Patrick Greussay

Jacques Arveiller

Marc Battiler

Chris Colere

Gilbert Dalmasso

Giuseppe Englert

Didier Roncin

Introduction

Software research for musical applications at the Groupe Art et Informatique Vincennes (GAIV) has been devoted almost exclusively to the interaction between the software system and the interpreter/ composer (IC). We are especially interested in the real-time aspects of this interaction. Naturally we have been led to consider this interaction in terms of:

1. Process 2. Hierarchies of and interactions between processes 3. Data flows

Paths for and operators on data flows

We feel that the IC itself represents a process which encounters, interacts with, and controls other processes. These processes can be other ICs, or system processes defined in the software.

This type of approach to musical software is related to other current research, especially that dealing with data flow languages [START_REF] Dennis | First Version of a Data-Flow Procedure Language[END_REF], communication among parallel processes [START_REF] Atkinson | Parallelism and Synchronization in Actor Systems[END_REF][START_REF] Hewitt | Laws for Communicating Parallel Processes[END_REF], and the description and formalization of coroutine networks [START_REF] Kahn | Coroutines and Networks of Parallel Processes[END_REF]. We will describe new kinds of operators and configurations of pipeline stages that have been implemented at GAIV as a result of the musical and interactive character of the processes we have studied. Our implementa-tions have been based on the Vincennes version of LISP, VLISP [START_REF] Chailloux | KRWTH[END_REF] and the low-level language INTELGREU.

The set of process descriptions we will present has not been based on theoretical presuppositions. Rather, it has been formulated on the basis of experience gathered from the use of our systems in a performance setting, which has allowed us to gradually correct and perfect these systems, as well as from analysis of musical works from the past in terms of data flow and data base [START_REF] Greussay | Descriptions de proc6dures de lecture[END_REF]. Performance experience seems indispensable to us for the verification of software tools, abstract or real. Indeed, contrary to the studio situation, we are faced immediately with-the consequences of our decisions: from the outset, unrealistic or unfeasible viewpoints must be eliminated. Furthermore, we can experiment with the actual representation of musical processes employed by professional musicians, following the lead of experiments on the representation of musical processes in children carried out in the LOGO laboratory at M.I.T. [START_REF] Bamberger | Children's Representations of Pitch Relations[END_REF]. Analysis by computer of musical works from the past allows us to verify our concepts in compositions. One of the theories supported by GAIV is that a successful composition is, in a certain sense, an improvisation [START_REF] Dalmasso | Musique et improvisation: procedures de descriptions symboliques d'environments dynamiques[END_REF]. In this way we are trying to think, in computer science terms, of the processes of (score) reading, foreshadowing of later events in a piece (or the lack of it), improvisation, planning, and composition.

Finally, we should add that we are not trying to establish a theory of musical/instrumental processes. To be sure, we shall, without exception, use a schematic representation to describe data and pro- But the formal descriptions we will discuss represent nothing more than abstractions of software tools that are being planned or have actually been completed. Our only purpose, in fact, is to make it easier for musicians at GAIV to approach a computer science that deals with the interactive use of computers.

Thus in the following brief presentation we prefer to emphasize the fundamental concepts on which our software is based, rather than specific details of implementation. The latter are described in detail in the internal reports of the University of Paris VIII and in our journal Artinfo/Musinfo.

Abstractions of Dependency Relations in Sound Synthesis

We will first describe certain kinds of abstract dependency relations that can occur between (1) an IC; (2) one or more system processes (SP), for example, processes for choosing overall frequency, density, or amplitude; and (3) one or more devices for the generation of sound (SG).

Total Dependency

This kind of relationship is a characteristic feature of noninteractive musical software. As can be seen), the IC control should operate on no less than two SPs because at least two decisions are necessary. This kind of control was used in the KRWTH system [START_REF] Chailloux | KRWTH[END_REF]. Note that for the sake of simplicity we show only one SG. Actually, several SGs are connected by the abstract mixing operators, which we will describe later (Section 3).

Levels of Hierarchical Relationships (IC SP)

We have here the case where the layer of SPs at level ie[1, n] can control or create the layer of SPs at level i+ 1 (cf. Fig. 3). Examples of this would include software for aleatoric synthesis, and pattern generators (cf. Fig. 4). We see that the dependency is always hierarchical, that is, it operates from layer to layer. Furthermore, the SPs of a single layer cannot interact with one another. Finally, the number of layers is determined by the program in a fixed and definitive way, with only one IC at the top level. Just as in Section 2.1, hierarchical relationships are not limited to interactive musical situa-

Mutually Dependent (Horizontal) Relationships

There is also the possibility of communication and dependency within a single layer, The threevarieties of horizontal relationships, shown in Fig. 6, were used in the program RE COSA MATERIALE [START_REF] Battier | RE COSA MATERIALE et le programme compositionnel ICOSA[END_REF].

For lack of space, we cannot give specific, detailed examples of each type of dependency. We should at least point out, however, that formally speaking, these relationships among a fixed number of SPs at a given level constitute a network of finite automata. If the SPs are ICs, we have the kind of interdependence characteristic of group improvisation [START_REF] Dalmasso | Musique et improvisation: procedures de descriptions symboliques d'environments dynamiques[END_REF]. Jacques Arveiller used this kind of organization in the computer program for Paire-Lacs, created at Tours in April 1976. In this kind of organization we must deal with the question of synchronization and scheduling due to the limited number of available resources [START_REF] Battier | RE COSA MATERIALE et le programme compositionnel ICOSA[END_REF]. In addition, if the upper layer is constructed of more than one IC, then the system must use spe-

Recursive Dependency

In this kind of relationship [START_REF] Kahn | Coroutines and Networks of Parallel Processes[END_REF] we are confronted for the first time with a layer that exists separately from the SP (Fig. 8). As a matter of fact, an SP in layer i can depend on several distinct SPs in the layer just above it (i-1). Furthermore, the number of SPs is no longer fixed in advance; a recursive SP call can produce a new SP network. Since the capacity of memory and process resources is finite, we must also introduce a new kind of process, known as reclaiming, which is responsible for "garbage collection." This extremely performance situation. We must use techniques of "incremental garbage collection" to allocate a new SP within some given length of time, regardless of the number of inactive SPs to be recovered (Baker 1977). Finally, we should point out that this kind of relationship between SPs has been found through the analysis of the structure of improvisation [START_REF] Dalmasso | Musique et improvisation: procedures de descriptions symboliques d'environments dynamiques[END_REF], as well as analysis of compositions that are apparently quite removed from our interactive approach [START_REF] Greussay | Descriptions de proc6dures de lecture[END_REF]).

Independence of Layers: Total Parallelism

At Vincennes, lacking hardware multiprocessors, we have only been able to experiment using software simulation [START_REF] Greussay | Descriptions de proc6dures de lecture[END_REF]. Although the possibilities are quite complex, we will discuss the two simplest organizations, the AND network and the OR network (Fig. 9). In these two cases we see first that the logical distinction between SP and IC is abolished, which necessitates the construction of completely new link terminals. Furthermore, the relationships among the SPs are no longer fixed but can be modified within the network through the propagation of constraints (as shown in Fig. 10). This kind of relationship introduces the concepts of distributed monitors, perturbation monitors, and fracture monitors, which are outlined in Englert's article (1977).

We can consider this last kind of organization as the most interactive, compatible with current software/hardware tools. It introduces extremely difficult and interesting problems of process maintenance. At the same time it is in all probability the model closest to what we know about the interactions among human musicians.

At this juncture, we should point out that the interactive aspect of computer composition is characterized by the control of perturbation propagation. Our next step will be to experiment actively with more complicated relationships than AND networks and OR networks. Louis Audoire and Didier Roncin have constructed specialized inter-IC terminals adapted to this kind of organization.

These include a terminal with a color screen and a VLISP system on an LSI-11.

Greussay 43 [~7=1---

ei e2 e3 e, e2 e3 V V V S S

Abstractions in Mixing

All of the GAIV programs incorporate the features discussed in this section. The following description deals essentially with the relationships between SGs (more specifically, the program derived from the montage Echologique). The same description can likewise apply to the relationships among SPs, but here (as opposed to the relationships described in Section 2) we are limited to a fixed number of SGs.

Likewise in contrast with the inter-IC or inter-SP relationships, which are dependency relations, the abstract relationships in mixing, which involve the SGs, operate on streams of sequential data representing the characteristics of sound. All of the abstractions relevant to mixing can be summarized in the diagram shown in Fig. 11.

Data Flow Operators

The two forms of data-flow operators are shown in Fig. 12. These are, of course, the usual relationships found in oscillator networks.

Data Flow Pipeline Stages

The introduction of a pipeline stage allows us to use SGs in a quasi-parallel fashion. A SG can produce a datum and place it into a pipeline stage without necessarily taking into account the SGs that are going to use the datum. Introduction of a pipeline stage thus allows for the data synchronization of processes. The data-flow pipeline stages are known as cells. The Bi-Sequencer program [START_REF] Greussay | Descriptions de proc6dures de lecture[END_REF] allows the use of an arbitrary number of independent processes synchronized through pipeline stages.

A most common example of data-flow synchronization is the time loop, shown in Fig. 13.

We distinguish four configurations, ranked according to increasing complexity and shown in Fig. 14. If no pipeline stage is present, the data flow passes immediately from one SG to the next. With a single intervening pipeline stage (Fig. 14[b]), SGB takes its input datum from cell c where the datum of SGA is deposited. No time sequence is fixed a priori between SGA and SGB. As a matter of fact, SGA can produce its datum without SGB being active, or SGB can be active and SGA inactive. A request for data by SGB can also be used to activate SGA.

If an SG is logically decomposed into n sub-SGs, n cells are necessary, as shown in Fig. 14(c). Each of the SGAS can independently process an output datum. According to its.needs, SGB will take its input datum from cells cl, c2, c3, and/or c4.

If a queue is placed between the two SGs, SGA can theoretically produce an infinitely long sequence of data, which would fill an infinite number of cells. According to its needs, SGB uses the elements of this sequence in first-in, first-out (FIFO) order. In practice, since the total number of cells is limited, SGA must stop producing data and temporarily deactivate itself when the limit of the number of available cells is reached. SGA will be reactivated when SGB, by taking an input datum, makes cells available. For us the elimination of the simulation of these networks in software has become a primary goal, not only because simulation is obviously less efficient but also because we want to make use of our special visual terminals. Perhaps a bit paradoxically, we feel that further progress in the development of a computer science.dealing with the interactive, musical use of computers rests on the development of these new visual terminals in all cases where several ICs must interact during the performance of a single piece in real-time.

Fig

 Fig. 1. Total dependence (top) between an interpretericomposer (IC) and one or more system processes (SP), and (bottom) be-

Fig

 Fig. 2. Two possible patterns of total dependence: (a) the noninteractive case; (b) the interactive case.

 in Fig.1, all of the processes for the entire composi-in advance. The control of SP by IC, and of SG by SP, is total; no problems with scheduling or synchronization can occur. The SPs are conceptually independent and cannot communicate among themselves. Whatever the number (necessarily finite) of SPs, the potential relationships can be reduced to two simple patterns. Figure2(a) shows the noninteractive case (e.g., for a composition realized in the studio). For total dependence in the interactive case(Fig. 2[b]

Fig

 Fig. 3. Hierarchical relationships among various levels of SPs.

Fig

 Fig.4. An elementary example of a pattern generator in VLISP. All possible recursive compositions can be created using these two elementary patterns.

Fig

 Fig. 5. Hierarchical relationships. The noninteractive case (a) results in a single and specific decision. In the interactive

Fig

 Fig. 6. Dependency through a "closest neighbor" bilateral relationship (a). Hierarchical dependency (b). Auto-dependency (c).

Fig

 Fig. 7. Interconnection of ICs.

Fig. 9 .

 9 Fig. 9. AND network (a), in which the output of the SP in the lower right-hand corner depends on the simultaneity of interaction with the adjacent SPs. OR

Fig

 Fig. 10. Example of a potential change in a totally parallel configuration.

Fig

 Fig. 11. Abstraction of mixing.

Fig. 13 .

 13 Fig. 13. Data stream synchronization. The output datum si+n derives from the input datum li, si + n -1 derives from li-, and so on.

Fig. 14 .

 14 Fig. 14. Four ways of configuring SGs with pipeline stages. No pipeline stage (a). A single pipeline stage (b). Multiple stages (c). Queue (d).

Fig

 Fig. 13. 1i-2 Ii-1 i Si+n-2 Si+n-1 Si+n I---*----+ *----+-----> SGT ---+--) *----+~ *---i-+ *----+-

This content downloaded from 130.102.42.98 on Sat, 07 May 2016 00:42:45 UTC All use subject to http://about.jstor.org/terms

Acknowledgment

The editors of Computer Music Journal would like to express their appreciation to James A. Moorer for his help in preparing this manuscript.