to ensure some form of vanishing around particle encounters for our limit model to indeed be set on [START_REF] Brink | Explicit solution to the n-body calogero problem[END_REF], i.e. that the 1D function obtained by passing to the limit has finite kinetic energy over the whole space (including across diagonals). To this end we use the following Hardy-like inequality: For any Ψ, with the modified momentum as in (2)

∑ =1 ⟨ Ψ| 2 |Ψ ⟩ ≥ , ∫ ℝ 2 ∑ < 1 | -| 2 |Ψ( 1 , … , )| 2 (20)
where the best possible constant , depends only on and . Such an inequality originates from [START_REF] Hoffmann-Ostenhof | Many-particle Hardy Inequalities[END_REF][START_REF] Larson | Exclusion bounds for extended anyons[END_REF][START_REF] Solovej | Hardy and Lieb-Thirring inequalities for anyons[END_REF][START_REF]Local exclusion principle for identical particles obeying intermediate and fractional statistics[END_REF] (see also [START_REF] Qvarfordt | Exchange and exclusion in the non-abelian anyon gas[END_REF] for review and generalizations) where it is proved in particular that • , ≥ -1 with a universal > 0 if is an oddnumerator fraction.

• ,2 > 0 for any ≠ 0.

We improve these bounds by proving that there exists a universal constant ′ > 0 such that , ≥ ′ -2 for any ≠ 0, which leads to our main result by providing the desired vanishing in the whole parameter range. One can understand heuristically why by considering the contribution of the set where |Ψ| 2 ∝ 2 ∝ -∕2 . The total contribution (volume times typical value of the integrand) would thus be of order -1∕2 , much larger than the expected energies, of order unity after removal of the contribution of as in [START_REF] Calogero | Solution of the one-dimensional -body problems with quadratic and/or inversely quadratic pair potentials[END_REF]. More precisely this leads us to (see Lemma 4.8 in [START_REF] Yang | Dimensional reduction for a system of 2D anyons[END_REF])

Lemma 3. Let ( 1 , … , ) ∶= ∫ ℝ d 1 ⋯ d | | ( 1 , … , ) | | 2 1 ( 1 , … , )1 | 1 |≤1∕4 … 1 | |≤1∕4 . ( 21 
)
and be a bounded open subset in ℝ -1 . For a constant ≥ 0, we define

∶= ( 2 , 3 , … , ) ∈ ∶ | 2 -| > √ ∕2, ∀ ≥ 3 .
Then when ≥ , we have

∫ | | ( 2 , 2 , 3 , … , ) | | 2 d 2 ⋯ d ≤ 2
for some constants > 0 and ∈ (0, 1) both independent of . The above will, after passing to the limit, guarantee that 0 vanishes when two arguments come close, the others being at least at a distance √ ∕2. One can finally pass to the limit → 0 to deduce that 0 ( = ) ≡ 0 for any ≠ . Hence indeed the energy bounds force the limiting 1D function to vanish upon particle encounters, as desired.

CONCLUSIONS

We have studied 2D anyons of statistics parameter in the magnetic gauge picture, i.e. seeing them as bosons in a vary-ing magnetic field proportional to matter density. In a cold atoms context this corresponds to proposals made e.g. in [START_REF] Valentí-Rojas | Synthetic flux attachment[END_REF]. We imposed a dimensional reduction by ways of a strongly anisotropic trap, as in recent cold-atoms experiments probing density-dependent gauge theories [START_REF] Clark | Observation of density-dependent gauge fields in a bose-einstein condensate based on micromotion control in a shaken two-dimensional lattice[END_REF][START_REF] Frölian | Realizing a 1d topological gauge theory in an optically dressed BEC[END_REF][START_REF] Yao | Domain-wall dynamics in Bose-Einstein condensates with synthetic gauge fields[END_REF].

In the 1D limit we found that a suitable choice of gauge removes long-range magnetic interactions. Their only remnant is a hard-core condition upon particle encounters, leading to the Girardeau-Tonks model of 1D bosons for any ≠ 0. Nontrivial dependence on might survive at sub-leading order, in which case it could be determined by perturbation theory around Girardeau's solution of the impenetrable 1D Bose gas.

)

  After possibly extracting a subsequence, → →0 0

|

  -| ≲ √ and | | ≲ √ for = 1 … to the righthand side of (20). One has | -| 2 ≲ on this set. If the limiting 1D function does not vanish for ∼ , then
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