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Addendum to “Isomorphism theorems, extended
Markov processes and random interlacements”

Nathalie Eisenbaum and Haya Kaspi

Electronic Journal of Probability (2022) Vol 27, 1-27.

This addendum clarifies Definition 5.1 in section 5.3. Definition 5.1, which defines
random interlacements for continuous transient Borel processes in weak duality, should
be replaced by a new version presented below. We keep the notation of the original
paper and in particular of section 5.3.

To introduce the new version of Definition 5.1, we first set, for any given compact subset
B of E: λB = sup{s ∈ (b, d) : Zs ∈ B}, with sup ∅ = −∞, and note from Proposition
13.11 in Getoor and Sharpe [17], that Q̂ν [ . ; 0 < λB < 1] is a finite measure.
The capacitary measure êB of B with respect to X̂, can also be expressed as follows:

êB(f) = lim
t→0

1

t
Q̂ν [Z0 ∈ E, f(ZλB); 0 < λB ≤ t]

for every nonnegative measurable function f . Since one also has ((5.18) with (5.6))
êB(f) = Q̂ν [f(ZλB); 0 < λB ≤ 1], one obtains:

lim
t→0

1

t
Q̂ν [0 ≤ b < λB ≤ t] = 0. (1)

Since λB is a stationary time, one has thanks to (2.1) and (2.3) in [14] for every t > 0,
and every functional F :

1

t
Q̂ν [F (ZλB+s, s ≥ 0); 0 < λB ≤ t] = Q̂ν [F (ZλB+s, s ≥ 0); 0 < λB ≤ 1].

Setting: ÎP ν =
∫
E
ν(dy)ÎP y, this leads together with (1) to

Q̂ν [F (ZλB+s, s > 0)f(ZλB), 0 < λB ≤ 1] = lim
t→0

1

t
ÎP ν [F (X̂L̂B+s, s > 0)f(X̂L̂B

); 0 < L̂B ≤ t]

Since L̂B is a splitting time, one has:

ÎP ν [F (X̂L̂B+s, s > 0)f(X̂L̂B
); 0 < L̂B ≤ t] = ÎP ν [Γ(X̂L̂B

, F )f(X̂L̂B
); 0 < L̂B ≤ t]
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where (Γ(x,B), x ∈ E,B ∈ F) is a Markov kernel distinct from (ÎP x(B), x ∈ E,B ∈ F)
(see Theorem 2.12 in Getoor Splitting time and Shift functionals Z.W. 47, 69-81(1979)
for a complete description of Γ). Hence

Q̂ν [F (ZλB+s, s > 0)f(ZλB), 0 < λB ≤ 1] = êB(Γ(., F )f),

which leads, êB(dx) a.e x, to

Q̂ν [F (ZλB+s, s > 0), 0 < λB ≤ 1|ZλB = x] = ÎP ν [F (X̂L̂B+s, s > 0)|X̂L̂B
= x].

We then define for any compact subset B of E and êB(dx) a.e x, the probability

measure ÎP
B

x on the set of E-valued paths indexed by IR+ by

ÎP
B

x [F (Zs, s ≥ 0)] =

∫
E

ν(dy)ÎP y[F (X̂L̂B+s, s ≥ 0) | X̂L̂B
= x].

Remark that for every ε > 0, one has: ÎP
B

x [{Zs, s ≥ ε} ∩B 6= ∅] = 0.

One finally sets the following definition for random interlacements.

Definition 5.1 For u > 0 the random interlacements at level u associated to
{ν, ((Pt)t≥0, (P̂t)t≥0)} is a PPP with intensity measure uµν where µν is the measure on
(W ,A) such that µν(ω ≡ ∆) = 0, characterized by the following properties:

• for any compact subset B of E, define HB = inf{t ∈ (b(ω), d(ω)) : ω(t) ∈ B}
with inf ∅ = +∞, then

µν [ωHB
∈ dx,HB <∞] = êB(dx) (5.13)

where êB is the capacitary measure of B associated to X̂;

• for every couple of A measurable functionals (F1, F2)

µν [F1(ω(HB + t), t ≥ 0); F2(ω((HB − t), )t ≥ 0); HB <∞]

=

∫
E

êB(dx)IPx[F1(Xt, t ≥ 0)]ÎP
B

x [F2(Zt, t ≥ 0)]]. (5.14)

With this modified Definition 5.1, the rest of the paper is unchanged except for the
proof of (5.15) in Theorem 5.1. Indeed the proof of (5.15) stops now page 21 line 20,
since we know thanks to (5.6) that êB(dx) a.e. x

Q̂ν [ F2(ZλB+s, s ≥ 0); 0 < λB < 1 | ZλB = x]

= Qν [F2(ZHB−s, s ≥ 0);−1 < HB < 0 | ZHB
= x]

= Qν [F2(ZHB−s, s ≥ 0); 0 < HB < 1 | ZHB
= x]

using again (2.1) and (2.3) in [14].
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The seven lines page 21 from line 21 till line 27, should hence be removed.

Besides the formulation of the open question presented in Remark 5.4 has to be refor-
mulated accordingly.
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