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DIOPHANTINE SETS AND DIRICHLET IMPROVABILITY

This note pushes further the discussion about relations between Dirichlet improvable, badly approximable and singular points held in [1] by considering Diophantine sets extending the notion of badly approximability.

Introduction

The aim of this paper is to extend slightly the main result of [START_REF] Beresnevich | Dirichlet is not just Bad and Singular[END_REF], questioning relations between Dirichlet improvability, badly approximability and singularity. We first provide a short description of this setting and definitions.

For x ∈ R, we denote x := min{|x -z| | z ∈ Z} the distance from x to a nearest integer. For x, y ∈ R n , we denote x • y := x 1 y 1 + • • • + x n y n the usual scalar product.

The celebrated Dirichlet's Theorem, root of Diophantine approximation, reads as follows.

Theorem 1.1 (Dirichlet, 1842). Let x ∈ R n . For every Q > 1 there exists q ∈ Z n such that 0 < |q| Q and x • q Q -n .

A main interest in Diophantine approximation is to question when and how Dirichlet's theorem can be improved. This lead Davenport and Schmidt [START_REF] Davenport | Approximation to real numbers by quadratic irrationals[END_REF] to call a given x ∈ R n Dirichlet improvable if there exists ε ∈ (0, 1) such that for all sufficiently large Q, there exists q with 0 < |q| Q and x • q εQ -n .

(DI)

We denote by DI n (ε) the set of x satisfying (DI), so that the set of Dirichlet improvable numbers is

DI n = ε∈(0,1) DI n (ε). Furthermore, x ∈ R n is called singular if it is in DI n (ε) for ε arbitrarily small. Denote Sing n := ε∈(0,1)
DI n (ε).

On the opposite, we say that x ∈ R n is badly approximable if there exists ε = ε(x) ∈ (0, 1) such that

q • x ε|q| -n
for all q ∈ R n . We denote the set of badly approximable numbers Bad n .
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A very natural question is the size and relation between these sets. Regarding sizes, it is well known that DI n , Bad n and Sing n have 0 Lebesgue measure. The set Bad n has full Hausdorff dimension, hence DI n as well:

dim H (Bad n ) = dim H (DI n ) = n.
For Sing m , the study of the Hausdorff dimension is much more involved. The result requires the powerful variational principle in parametric geometry of numbers by Das, Fishman, Simmons and Urbański [START_REF] Das | A variational principle in the parametric geometry of numbers[END_REF], extending to a wider setting (including ours: approximation to a linear form) a brillant result by Cheung and Chevallier [START_REF] Cheung | Hausdorff dimension of singular vectors[END_REF] for simultaneous approximation.

dim H (Sing n ) = n 2 n + 1 , for n 2.
Regarding relations, we have the inclusion of the disjoint union Bad n ⊔ Sing n ⊂ DI n . When n = 1, singular reals are the rationals and the last inclusion is an equality. In higher dimension, one can ask about the set

F S n := DI n \ (Bad n ⊔ Sing n ) .
This set is studied in [START_REF] Beresnevich | Dirichlet is not just Bad and Singular[END_REF], where it is proved to be uncountable. However, it is probably far from the truth and one conjectures

Conjecture 1.2. dim H (F S n ) = n.
Actually, in [START_REF] Beresnevich | Dirichlet is not just Bad and Singular[END_REF] the result is finer than just uncountability. This requires the definition of exponents of Diophantine approximation. Namely, for x ∈ R m , we define ω(x) as the supremum of positive reals w such that

0 < |q| Q , q • x Q -w
has integer solution q for arbitrarily large Q. This exponent is usually referred to as exponent of Diophantine approximation to a linear form. It can take any value in the interval [n, ∞]. The main result in [START_REF] Beresnevich | Dirichlet is not just Bad and Singular[END_REF] asserts that there are uncountably many

x ∈ R n in (DI n (ε) \ DI n (c n ε)) \ (Bad n ⊔ Sing n ) with prescribed exponent ω(x) ∈ [n, ∞].
Here c n is an explicit constant. The exclusion of Sing n is already included in the exclusion of DI n (c n ε), but we express this set to enlighten its link to F S n . The motivation of this paper is the obvious observation that x / ∈ Bad n if ω(x) > n. This leads to consider the following notion : fix dimension n and let ε ∈ (0, 1) and finite w n. We define the (ε, w)-Diophantine set

D w (ε) := x ∈ R n | q • x ε|q| -w > 0, for all q ∈ N n and denote D w := ε∈(0,1) D w (ε). One can see that D n = Bad n .
These Diophantine sets play a role in dynamical systems. For example they describe the Diophantine condition in small divisors problems with applications to KAM theory, Aubry-Mather theory, conjugation of circle diffeomorphisms, and so on (see [START_REF] Broer | The general theory of dynamical systems and classical mechanics[END_REF][START_REF] Chierchia | Kolmogorov's 1954 paper on nearly-integrable Hamiltonian systems[END_REF][START_REF] Popov | KAM theorem for Gevrey Hamiltonians[END_REF][START_REF] Rüssmann | KAM iteration with nearly infinitely small steps in dynamical systems of polynomial character[END_REF][START_REF] Yoccoz | Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne[END_REF]).

Our main theorem reads as follows.

Theorem 1.3. Fix the dimension n 2, a finite exponent w > n, parameters ε, ν ∈ (0, 1) and the constants c n = e -20(n+1) 3 (n+10) and c ′ n = e -20(n+1) 2 (w+1)(n+10) . Then • there exists uncountably many

x ∈ (DI n (ε) \ DI n (c n ε)) \ D w with ω(x) = w,
• there exists uncountably many

x ∈ (DI n (ε) \ DI n (c n ε)) ∩ (D w (ν) \ D w (c ′ n ν)) .
As discussed in [START_REF] Beresnevich | Dirichlet is not just Bad and Singular[END_REF], the constants c n and c ′ n are not optimized.

So far, we considered only approximation to a linear form. An analogous argumentation applies for simultaneous approximation, where we replace (DI) by 0 < q < Q and qx εQ -1/m and D w (ε) by

D λ (ε) := x ∈ R m | qx ε|q| -λ > 0
where . is the distance to a nearest integer point. We get uncountably many points

x ∈ R m in x ∈ (DI n (ε) \ DI n (c n ε)) \ D λ with exponent of simultaneous approximation λ and uncountably many x ∈ R m in the intersection x ∈ (DI n (ε) \ DI n (c n ε)) ∩ (D λ (ν) \ D λ (c ′ n ν)) .
One could also consider approximation by rational subspaces of dimension exactly d, for 0 d < n, as introduced by Laurent [START_REF] Laurent | On transfer inequalities in Diophantine approximation[END_REF] following Schmidt [START_REF] Schmidt | On heights of algebraic subspaces and diophantine approximations[END_REF]. However, their usual study via compounds convex bodies involves constants depending on x (See [12, Proposition 3.1] or [3, §4]) that seem to break our proof. See [START_REF] Beresnevich | Dirichlet is not just Bad and Singular[END_REF] for more discussion about the sets DI n , Bad n and Sing n related to these approximation settings.

The proof of Theorem 1.3 relies on the parametric geometry of numbers and Roy's fundamental theorem [START_REF] Roy | On Schmidt and Summerer parametric geometry of numbers[END_REF]. We provide a short introduction to parametric geometry of numbers in Section 2, and prove our main theorem in Section 3.

Parametric geometry of numbers

Parametric geometry of numbers was developped by Schmidt and Summerer [START_REF] Schmidt | Parametric Geometry of Numbers and applications[END_REF][START_REF] Schmidt | Diophantine Approximation and Parametric Geometry of Numbers[END_REF], answering a question of Schmidt [START_REF] Schmidt | Open problems in Diophantine approximation (incollection) Diophantine approximations and transcendental numbers[END_REF]. It was pushed by a fundamental theorem of Roy [START_REF] Roy | On Schmidt and Summerer parametric geometry of numbers[END_REF], that was quantified and extended to a matrix setting by Das, Fishman, Simmons and Urbański [START_REF] Das | A variational principle in the parametric geometry of numbers[END_REF].

Fix dimension n > 1 and x ∈ R n . Consider the convex body with parameter q 0

C x (e q ) := {y ∈ R n+1 | |y i | 1, |y • (1, x) e -q }
and its dth successive minima

λ x,d (q) := λ d (Z n+1 , C x (e q ))
for any d between 1 and n + 1. Following Schmidt and Summerer, we consider the successive minima map consisting of their logs L x : [0, ∞) → R n+1 : q → L x (q) := (L x,1 (q), . . . , L x,n+1 (q)), where L x,d (q) := log λ x,d (q). It appears that the map L x encodes Diophantine properties of x. Proposition 2.1. Fix dimension n and x ∈ R n .

• x ∈ DI n (ε) if and only if for all sufficiently large q q n + 1

-L x,1 (q) - log(ε) n + 1 (2.1)
• x ∈ D w (ε) if and only if for all sufficiently large q q w + 1 -L x,1 (q) -log(ε) w + 1 (2.2)

• lim inf q→∞ Lx,1(q) q = 1 1+ω(x)
See [12, Proposition 3.1] and [1, Lemma 2.1] for proofs.

The following notion of system was introduced by Roy [12, Definition 4.5]. The latter approach exactly the familly of successive minima maps. Definition 2.2. Be I a subinterval of [0, ∞] with nonempty interior. A system on I is a continuous linear map P = (P 1 , . . . , P n+1 ) : I → R n+1 with the following properties.

(i) For each q ∈ I, 0 P 1 (q) P 2 (q) • • • P n+1 (q) and P 1 (q) + P 2 (q) + • • • + P n+1 (q) = q. (ii) If I ′ ⊂ I is a nonempty open subinterval on which P is differentiable, then there exists integers r 1 , r 2 with 1 r 1 r 2 n + 1 such that P r1 , . . . , P r2 coincide on I ′ and have slope 1 r2-r1+1 while all other component P i are constant on I ′ . (iii) If q is an interior point of I at which P is not differentiable, and if r 1 , r 2 , s 1 , s 2 are integers such that

P ′ i (q -) = 1 r 2 -r 1 + 1 (r 1 i r 2 ) and P ′ j (q + ) = 1 s 2 -s 1 + 1 (s 1 j s 2 ) and if r 1 s 2 then P r1 (q) = • • • = P s2 (q)
Roy's fundamental theorem reads as follows [START_REF] Roy | Spectrum of the exponents of best rational approximation[END_REF]Corollary 4.7], [START_REF] Roy | On Schmidt and Summerer parametric geometry of numbers[END_REF]Theorems 1.3 & 1.8].

Theorem 2.3 [START_REF] Roy | On Schmidt and Summerer parametric geometry of numbers[END_REF]. Fix dimension n 1 and q 0 0. For each x ∈ R n , there exists a system P : [q 0 , ∞) → R n+1 such that L x -P is bounded on [q 0 , ∞). Conversely, for each system P : [q 0 , ∞) → R n+1 , there exists a x ∈ R n such that L x -P is bounded. In particular, for each q q 0 and a constant R n

|L x -P| R n .
The constant R n induces the constants c n = e 4(n+1)Rn and c ′ n = e 4(w+1)Rn in Theorem 1.3.

We call two systems P 1 and P 2 non-equivalent if there exists q such that |P 1 (q)-P 2 (q)| > 2C n . No point in R n has successive minima map close to two non-equivalent systems in the sense of Theorem 2.3.

Proof of Theorem 1.3

Fix dimension n > 1, exponent w > n and ε, ν ∈ (0, 1). In view of Theorem 2.3 and Proposition 2.1, the proof of Theorem 1.3 reduces to the construction of uncountably many non-equivalent systems satisfying

• lim inf q→∞ P1(q) q = 1 1+w , • lim inf q→∞ q n+1 -P 1 (q) = -log(ε) n+1 + 2R n ,
• Either lim sup q→∞ q w+1 -P 1 (q) = (-log(ν) w+1 + 2R n ) or lim sup q→∞ q w+1 -P 1 (q) = ∞. Note that the second and third inequalities provide the definition of the constants c n := e 4(n+1)Rn and c ′ n = e 4(w+1)Rn .

Choose a parameter δ ∈ (0, 1) that will provide uncountability. We first construct elementary systems P δ k on intervals [q k , q k+1 ]. Denote α := -log(ε) n+1 +2R n and β k := (-log(ν) w+1 +2R n ) or log q k . Figure 1 illustrates the construction.

At q k , we fix P 1 (q k ) = • • • = P n (q k ) = q k n+1 -α and P n+1 (q k ) = q k n+1 + nα. Define

p k = q k w + 1 n + 1 -(w + 1)(α -β k ), q k+1 = w n q k + (w -1)(n + 1) n (α -β k ), r k = q k + (n 2 -1)α, u k = p k -(n + 1)α, , s M k = r k + n log q k , s m k = r k + log q k , s k = δs m k + (1 -δ)s M k ∈ [s m k , s M k ] t k = s k + (n -1)(s k -r k ),
and note that q k+1 does not depend on δ.

On the interval [q k , r k ], the n -1 components P 2 = • • • = P n coincide and have slope 

(p k ) -P n (p k ) = (n + 1)α and P 1 (p k ) = p k
w+1 -β k . On the interval [p k , q k+1 ], P 1 has slope 1 while all other components are constant. By definition of q k+1 we have P

1 (q k+1 ) = • • • = P n (q k+1 ) = q k+1
n+1 -α and P n+1 (q k+1 ) = q k n+1 +nα.

α β k α q n+1 q w+1 q k q k+1 p k r k t k u k s M k s m k s k Figure 1. Generic system P δ
k , dotted are the extremal cases δ = 0 and 1.

Choose q 1 large enough so that t 1 < u 1 . Since w > n, the inductive sequence (q k ) k 1 tends to infinity and we define P δ = k 1 P δ k the concatenation of the systems P δ k . It is a system, as properties (i) -(iii) holds, in particular at q k . By construction, lim inf q→∞ P δ 1 (q) q = lim inf k→∞ P δ 1 (p k ) p k = 1 1 + w min [q k ,q k+1 ] q n + 1 -P δ 1 (q) = α = -log(ε) n + 1 + 2R n lim sup q→∞ q w + 1 -P δ 1 (q) = lim sup and the requested properties hold. Furthermore, P δ 1 (s M k ) = P n+1 (q k ) + δ log q k , so that

P δ -P δ ′ |P δ (s M k ) -P δ ′ (s M k )| = |δ -δ ′ | log q k .
Hence, for δ = δ ′ the systems P δ and P δ ′ are non-equivalent. Uncountability follows.

For simultaneous approximation, we rather use the setting and notation of Schmidt and Summerer for parametric geometry of numbers, studying the convex body

C ′ x (q) := y ∈ R m+1 | |y 1 | e mq , max 1<i n |y 1 x i -y i+1 | e -q
See for example [START_REF] Schmidt | Parametric Geometry of Numbers and applications[END_REF][START_REF] Schmidt | Diophantine Approximation and Parametric Geometry of Numbers[END_REF][START_REF] Schmidt | On Parametric Geometry of Numbers[END_REF][START_REF] Schmidt | On simultaneous Diophantine approximation[END_REF]. The analogous proof relies on the construction of dual systems depicted by Figure 2.
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Figure 2. Generic system for simultaneous approximation.
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