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1. Introduction 

The development of calcined clay cement has been receiving a particular attention from 

industrials and scientific researchers as an option for decreasing the CO2 emissions coming 

from production of Portland cement (PC). The goal is to develop novel cements, in which the 

percentage of clinker is reduced as much as possible, or completely eliminated, while having 

materials consolidated with hopefully equivalent performances to Portland cements in terms 

of mechanical properties and durability. These cements consist of a mixture of clinker with 

gypsum, calcined clay and limestone [1–3]. The major interest of these new binders lies in 

the substitution of clinker by calcined clay [4]. The clays are calcined between 600 and 900 

°C, while the manufacture of Portland clinker requires heat treatment at about 1450 °C [3,5]. 

As a result, energy consumption and CO2 emissions are reduced by 35 to 40% [6,7].  

It is highly difficult to model mechanical properties of calcined clay cements using empirical 

models, because of the complex and dynamic behavior of cement hydration, adding to that, 

the not complete comprehension of pozzolanic reactivity [8]. But, machine learning (ML) 

algorithms demonstrate high prediction performance for Portland cement. It should be the 
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case for calcined clay, since ML need data as feeding input without deep theoretical 

considerations [9,10]. 

In the last decades, data-driven methods such as ML and artificial intelligence were the 

solution to predict many materials properties knowing their composition and their synthesis 

parameters. ML approach consists of feeding an algorithm with input data to carry out 

models allowing the optimization of materials properties. ML was applied in many studies 

dedicated to predict properties of cementitious materials. This research topic can be 

considered as an emerging area of research. According to published documents indexed in 

Scopus concerning the two key words “machine learning” & “cement” [11], it can be noted 

that the number of articles published has increased significantly starting from 2018, to reach 

123 published documents in 2021 (Figure 1). Then, to date, the peer-reviewed journal in 

which the largest number of papers are published is ‘Construction & Building Materials’ with 

a dozen of articles only in 2022 (Figure 2). Finally, at the international scale, China, followed 

by the United States and India are the largest providers of scientific articles in the field of 

exploiting ML to study cementitious materials (Figure 3). European countries also show 

significant activity. 

The application of ML approach requires good comprehension of the problem and expert 

choice of data size and models. Several authors applied ML to predict properties of Portland 

cement or alkali-activated materials [12–36,36–43]. They handled different databases and 

parameters. These parameters are summarized in Appendix A. The size of the database is 

the first parameter to be considered. This size varies from tens to thousands of samples. In 

these studies, the most used ML algorithms were support vector regressor (SVR), random 

forest (RF), XGboost and artificial neural network (ANN). For example, to predict the plastic 

viscosity of cement, Sathyan et al. [12] used the XGboost algorithm applied to a dataset 

containing 252 experimental formulations of blended PC. The input parameters were cement 

amount, superplasticizer amount, and temperature. The ML predictions were very close to 

the observed results. The hydration heat of cement materials was as well the subject of ML 



application. Cook et al. [25] used the random forest algorithm for predicting heat of hydration 

based on 10 input parameters. The database consisted of 7800 calorimetric measurements. 

The results showed high accuracy obtained by the RF algorithm expressed by a 

determination coefficient of 0.93. 

From the data given in Appendix A, it is worth noting that input parameters cover a broad 

spectrum: (i) chemical and mineralogical composition; (ii) physical properties of cement 

(specific surface area, microstructure and grain size); (iii) rheology of cement paste; and (iv) 

hardening conditions. Target parameters to judge the performance of consolidated materials 

are essentially: (i) composition of the hydrated cement; (ii) microstructure; (iii) compressive 

strength. The parameter which has been the object of prediction by ML algorithms in most of 

articles is the compressive strength (Appendix A), which is a justified fact. For structural 

purposes, the compressive strength of cement material is usually the parameter to be 

evaluated in the first rang before rheology and durability [44,45]. 

The rapid development of calcined clay cements will help to achieve as quickly as possible 

carbon neutrality in the cement sector. The main interest of this work is to contribute to this 

development through the application of novel prediction paradigm. To meet this task, the 

present paper aims to apply ML approach, especially supervised regression algorithms, to 

predict compressive strength of calcined clay cements. Then, to investigate how raw 

materials composition, calcination conditions of clays and hardening environment, influence 

the compressive strength.  

2. Method 

2.1. Experimental database  

The size and the quality of the dataset are significant for the accuracy of the ML model [46]. 

An experimental database of 323 mix design (10692 data values), containing partial 

replacement of Portland cement with calcined clay and limestone, was compiled from 



previous studies that were reported in the literature [1,2,47–57]. Data splitting is a usually 

used method for model validation, where the dataset is split into two separate parts: the first 

for training, and the second for testing and validation [58]. The data was randomly partitioned 

into training, testing and validation sets: 80% of the data was used for training and testing 

(258 samples) and the remaining 20% was used for validation (65 samples). This data 

splitting ratio (80/20) is the most adopted according to previous works in literature (Appendix 

A) [12–36,36–43]. 

The collected database is destined to link the chemical composition of raw materials, 

calcination conditions of the clay and hardening conditions, with the resulting compressive 

strength of the mortar. The corresponding data presented in literature are mostly 

unstructured. For example, the compressive strength values are presented in the form of 

histogram graphs, so the extraction of these values was carried out manually. Henceforth, 

during structuring the database different selection criteria were respected. This selection 

approach was involved by Zhang et al. [18] for other type of cement materials: 

 Only articles published in journals indexed in Scopus database have been retained 

for data collection.  

 A detailed chemical composition of binders must have been clearly presented. 

 The mix proportion of each component of the low carbon cement must have been 

provided. 

 Calcination conditions and powder fineness of the involved clay must have been 

provided. 

 A detailed description of hydration and hardening conditions must have been 

presented. 

 Compressive strength of the mortar must have been established according to a 

normalized protocol (for example: EN 197 or ASTM C109). Mortars were prepared 

using a sand to cement ratio equal to 3:1. 



Given the considerable number of oxides in each component of the calcined clay cement, the 

dataset has a large dimension, which affects the accuracy and robustness of the ML models. 

Hence, the chemical compositions of calcined clay, limestone and Portland cement are 

substituted with their reactivity ratios [59]. Chemical analysis of clinker, limestone and clays 

are commonly expressed in terms of weight percentages of oxides, but it is often useful to 

employ quantities derived from these percentages [18,59,60]. In the equations that follow, 

chemical formulae also denote weight percentages. The following parameters are widely 

used: 
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It is worth noting that RR (reactivity ratio) and HR (hydraulic ratio) are generally applied to 

evaluate hydraulic binding properties, while AR (alumina ratio) and SR (silica ratio) are 

applied to evaluate pozzolanic properties [18].  

The reactivity ratio of each cement mix was defined through the weighted average as follows: 
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where     is the weight percentage of each constituent in the calcined clay cement. The 

constituents are calcined clay, limestone and Portland cement.  

2.2. Description of the data features 

From the collected data [1,2,47–57], 14 input features are considered. The inputs contain the 

weight percentage of clay, OPC, and limestone, chemical composition of each constituent 

expressed in terms of reactivity ratios, calcination conditions of the clay, and hardening 

conditions. For the output, there is one targeted feature which is the compressive strength of 

the low carbon cement. Table 1 shows units and statistical parameters of the features. The 

analysis shows that there is no outlier or aberrant values. Thereby the data can be used as it 

is for the next steps of machine learning application.  

2.3. Machine learning models 

 Linear Regression (LR) 

Linear regression is a regression model in which the target value is expected to be a linear 

combination of the features noted    to    [61,62]. In mathematical notation,    is the 

predicted value (equation (9)): 



                       (9) 

The vector             is the model coefficients and    as intercept value of the model. 

Ordinary Least Squares method aims to fit a linear model with coefficients             to 

minimize the residual sum of squares between the observed targets in the dataset, and the 

targets predicted by the linear approximation. Mathematically it solves a problem of the form 

given by equation (10): 

   
 
       

  (10) 

It is worth noting that the coefficient estimated for Ordinary Least Squares method relies on 

the independence of the features.  

 Linear Regression with the Ridge Regularization (LR-RR) 

Ridge regression addresses some of the problems of Ordinary Least Squares method by 

imposing a penalty on the size of the coefficients [61,63]. The ridge coefficients minimize a 

penalized residual sum of squares given by equation (11): 

   
 
       

        
  (11) 

The complexity parameter      controls the amount of shrinkage. The higher the value of 

 , the larger is the amount of shrinkage. 

 Support Vector Regressor (SVR) 

The aim of SVR is to seek the hyperplane which will separate at best, then to try to estimate 

the target values   . It amounts to determine        and     , such as [61,64]: 
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where     is a small positive value. Then       is determined to minimize: 
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under the constraints 

                         (14) 

The constraints imply that all observations must be defined in a margin of   . This hypothesis 

may lead the user to use large   values, and consequently prevent the solution to adjust the 

scatter points. To overcome this, a spring variable is introduced to allow certain observations 

to be outside the margin. The problem to be solved then comes to finding (        ) that 

minimizes: 

 

 
             

  

 

   

 (15) 

Here again the parameter   will have to be calibrated and the kernel method is used. 

Under the constraints 
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The solution vector    is written as a linear combination of support vectors: 
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The supporting vectors are the observations verifying   
        

 Decision Trees for Regression (DTR) 

Decision Trees for Regression (DTR) are a supervised learning method used for regression 

[61,65]. The goal is to create a model that predicts the value of a target variable by learning 

simple decision rules inferred from the data features. The algorithm used to train a decision 

tree is called CART, for Classification And Regression Tree. It is an algorithm for partitioning 

space through a gluttonous, recursive and divisive approach [66,67]. At each node of a 

decision tree built by CART corresponds a splitting variable           according to which 

the data will be partitioned [68]. This separator variable defines two regions, corresponding to 

the children of the node in question [69,70]. 

In the case where the separation variable is a real variable, it is then accompanied by a 

splitting point ( ) which is the value of the attribute against which the decision will be made. 

The two regions are then: 

                 ;                   (18) 

At each iteration of the CART algorithm, all possible values of   and, if applicable, all possible 

values of     are used to determine       that minimizes a predefined criterion. 

This criterion is usually the mean square error. So, the variable and the splitting point were 

chosen as: 
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were         (respectively        ) is the label value associated with the         region 

(respectively         ) at this stage, which is the average of the labels in this region. 

 Random Forest (RF) 

The “random forest” algorithm performs a parallel learning on multiple decision trees built 

randomly and driven on different subsets of data. The ideal number of trees can go up to 

several hundred or more [66,71]. Practically, each tree in the random forest is trained on a 

random part of data according to the principle of bagging, with a random part of features 

according to the principle of «random projections». Predictions are then averaged when the 

data are quantitative, as it is the case for regression [61,72]. 

Let us assume that   samples are randomly collected from   (the training set) with a 

probability of selection     for each sample. These   samples are called bootstrap sample 

  
 , where   is an independently distributed vector. Assume that   bootstrap samples 

(  
  ,   

       
  
  are chosen using the bagging algorithm and that   regression trees are 

trained on the subsets        
           

             
  
   The   outputs 

are:            
               

                 
  
 . The final output is the average value of 

the q outputs. The illustration of this concept is shown in Figure 4.    

 eXtreme gradient boosting (XGboost) 

XGboost algorithm consists on growing sequentially decision trees; each tree is grown using 

information from previously grown trees to progress its performance [61,73]. 

In the case of XGboost, the learning objective consists of two parts: the loss function and the 

regularization term. Mathematically, XGboost's learning objective may be defined as follows: 



                 (20) 

Here,      is the loss function, which is the Mean Squared Error (MSE) for regression, and 

     is the regularization function, which is a penalty term to prevent over-fitting. 

The loss function, defined as the MSE for regression, can be written in summation notation, 

as follows: 
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Here,    is the target value for the ith row and     is the value predicted by the machine 

learning model for the ith row.  

Let   be the vector space of leaves. Then,  , the function mapping the tree root to the 

leaves, can be recast in terms of  , as follows: 

                                (22) 

Here,   is the function assigning data points to leaves and T is the number of leaves. 

XGboost settles on the following as the regularization function, where   and   are penalty 

constants to reduce overfitting: 
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 Multi-layered perceptron (MLP) 

Artificial neural networks are basically systems inspired by the functioning of biological 

neurons [74]. The most famous of these is the multi-layered perceptron (MLP), an artificial 

system capable of learning by the experience. It was introduced in 1957 by Franck 



Rosenblatt, it has only been used since 1982 after its improvement [75,76]. Thanks to the 

computational power of the 2000s, the perceptron is used in a set of neurons organized in 

layers (Figure 5). From one layer to another, the input signal propagates to the output, 

activating or not as the neurons progress. 

The output formula of a hidden neuron will therefore always be of the form [61,77]: 
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where    are the weights of the system. In practice, they are randomly initialized when the 

neural network is created, and   refers to the bias.  

The contribution of an input neuron will be      

that the contribution of an output neuron will be                  

The activation function decides whether a neuron should be activated or not. Thereafter 

some activation functions applied for the MLP algorithm: 

- Sigmoid/Logistic function 

     
 

      
 (25) 

- Tanh function 

     
         

         
 (26) 

- Rectified Linear Unit (RELU) function 

               (27) 



2.4. Hyperparameter tuning and K-fold cross-validation 

Hyperparameters are tunable parameters that allow the control of the model training process. 

Hyperparameter tuning is the method of finding the hyperparameter configuration that 

produces the best performance of the ML algorithm. In the present work, Bayesian 

optimization method was used to tune hyperparameters [78]. The search intervals for 

hyperparameters tuning used in the present work are given in Table 2. 

Bayesian optimization needs a prior knowledge to guess the hyperparameter [61]. It is based 

on a probabilistic model matching hyperparameters with a probability function of a score on 

the objective function. These probability functions are defined below: 

                         
                                 

                  
 (28) 

This function is also called “surrogate” of the objective function. It is much easier to optimize 

than the objective function. Below are the stages for applying Bayesian optimization for 

hyperparameter tuning: 

1- Construct a substitution probability model of the objective function; 

2- Determine the hyperparameters of the surrogate model; 

3- Apply these hyperparameters to the original objective function; 

4- Evaluate the surrogate model using new results; 

5- Repeat stages 2,3 and 4 up to a defined iterations number. 

To check whether the developed machine learning model is efficient enough to predict the 

outcome of a test data set, performance evaluation of the applied machine learning model 

was carried out using the K-fold cross-validation. This technique is basically a method of 

resampling the dataset in order to evaluate ML trained algorithm and to prevent overfitting 

and underfitting [79]. In this technique, the parameter K is the number of different subsets 

into which the given data set should be divided. Additionally, K-1 subsets are used to train 



the model and the left-out subsets are used as the testing set. An illustration is given in 

Figure 6.  

2.5. Model performance evaluation 

The predictive performance of the applied machine learning algorithms can be evaluated 

using three different indicators [80], which are defined as: 

- Coefficient of determination (R2) 
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- Root Mean Squared Error (RMSE) 
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- Mean Absolute Error (MAE) 

       
         
 
   

 
 

(31) 

where    and    are the Predicted and Tested compressive strength values, respectively;    is 

the mean value of all the tested values; n is the total number of samples in the dataset.  

The metric R2 shows the extent of the linear correlation between the predicted and tested 

values. The closer R2 is to 1, the better is the performance of the model. RMSE provides 

information on the deviation between the predicted values and the tested values. MAE 

indicates the prediction error. Among the three performance indicators, R2 is mainly used as 

the representative quantity to discuss the performance of the trained models in this study. 



2.6. Experimental scenarios 

Different experimental scenarios were designed to simulate real cases. The goal is to predict 

compressive strength of different mixes of low carbon cements using the best performed ML 

algorithm. These scenarios have been organized in such a way to evaluate quantitatively the 

effect of inputs on the compressive strength. The evaluated input parameters were: (i) weight 

fraction of each constituent of the calcined clay cement, (ii) chemical composition of the clay, 

(iii) calcination conditions of the clay, (iv) and hardening conditions. It leads to the design of 

four scenarios. Each one contains variable inputs to be evaluated and fixed inputs. Table 3 

represents this designation. 

3. Results and discussion 

3.1. Linear correlation between variables and feature importance analysis 

The statistical correlations between the input features and the target are shown in Table 4. 

The analysis results show that the features named age_D (hardening age) and OPC% 

(weight percentage of OPC) have the strongest positive correlation with the compressive 

strength as expected, with correlation coefficients equal to 0.50 and 0.24, respectively. This 

suggests that the compressive strength can possibly increase as the hardening age and 

weight percentage of OPC increase. The input feature named CL% (weight percentage of 

calcined clay) has a negative correlation of -0.21 with the compressive strength, indicating 

that the increase of CL% has likely a negative effect on the compressive strength. Besides, 

there is some weak correlation between the other features with the compressive strength.  

Even if statistical correlations are useful for initial data analysis, they do not show the non-

linear dependencies between the different features and the compressive strength which is 

extremely important for prediction studies and that’s why ML algorithms were adopted.    



Feature importance analysis denotes to techniques that allocate a score to input features 

based on how useful they are at predicting a target variable [81]. For the case of linear 

regression algorithms, the feature importance score is merely the coefficients of the model. 

These coefficients can be used directly as a basic type of feature importance score. Based 

on the linear regression with Ridge regularization algorithm, the features importance is 

calculated and shown in Figure 7-a. The results show that RM reactivity ratio and W/B are 

the most important features to predict the compressive strength, whereas the hardening age 

(age_D) was shown as the feature with the least importance (Figure 7-a). These results do 

not fit with our common knowledge on cementitious materials, nor with correlation results 

(Table 4). It is well known that hardening age is the most impacting parameter on the 

development of compressive strength. This unpredictable result shown in Figure 7-a, can be 

explained by the difference in the standard deviation of the features (Table 1). For example, 

the standard deviation value of the hardening age is 41.3 MPa and that of the reactivity is 

0.5, indicating a large difference between the two values, which induce errors during feature 

importance analysis. To correct this mismatch, all the features were rescaled using the 

following formula: 

  
   

 
 (32) 

where   is the rescaled variable,   is the original variable,   is the average, and   is the 

standard deviation.  

The normalization assumes that the input variables have the same scale, and the results of 

feature importance calculation can then well be interpreted. The feature importance analysis 

after rescaling is given in Figure 7-b. From the figure, it can be observed that hardening age 

(age_D) is the most important variable affecting compressive strength. This is in alignment 

with the practical knowledge related to cementitious materials. The second important 

identified feature are alumina ratio (AM), reactivity ratio (RM) and calcination duration of the 



clay (time_calcin(h)). The weight fraction of OPC (%OPC) is ranked as the third important 

input variable. From this figure, it can be observed that the hardening relative humidity 

(RH_cure), water to binder ratio (W/B), calcination temperature (T_calcin) and hardening 

temperature (T_cure) are the least important variables. Lastly, hydraulic ratio (HM), silica 

ratio (SM), weight fraction of calcined clay (CL%) and weight fraction of limestone (CC%) 

have a negative importance on the prediction of compressive strength. These results offer 

new perceptions on the parameters affecting the compressive strength of calcined clay 

cements and open the door to further studies to better understand the governing 

mechanisms.  

3.2. Predictive performance of the ML algorithms 

The hyperparameters of the seven selected ML algorithms are optimized using the Bayesian 

optimization method coupled with K-fold cross-validation. Since the iteration number is an 

interesting hyperparameter for MLP to optimize the calculation cost, Figure 8 shows the 

convergence of the prediction error using the MLP algorithm. As the iteration number 

increases from 1 to 5, the loss function of compressive strength decreases from 870 to 98. 

As the iteration number further increases from 5 to 100, the loss function decreases from 98 

to 0. Such tendency shows that 100 is a reasonable number of iterations to achieve 

convergence for the MLP loss function. 

Figure 9 shows the error metrics of the seven selected ML algorithms including their tuned 

hyperparameters. The linear regression (LR, LR-RR) and SVR models show lower R2 with 

higher RMSE and MAE compared to DTR, RF, XGboost and MLP models. During the 

training stage, the DTR and MLP models show R2 = 1 with RMSE = MAE = 0 indicating an 

overfitting problem of data training, thereby they are eliminated for further predictions. 

Overfitting problems usually occur when very complex models are used with a lack of 

generalization for simple problems. To detect a model that overfit, it offers very good 

performance on training data, but does not succeed when it is actually in production, as it 



was the case for DTR and MLP (Figure 9). Higher R2 values with lower RMSE and MAE 

values for training and testing were found for the RF and XGboost models. In particular, 

XGboost can be distinguished as the best performing model with high determination 

coefficients: R2
training = 0.99 and R2

testing = 0.95. XGboost shows a very close link between 

predicted and actual values with RMSE training = 2.21 MPa and RMSE testing = 11.4 MPa. And it 

exhibits a high accuracy with MAE training = 1.1 MPa and MAE testing = 2.5 MPa.   

Figure 10 presents a comparison of predicted compressive strength and measured values 

during the testing stage. The red line refers to the perfect fit line, that is predicted 

compressive strength is equal to actual value. Compared to the other models, the graph 

corresponding to XGboost illustrates clearly a majority of points close to the perfect fit line 

(the red line), confirming visually the best prediction performance character of the XGboost 

model in comparison to the other models.      

Since there is an absence of works dealing with the prediction of compressive strength of 

calcined clay cements, it can be difficult to compare the prediction performance results of our 

work with previous studies from literature. However, if the comparison is exclusively made 

with previous works dealing with alkali-activated materials or Portland cements, it can be 

worth nothing that our results agree with almost previous studies. For the prediction of 

compressive strength of alkali-activated cementitious materials, Zhang et al. [18] revealed 

that the XGboost algorithm (676 samples) performed better than SVR and DTR, with an 

R2
training = 0.98 and R2

testing = 0.94. Gomaa et al. [82] found that RF algorithm (202 samples) 

performed well for the prediction of compressive strength in the case of alkali-activated 

concretes. This means that although a large set of data samples might produce a better 

generalization of the model, the prediction accuracy can be different. In fact, the selection of 

adequate hyperparameter optimization method can be a crucial parameter in improving the 

accuracy of the algorithm. Besides, boosting algorithms confirms their high prediction 

accuracy for the prediction of compressive strength of OPC-MK cement mortars. Asteris et 



al. [83] found that AdaBoost algorithm (424 samples) shows R2
training = 0.99 and R2

testing = 

0.94, performing better than SVR, DTR and RF.  

Among the seven algorithms selected in our case, XGboost algorithm presents the best 

prediction performance during training and testing, and thus it is selected for further 

prediction of compressive strength in different experimental scenarios. 

3.3. Prediction of compressive strength of different experimental scenarios 

 Effect of weight fraction of each constituent of the calcined clay cement (scenario 1) 

Figure 11 shows the effect of weight fraction of each constituent of the calcined clay cement 

on the predicted compressive strength at 3, 7 and 28 days using the XGboost model. The 

different colors indicate the values of predicted compressive strength, with a mean absolute 

error of 2.5 MPa. It can be observed that among the input variables, the weight fraction of 

OPC was found generally to be the most impacting on the variation in compressive strength 

at 3, 7 and 28 days. By increasing the weight fraction of OPC from 30 to 55 wt.%, the 

compressive strength can increase from 21 to 26 MPa at 3 d (Figure 11-a), from 26 to 45 

MPa at 7 d (Figure 11-b), and from 32 to 52 MPa at 28 d (Figure 11-c). This result is in good 

agreement with many previous studies [47,48,54] because the major part of compressive 

strength development is coming from the hydration of the clinker cementitious phases, 

namely alite, belite, alumino-ferrite and tricalcium aluminate [84]. It is worth noting that in the 

region of composition corresponding to 55–75 wt.% of OPC, 20–35 wt.% of calcined clay, 

and 0–15 wt.% of limestone (Figure 11), we can assign a significant increase of compressive 

strength. It reaches a value of 59 MPa at 28 d for 65 wt.% of OPC, 30 wt.% of calcined clay 

and 5 wt.% of limestone. This region of composition corresponds to the LC3 cement 

composition as expected. The increase of compressive strength can be explained by the 

presence of calcined kaolin, which through a synergetic reaction with limestone enables a 

denser microstructure, and consequently a higher compressive strength [5,53,84,85]. During 

hydration of LC3, additional reactions occur compared with OPC. Metakaolin, the product of 



kaolinite calcination, reacts as a pozzolanic material, consuming Portlandite and forming 

mainly calcium aluminum silicate hydrate (C-A-S-H). Limestone also reacts with the calcium 

aluminate coming from clinker to form carboaluminate hydrates. The formation of these 

additional fine hydrate phases leads to a denser microstructure showing higher compressive 

strength [85].  

In addition, in either hardening age at 3, 7 or 28 d, there is a drop of compressive strength 

when weight fraction of limestone ranges between 20 and 30 %, and that of calcined clay is 

between 20 and 40%. In comparison with experimental values of compressive strength 

reported in literature, the predicted compressive strength values of the present work have the 

same order of magnitude. For example, Antoni et al. [1] tested a mix containing 40 wt.% 

Metakaolin, 40 wt.% OPC and 20 wt.% limestone, and they found a compressive strength of 

46 MPa at 28 days. Our predicted values for this mix is 47  2.5 MPa at 28 days, which 

confirms the prediction performance of the XGboost algorithm.    

 Effect of calcination conditions of clay (scenario 2) 

Given the other input features fixed, the effect of calcination conditions of clay on the 

compressive strength at 3, 7 and 28 d are given in Figure 12. In the calcination temperature 

range between 600 and 920 °C, the compressive strength shows a slight downward trend at 

3 and 7 d. At 28 d, however, a drop of values is observed for a calcination temperature 

between 680 and 825 °C (Figure 12-c). This drop of values can be neglected considering the 

mean absolute error of 2.5 MPa. Above 920 °C, the compressive strength deceases 

drastically by 5 to 7 MPa at all hardening ages, and visually observing. This decrease 

corresponds to the changeover of bar color from green to blue at the three hardening ages 

(Figure 12). According to Rashad et al. [86], the best calcination temperature of kaolin in 

order to obtain amorphous metakaolin is likely in the range of 600 to 850 °C for heating 

period of 2–5 h. Extending calcination temperature above 920 °C of the metakaolin does not 

noticeably improve its pozzolanicity [87]. High calcination temperature can lead to the 



formation of non-reactive phases, namely mullite, resulting from structural rearrangement 

and recrystallization of the amorphous phases [88]. Based on solid-state NMR Studies, the 

reactivity of metakaolinite is at a maximum at 750-800 °C when the population of 

hexacoordinate Al is at a minimum and tetra- and pentacoordinate populations at a maximum 

[89]. Concerning the calcination duration, there is no significant effect on compressive 

strength at 3 and 7 d. Whereas at 28 d, the effect becomes almost more important. For 

example, at 800 °C (Figure 12-c), the compressive strength decreases continuously from 58 

to 50 MPa when the duration goes from 3 to 0.5 h.  

 Effect of chemical composition of calcined clay (scenario 3) 

To evaluate the influence of chemical composition of clay on the compressive strength, 

Figure 13 depicts predictive compressive strength according to cement reactivity ratios. To 

avoid message ambiguity, only results at 28d are presented. It is noted that in this simulated 

experiment, the variation in reactivity ratios values is induced exclusively by variation in the 

clay chemistry, as the chemical composition of OPC and limestone were fixed (Table 5). At 

28 d, the higher compressive strength values (48 to 49.7 MPa) are attained for HM = 1.6–1.7 

(Figure 13-a and c), SM = 1.8–2 (Figure 13-a), RM = 2.9–3.1 (Figure 13-b) and AM = 4–4.5 

(Figure 13-b and c). By considering an analysis on overall values of compressive strength 

including low values, it can be obviously noted that predicted compressive strength at 28 d 

decreases by increasing SM and HM (Figure 13-a and c), and it shows an upward trend by 

increasing AM (Figure 13-b and c), without any flagrant trend for RM variation (Figure 13-b). 

The depletion of compressive strength by increasing HM ratio, can be explained by the 

negative effect of CaO on the development of compressive strength. In fact, calcareous clay 

is often regarded as not suitable for blended cements, explained by the decomposition of 

CaCO3 to CaO after calcination. During service, CaO may react with water forming Ca(OH)2 

which can result in swelling and cracks [90]. However, substituting MK by 10–20% of 

calcined marl (containing 40 wt.% CaO) can be effective, because calcium hydroxide which 

is formed during hydration of this CaO reacts with dehydroxylated clay minerals through 



pozzolanic reaction to form more binding hydrates [91,92]. This later case corresponds to 

HM between 1.6 and 1.7 (Figure 14-a and c).  

Briki et al. [84] observe a slowdown of metakaolin reaction degree when it is replaced with 

silica fume, which can possibly explain the decrease of compressive strength by increasing 

SM moduli. On another hand, the enhancement of compressive strength by increasing AM 

ratio can possibly explained by the considerable contribution of alumina-rich calcined clays 

on the development of compressive strength. It was shown that the pozzolanic behavior of 

metakaolin is affected by its chemical and mineralogical composition, notably 

(SiO2+Al2O3+Fe2O3) content, calcination temperature and duration which fix the degree of 

amorphousness/dehydroxylation, morphology and size of the clay particles [93–96].    

 Effect of hardening conditions (scenario 4) 

Figures 14 presents the effect of hardening conditions on the predicted compressive strength 

at (a) 3, (b) 7 and (c) 28 d. In the range of W/B between 0.4 and 0.6, the graphs indicate that 

the compressive strength is quite influenced by water content. In general, adding more water 

to the concrete mixture leads to an excess of free water when the mortar hardens. This free 

water will create a higher porosity, leading to a reduction in compressive strength. Briki et al. 

[84] found that the reaction of metakaolin in calcined clay slows down after 28 days with the 

water to binder ratio of 0.6. Similar effect is observed for hardening temperature, in the range 

of 14–30 °C (Figure 14), there is no significant variation in compressive strength.  

4. Conclusion and perspectives 

This study presented the application of machine learning models on the prediction of 

compressive strength of calcined clay cement. For this purpose, seven algorithms of 

supervised machine learning were exploited to predict the compressive strength. The models 

were trained and tested with an experimental database of 323 mix design.  



The results show that rescaling of input features is indispensable for a good interpretability of 

the feature importance analysis. Among the evaluated models, XGboost model was identified 

as the most accurate for the prediction. K-fold cross validation and Bayesian optimization 

method were combined to find the optimal hyperparameters of the developed XGboost 

model. Further, these novel machine learning results reveal that once the model is correctly 

trained, prediction of compressive strengh of calcined clay cement with different mixture 

design is possible, with mean absolute error of 2.5 MPa.  

The deployment of the XGboost model shows that alumina to silica ratio (alumina ratio) of 

clays is the most impacting input feature on compressive strength of calcined clay cements. 

Then, interesting composition domains of raw materials were identified for further 

optimization of calcined clay cements. Prediction of compressive strengh exploiting machine 

learning approach show a downtrend of strength above 920 °C, which confirms experimental 

results published in literature.      

The original work within this paper denotes the successful feasibility of machine learning 

approach to predict the compressive strength of calcined clay cement which represents an 

interesting initial milestone for design of potential compositions. Additionally, our future 

studies will deal with the prediction of rheology and durability properties exploiting machine 

learning which constitutes a potential opportunity to improve the design optimization of this 

low carbon cement.     

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Appendix A.  

Data available in the literature concerning the application of ML for cements. The meanings of the 
abbreviations are given below this table*. 

Size of 
the 

dataset 

T
ra

in
in

g
 d

a
ta

 (
%

) 

 
T

e
s
ti

n
g

 d
a

ta
 (

%
) Cement type ML algorithm Input parameters Target 

parameters 
Réf. 

252 85 15 OPC  XGboost Amount of cement 

Amount of superplasticizer 

 

Shear flow [12] 

93 80 20 OPC SVR 

 

Surface exposed to the acid 

pH 

Hydration age 

Acid concentration 

Compressive 
strength 

[13] 



130 70 30 OPC + CPB ANN Chemical composition 

Particle size 

Input velocity 

Amount of solid 

Ratio cement/mine tailing 

Density 

Coefficient of curvature 

Coefficient of uniformity 

Pressure drops [14] 

- - - CEM II/A-LL 
32.5R 

ANN Cracking Patterns Image 
segmentation 

[15] 

- 90 10 OPC ANN-SVM Amount of cement 

Amount of water 

Amount of dispersant 

Hardening age 

Compressive 
strength 

[97] 

 

50 

- - Foam cement 
slurries 

ANN Amount of foam Electrical 
resistivity 

[17] 

676 

(shared 
dataset) 

- - Alcali-
activated 
material 

SVR, RFR, 

 ETR, 

GBR 

Hardening age 

Hardening humidity 

Water-to-cement ratio 

Chemical composition 

Compressive 
strength 

[18] 

215 70 30 Clinker Multiple kernel 
learning 

Sample weight 

Furnace temperature 

Gas temperature 

Bogue’s modules 

Amount of free 
lime 

[98] 

192 70 30 CEM I 42,5N + 
FA 

ANN-  

PSO 

 

Chemical composition 

Hardening age 

Amount of FA 

Compressive 
strength 

[20] 

90 70 30 Class G 
Cement 

LM  Nanoclay fraction 
Temperature 

Shear rate 

Apparent 
viscosity Shear 

stress  

Plastic viscosity 

Yield point 

[99] 

2416 75 25 OPC 

OPC + 

SVR Chemical composition by EDS Nano-
indentation ratio 

[22] 



Pozzolans 

31000 - - OPC DTE Chemical composition 

Physical tests (ASTM) 

 

Setting time  

Compressive 
strength 

[100] 

5808 

(shared 
dataset) 

97 3 OPC + MK + 
CaCO3 

CART-RF Chemical composition Hydration heat [24] 

8112 96 4 OPC + MK + 
CaCO3 + 
Quartz 

RF Hardening age 

Specific Surface area 

Amount of additive 

Type of additive 

Amount of cement 

Hydration heat 

Cumulative 
hydration heat 

[101] 

713 70 30 Blended OPC  GBRT model Density 

Chemical composition 

Formulation 

Compressive strength 

Exposure time 

Carbonation 
depth 

[26] 

154 80 20 OPC + PCM RFR 

ETR  

GBR XGBR 

Melting temperature 

PCM content 

Latent heat 

Chemical composition 

Hydration age 

Temperature 

Compressive 
strength 

[27] 

- 80 20 Blended OPC 
+ Soil 

ANN Type of cement 

Type of soil 

Composition of the mixture 
cement-soil 

Hardening age 

Plasticity index 

Compressive 
strength 

[28] 

1030 80 20 OPC Ada-Boost 
predictive 

model 

Chemical composition 

Formulation 

Compressive 
strength 

[29] 

250 70 30 Blended OPC 
+ fibers 

ANN Amount of cement 

Type and amount of fibers 

Water-to-cement ratio 

Self-healing 
capacity 

[30] 



Size of crack 

Hardening age 

45 544 98 2 OPC Clinker ELMARE Coal feeding 

The baffle opening 

of the high-temperature fan 

NOx 
concentration 

O2 concentration 

[31] 

751 75 25 Composite 
material based 

on OPC 

ANN 

SVR 

CART 

XGboost 

Sand-to-binder ratio 

Water-to-binder ratio 

Superplasticizer content 

Fiber length 

Fiber elastic ratio 

Compressive 
strength  

Tensile strength  

Tensile strain 
capacity 

[32] 

132 90 10 OPC MGGP MARS Hardening age 

Depth of measured position 
Diffusion dimension 

Presence of reinforcement 

Chloride ion concentration 

Chloride 
diffusion rate 

[102] 

1030 - - OPC ANN 

SVM 

RF 

Formulation 

Hardening age 

Compressive 
strength 

[34] 

215 56 44 OPC + Soil + 
Fibers 

ANN 

SVM  

RF 

MR 

Formulation 

Atterberg limits 

Water content 

Hardening age 

Fiber content 

Mechanical properties of the 
fiber 

Compressive 
strength  

Tensile strength 

[35] 

40 65 35 OPC ANN 

SVM 

MLP 

Chemical composition Blaine Fineness [36] 

1200 - - OPC ANN 3D Microstructures generated 
by HydratiCA software 

Microstructure of 
hydrating 
tricalcium 

silicate 

[37] 

638 86 14 OPC ANN 

SVM 

Formulation 

Water-to-cement ratio 

Sulfate ions concentration 

Compressive 
strength  

[38] 



Exposure conditions 

304 70 30 OPC LMBP-ANN Chemical composition 

 Blaine Fineness 

Temperature 

Water content 

Compressive 
strength 

[39] 

114 
(shared 
dataset) 

80 20 CEM I 42.5R 

CEM I 52.5R 

 + Carbone 
nanotubes 

ANN 

SVM 

 

Type of cement 

Amount of nanotubes 

Size of nanotubes 

Functionalisation method 

Hardening age 

Temperature 

Method of dispersion 

Compressive 
strength 

Tensile strength 

[40] 

52 70 30 Blended OPC 
+ Soil 

ANN 

RF 

GP 

M5P tree 

Cement content 

Soil content 

Amount of fly ash 

Hardening age 

Compressive 
strength 

[41] 

50 60 40 OPC ANN 

SVR 

RVM 

GPR 

Chemical composition 

Blaine Fineness 

Compressive 
strength 

[42] 

512 80 20 OPC + Silica 
microparticles 

SVM Water-to-cement ratio 

Sand-to-cement 

Silica nanoparticles/cement 

Silica microparticles/cement 
Hardening age 

Porosity 

Compressive 
strength 

Tensile strength 

[43] 

 

*Abbreviations 

AAPE Average absolute percentage error 

ANN Artificial neural network  

CART Classification and regression trees 

CPB Cemented paste backfill 

DTE Decision tree ensembles 

ELMARE Extreme learning machine autoregressive exogenous model 

ETR Extra trees regressor 



GBR Gradient boosting regressor 

GPR Gaussian process regression 

LM Levenberg Marquardt 

LMBP Levenbarg-Marquardt back-propagation 

MAE Mean absolute error 

MAPE Mean absolute percentage error 

MARS Multivariate adaptive regression splines 

MGGP Multi-gene genetic programming 

MLP Multi-layer perception 

MR Multiple regression 

MSE Mean square error  

OPC Ordinary Portland Cement 

PSO Particle swarm optimization 

R2 Coefficient of determination 

RF Random forest 

RFR Random forest regressor 

RMSE Root-mean-square error 

RRSE Root relative squared error  

RVM Relevance vector machine 

SOS Symbiotic organism search 

SVM Support vector machine 

SVR Support vector regression 

XGBR eXtreme gradient boosting regression 
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Table 1: Description and statistical parameters of the data features 

 Data items Features Symbol Units Mean STD min max 

14 Inputs Calcined clay Proportion of calcined 
clay 

CL% wt.% 
23.5 7.9 10 40 

BET surface area CL_Ss m
2
/g 18.5 7.3 2.5 45.7 

Calcination 
conditions of 

the clay 

Temperature T_calcin °C 760.7 84.06 600 925 

Duration time_calcin hours 1.27 0.75 0.2 3 

Portland 
Cement 

Proportion of OPC OPC% wt.% 
68.9 12.13 37.6 90 

Limestone Proportion Limestone CC% wt.% 7.5 7.7 0 31.1 

Chemical 
composition of 

the binder 

Reactivity ratio RM - 2.3 0.5 1.6 3.8 

Silica ratio SM - 2 0.6 1.2 4.3 

Alumina ratio AM - 3.9 2.5 1.6 17.8 

Hydraulic ratio HM - 1.2 0.3 0.7 2.1 

Hardening 
conditions 

Water to binder ratio W/B - 0.5 0.09 0.1 0.9 

Hardening 
temperature 

T_cure °C 
22.6 6.0 5 50 

Hardening relative 
humidity 

RH_cure % 
92.3 5.3 80 100 

Hardening age age_D days 30.7 41.3 1 270 

1 Output Compressive Compressive    R MPa 39.2 16.6 5 75 



strength strength 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Search intervals of hyperparameters for the seven selected ML algorithms. 

Algorithms Hyperparameters Search interval 

LR - - 

LR-RR - - 

SVR 

 

kernel coefficient (γ) [0.1, 5] 

epsilon ( ) [0.1, 20] 

regularization (C) [0.01, 500] 

DTR 

 

max_depth [1, 30] 

max_features [1, 14] 

min_samples_split [2, 50] 

min_samples_leaf [1, 50] 

random_state [1, 80] 

RF 

 

n_estimators [10, 600] 

max_depth [1, 30] 

max_features [1, 14] 

min_samples_split [2, 50] 

min_samples_leaf [1, 50] 

random_state [1, 80] 

XGboost n_estimators [10, 200] 



max_depth [1, 30] 

subsample [0.5, 10] 

seed [5, 100] 

MLP hidden_layer_sizes [(150, 100, 50) 

, (120, 80, 40) 

, (100, 50, 30)] 

max_iter [50, 300] 

activation [‘tanh’, ’relu’] 

solver [‘sgd’, ’adam’] 

alpha [0.0001, 0.05] 

learning_rate [‘constant’, 
’adaptive’] 

 

 

 

 

Table 3: Designed experimental scenarios with their fixed and variable parameters.  

 

 

 

Input 
features 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Effect of 
weight 

fraction of 
the cement 
constituents  

Effect of 
the 

chemical 
composition 
of the clay 

Effect of 
calcination 
conditions 
of the clay 

Effect of the 
hardening 
conditions 

CL% Variable 30 30 30 

CL_Ss 20 20 20 20 

T_calcin 800 800 Variable 800 

time_calcin 1 1 Variable 1 

OPC% Variable 55 55 55 

CC% Variable 15 15 15 

RM Calculated 
and fixed (*) 

Variable (**) Calculated 
and fixed (*)  

Calculated 
and fixed (*) 



SM Calculated 
and fixed (*) 

Variable (**) Calculated 
and fixed (*) 

Calculated 
and fixed (*) 

AM Calculated 
and fixed (*) 

Variable (**) Calculated 
and fixed (*) 

Calculated 
and fixed (*) 

HM Calculated 
and fixed (*) 

Variable (**) Calculated 
and fixed (*) 

Calculated 
and fixed (*) 

W/B 0.5 0.5 0.5 Variable 

T_cure 20 20 20 Variable 

RH_cure 90 90 90 90 

age_D Variable Variable Variable Variable 

(*) 
calculated from the chemical compositions given in Table 5. 

(**) 
different clay compositions were taken from literature ([1,2,47–57]) in order to evaluate their effect on the compressive 

strength. 
 
 
 
 
 
 
 
 
 

Table 4: Multi-correlation matrix of the 14 inputs and the compressive strength. 

 
R CL% T_calcin CL_Ss 

time_calcin 

(h) 
CC% OPC% W/B T_cure RH_cure age_D RM SM AM HM 

R 1 -0.21 0.04 -0.01 0.11 -0.17 0.25 0.06 -0.05 0.00 0.50 0.17 0.00 0.07 0.13 

CL% -0.21 1 0.22 -0.05 -0.29 0.20 -0.78 -0.04 0.16 0.08 -0.07 -0.81 -0.30 0.28 -0.94 

T_calcin 0.04 0.22 1 0.05 -0.06 0.30 -0.33 0.07 -0.08 0.26 0.05 -0.30 -0.09 0.11 -0.35 

CL_Ss -0.01 -0.05 0.05 1 0.15 0.00 0.03 -0.01 -0.15 0.03 -0.04 0.01 0.02 -0.12 0.03 

time_calcin 

(h) 
0.11 -0.29 -0.06 0.15 1 -0.43 0.46 -0.21 -0.23 0.39 -0.17 -0.08 0.76 -0.07 0.25 

CC% -0.17 0.20 0.30 0.00 -0.43 1 -0.76 -0.07 -0.02 0.06 0.08 -0.02 -0.36 0.34 -0.22 

OPC% 0.25 -0.78 -0.33 0.03 0.46 -0.76 1 0.07 -0.09 -0.09 0.00 0.55 0.43 -0.40 0.76 

W/B 0.06 -0.04 0.07 -0.01 -0.21 -0.07 0.07 1 0.04 -0.31 0.10 0.08 -0.15 -0.32 0.01 

T_cure -0.05 0.16 -0.08 -0.15 -0.23 -0.02 -0.09 0.04 1 0.03 0.00 -0.11 -0.10 -0.16 -0.13 

RH_cure 0.00 0.08 0.26 0.03 0.39 0.06 -0.09 -0.31 0.03 1 -0.08 -0.41 0.41 -0.05 -0.22 

age_D 0.50 -0.07 0.05 -0.04 -0.17 0.08 0.00 0.10 0.00 -0.08 1 0.07 -0.11 -0.01 0.01 

RM 0.17 -0.81 -0.30 0.01 -0.08 -0.02 0.55 0.08 -0.11 -0.41 0.07 1 -0.20 -0.04 0.88 

SM 0.00 -0.30 -0.09 0.02 0.76 -0.36 0.43 -0.15 -0.10 0.41 -0.11 -0.20 1 -0.27 0.26 

AM 0.07 0.28 0.11 -0.12 -0.07 0.34 -0.40 -0.32 -0.16 -0.05 -0.01 -0.04 -0.27 1 -0.25 

HM 0.13 -0.94 -0.35 0.03 0.25 -0.22 0.76 0.01 -0.13 -0.22 0.01 0.88 0.26 -0.25 1 

 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: Chemical composition of the cement constituents used for the calculation of reactivity ratios 
given in Table 3.  

 CaO SiO2 Al2O3 Fe2O3 MgO Na2O K2O CO2 Other 
element

s 

Kaolin 0.03 56.79 35.63 2 0.34 0.2 3.49 0 1.52 

OPC 65.2
1 

21.27 4.57 3.25 1.62 0.08 0.76 0 3.24 

Limestone 54.9
8 

0.33 0.24 0.04 0.88 0 0.04 43.46 0.03 

 

 


