
HAL Id: hal-03950696
https://cnrs.hal.science/hal-03950696

Submitted on 22 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Musical Software: Descriptions and Abstractions of
Sound Generation and Mixing

Marc Battier, Patrick Greussay, Jacques Arveiller, Colere Christian, Dalmasso
Gilbert, Englert Giuseppe, Roncin Didier

To cite this version:
Marc Battier, Patrick Greussay, Jacques Arveiller, Colere Christian, Dalmasso Gilbert, et al.. Musical
Software: Descriptions and Abstractions of Sound Generation and Mixing. Computer Music Journal,
1980, 4 (3), pp.40-47. �hal-03950696�

https://cnrs.hal.science/hal-03950696
https://hal.archives-ouvertes.fr

 Patrick Greussay
 Jacques Arveiller

 Marc Battiler
 Chris Colere
 Gilbert Dalmasso

 Giuseppe Englert
 Didier Roncin

 Groupe Art et Informatique Vincennes
 Universit6 Paris VIII

 Paris, France

 Musical Software:
 Descriptions and
 Abstractions of
 Sound Generation
 and Mixing

 1. Introduction

 Software research for musical applications at the
 Groupe Art et Informatique Vincennes (GAIV) has
 been devoted almost exclusively to the interaction
 between the software system and the interpreter/
 composer (IC). We are especially interested in the
 real-time aspects of this interaction. Naturally we
 have been led to consider this interaction in terms
 of:

 1. Process

 2. Hierarchies of and interactions between
 processes

 3. Data flows

 4. Paths for and operators on data flows

 We feel that the IC itself represents a process which
 encounters, interacts with, and controls other pro-
 cesses. These processes can be other ICs, or system
 processes defined in the software.

 This type of approach to musical software is
 related to other current research, especially that
 dealing with data flow languages (Dennis 1974),
 communication among parallel processes (Atkinson
 and Hewitt 1976; Hewitt and Baker 1977), and the
 description and formalization of coroutine net-
 works (Kahn and McQueen 1977). We will describe
 new kinds of operators and configurations of pipe-
 line stages that have been implemented at GAIV as
 a result of the musical and interactive character of
 the processes we have studied. Our implementa-

 tions have been based on the Vincennes version of
 LISP, VLISP (Chailloux 1975) and the low-level lan-
 guage INTELGREU.

 The set of process descriptions we will present
 has not been based on theoretical presuppositions.
 Rather, it has been formulated on the basis of expe-
 rience gathered from the use of our systems in a
 performance setting, which has allowed us to grad-
 ually correct and perfect these systems, as well as
 from analysis of musical works from the past in
 terms of data flow and data base (Greussay 1973).
 Performance experience seems indispensable to us
 for the verification of software tools, abstract or
 real. Indeed, contrary to the studio situation, we are
 faced immediately with-the consequences of our
 decisions: from the outset, unrealistic or unfeasible
 viewpoints must be eliminated. Furthermore, we
 can experiment with the actual representation of
 musical processes employed by professional musi-
 cians, following the lead of experiments on the
 representation of musical processes in children car-
 ried out in the LOGO laboratory at M.I.T. (Bamber-
 ger 1976). Analysis by computer of musical works
 from the past allows us to verify our concepts in
 compositions. One of the theories supported by
 GAIV is that a successful composition is, in a cer-
 tain sense, an improvisation (Dalmasso 1980). In
 this way we are trying to think, in computer sci-
 ence terms, of the processes of (score) reading,
 foreshadowing of later events in a piece (or the lack
 of it), improvisation, planning, and composition.

 Finally, we should add that we are not trying to
 establish a theory of musical/instrumental pro-
 cesses. To be sure, we shall, without exception, use
 a schematic representation to describe data and pro-

 Computer Music Journal, Vol. 4, No. 3, Fall 1980,
 0148-9267/80/020040-08 $04.00/0
 @ 1980 Massachusetts Institute of Technology.

 40 Computer Music Journal

This content downloaded from 130.102.42.98 on Sat, 07 May 2016 00:42:45 UTC
All use subject to http://about.jstor.org/terms

 Fig. 1. Total dependence
 (top) between an interpre-
 tericomposer (IC) and one
 or more system processes
 (SP), and (bottom) be-

 tween system processes
 and sound generation de-
 vices (SG).

 Fig. 2. Two possible pat-
 terns of total dependence:
 (a) the noninteractive case;
 (b) the interactive case.

 IC

 SP SP SP ... SP

 SP SP SP ... SP

 SG

 cesses. But the formal descriptions we will discuss
 represent nothing more than abstractions of soft-
 ware tools that are being planned or have actually
 been completed. Our only purpose, in fact, is to
 make it easier for musicians at GAIV to approach a
 computer science that deals with the interactive
 use of computers.

 Thus in the following brief presentation we pre-
 fer to emphasize the fundamental concepts on
 which our software is based, rather than specific de-
 tails of implementation. The latter are described in
 detail in the internal reports of the University of
 Paris VIII and in our journal Artinfo/Musinfo.

 2. Abstractions of Dependency Relations in
 Sound Synthesis

 We will first describe certain kinds of abstract de-

 pendency relations that can occur between (1) an
 IC; (2) one or more system processes (SP), for exam-
 ple, processes for choosing overall frequency, den-
 sity, or amplitude; and (3) one or more devices for
 the generation of sound (SG).

 2.1. Total Dependency

 This kind of relationship is a characteristic feature
 of noninteractive musical software. As can be seen

 in Fig. 1, all of the processes for the entire composi-

 IC IC

 SP SP SP

 SGSP

 (a) (b)

 tion are determined in advance. The control of SP

 by IC, and of SG by SP, is total; no problems with
 scheduling or synchronization can occur. The SPs
 are conceptually independent and cannot commu-
 nicate among themselves. Whatever the number
 (necessarily finite) of SPs, the potential relation-
 ships can be reduced to two simple patterns. Figure
 2(a) shows the noninteractive case (e.g., for a com-
 position realized in the studio). For total depen-
 dence in the interactive case (Fig. 2[b]), the IC
 control should operate on no less than two SPs be-
 cause at least two decisions are necessary. This
 kind of control was used in the KRWTH system
 (Chailloux 1975). Note that for the sake of sim-
 plicity we show only one SG. Actually, several SGs
 are connected by the abstract mixing operators,
 which we will describe later (Section 3).

 2.2. Levels of Hierarchical Relationships (IC SP)

 We have here the case where the layer of SPs at
 level ie[1, n] can control or create the layer of SPs
 at level i+ 1 (cf. Fig. 3). Examples of this would in-
 clude software for aleatoric synthesis, and pattern
 generators (cf. Fig. 4). We see that the dependency is
 always hierarchical, that is, it operates from layer
 to layer. Furthermore, the SPs of a single layer can-
 not interact with one another. Finally, the number
 of layers is determined by the program in a fixed
 and definitive way, with only one IC at the top
 level. Just as in Section 2.1, hierarchical relation-
 ships are not limited to interactive musical situa-

 Greussay 41

This content downloaded from 130.102.42.98 on Sat, 07 May 2016 00:42:45 UTC
All use subject to http://about.jstor.org/terms

 Fig. 3. Hierarchical rela-
 tionships among various
 levels of SPs.

 IC

 SP SP Level 1

 SP SP SP SP Level 2

 SG

 tions and can be summarized in the two patterns
 shown in Fig. 5.

 2.3. Mutually Dependent (Horizontal)
 Relationships

 There is also the possibility of communication and
 dependency within a single layer, The threevari-
 eties of horizontal relationships, shown in Fig. 6,
 were used in the program RE COSA MATERIALE
 (Battier 1977).

 For lack of space, we cannot give specific, de-
 tailed examples of each type of dependency. We
 should at least point out, however, that formally
 speaking, these relationships among a fixed number
 of SPs at a given level constitute a network of finite
 automata. If the SPs are ICs, we have the kind of
 interdependence characteristic of group improvisa-
 tion (Dalmasso 1980). Jacques Arveiller used this
 kind of organization in the computer program for
 Paire-Lacs, created at Tours in April 1976. In this
 kind of organization we must deal with the ques-
 tion of synchronization and scheduling due to the
 limited number of available resources (Battier
 1977). In addition, if the upper layer is constructed
 of more than one IC, then the system must use spe-

 Fig. 4. An elementary ex-
 ample of a pattern genera-
 tor in VLISP. All possible
 recursive compositions can
 be created using these two
 elementary patterns.

 (DE GENPAT (PAT A B C D E F)
 (LET ((PAT PAT)) (COND

 ((NULL PAT) (NIL)
 ((ATOM PAT)
 (APPEND (EVAL PAT) NIL))
 ((NUMBP (CAR PAT))
 (GENCOP (NEXTL PAT) (SELF PAT)))
 ((EQ (CAR PAT) ',)
 (GENCOP (EVAL (CADR PAT))

 (SELF (CDDR PAT))))
 (T (APPEND

 (SELF (NEXTL PAT))
 (SELF PAT))))))

 (DE GENCOP (N SQ)
 (LET ((N N))

 (IF (= N 0) NIL
 (APPEND SQ (SELF (SUB 1 N))))))

 (GENPAT '(A B A) sq, sq2) sq, sq2 sqi
 (GENPAT'(n. A) sq) sq sq... sq
 <- n TIMES -*

 cial IC-SP communication terminals featuring a
 handler for various interrupts and a keyboard, along
 with an inter-IC communication system consisting
 of a common clock, display screens, and light sig-
 nals. Having gathered some experience at a concert
 in Frankfurt (in April 1977) with a special color TV
 terminal constructed at the University of Paris VIII
 by Louis Audoire (1976), GAIV is now planning to
 generalize this kind of inter-IC communication.

 2.4. Recursive Dependency

 In this kind of relationship (Kahn and McQueen
 1977) we are confronted for the first time with a
 layer that exists separately from the SP (Fig. 8). As a
 matter of fact, an SP in layer i can depend on sev-
 eral distinct SPs in the layer just above it (i- 1).

 Furthermore, the number of SPs is no longer
 fixed in advance; a recursive SP call can produce a
 new SP network. Since the capacity of memory and
 process resources is finite, we must also introduce a
 new kind of process, known as reclaiming, which is
 responsible for "garbage collection." This extremely

 42 Computer Music Journal

This content downloaded from 130.102.42.98 on Sat, 07 May 2016 00:42:45 UTC
All use subject to http://about.jstor.org/terms

 Fig. 5. Hierarchical rela-
 tionships. The noninterac-
 tive case (a) results in a
 single and specific deci-
 sion. In the interactive

 case (b) at least two IC
 decisions are necessary
 (Menard 1974).

 IC IC

 PS PS PS

 PS PS PS

 PS PS

 a SG

 (a) (b)

 interesting organization introduces strict limita-
 tions on the creation of music in real-time or in a

 performance situation. We must use techniques of
 "incremental garbage collection" to allocate a new
 SP within some given length of time, regardless of
 the number of inactive SPs to be recovered (Baker
 1977).

 Finally, we should point out that this kind of re-
 lationship between SPs has been found through the
 analysis of the structure of improvisation (Dalmasso
 1980), as well as analysis of compositions that are
 apparently quite removed from our interactive ap-
 proach (Greussay 1973).

 2.5. Independence of Layers: Total Parallelism

 At Vincennes, lacking hardware multiprocessors,
 we have only been able to experiment using soft-
 ware simulation (Greussay 1978). Although the
 possibilities are quite complex, we will discuss the
 two simplest organizations, the AND network and
 the OR network (Fig. 9). In these two cases we see
 first that the logical distinction between SP and IC

 Fig. 6. Dependency
 through a "closest neigh-
 bor" bilateral relationship
 (a). Hierarchical depen-
 dency (b). Auto-depen-
 dency (c).

 SP SP SP SP (b)

 SP SP SP S P- (c)

 is abolished, which necessitates the construction of
 completely new link terminals. Furthermore, the
 relationships among the SPs are no longer fixed but
 can be modified within the network through the
 propagation of constraints (as shown in Fig. 10).
 This kind of relationship introduces the concepts of
 distributed monitors, perturbation monitors, and
 fracture monitors, which are outlined in Englert's
 article (1977).

 We can consider this last kind of organization as
 the most interactive, compatible with current soft-
 ware/hardware tools. It introduces extremely dif-
 ficult and interesting problems of process mainte-
 nance. At the same time it is in all probability the
 model closest to what we know about the interac-

 tions among human musicians.
 At this juncture, we should point out that the

 interactive aspect of computer composition is char-
 acterized by the control of perturbation propaga-
 tion. Our next step will be to experiment actively
 with more complicated relationships than AND
 networks and OR networks. Louis Audoire and Di-

 dier Roncin have constructed specialized inter-IC
 terminals adapted to this kind of organization.
 These include a terminal with a color screen and a

 VLISP system on an LSI-11.

 Greussay 43

This content downloaded from 130.102.42.98 on Sat, 07 May 2016 00:42:45 UTC
All use subject to http://about.jstor.org/terms

 Fig. 7. Interconnection of
 ICs.

 Fig. 8. Recursive depen-
 dencies (see text for
 explanation).

 [~7=1- - -

 ei e2 e3

 e, e2 e3 V V V

 S

 S

 3. Abstractions in Mixing

 All of the GAIV programs incorporate the features
 discussed in this section. The following description
 deals essentially with the relationships between
 SGs (more specifically, the program derived from
 the montage Echologique). The same description
 can likewise apply to the relationships among SPs,
 but here (as opposed to the relationships described
 in Section 2) we are limited to a fixed number of
 SGs.

 Likewise in contrast with the inter-IC or inter-SP

 relationships, which are dependency relations, the
 abstract relationships in mixing, which involve the
 SGs, operate on streams of sequential data repre-
 senting the characteristics of sound. All of the
 abstractions relevant to mixing can be summarized
 in the diagram shown in Fig. 11.

 3.1. Data Flow Operators

 The two forms of data-flow operators are shown in
 Fig. 12. These are, of course, the usual relationships
 found in oscillator networks.

 Fig. 9. AND network (a), in
 which the output of the SP
 in the lower right-hand
 corner depends on the si-
 multaneity of interaction
 with the adjacent SPs. OR

 network (b), in which the
 adjacent SPs depend alter-
 nately (the simultaneity
 then being a special case)
 on the SP in the middle.

 PS PS opP

 (a)

 PS

 PS PS PS

 PSPPS

 PS PS PS

 3.2. Data Flow Pipeline Stages

 The introduction of a pipeline stage allows us to
 use SGs in a quasi-parallel fashion. A SG can pro-
 duce a datum and place it into a pipeline stage
 without necessarily taking into account the SGs
 that are going to use the datum. Introduction of
 a pipeline stage thus allows for the data synchroni-
 zation of processes. The data-flow pipeline stages
 are known as cells. The Bi-Sequencer program
 (Greussay 1978) allows the use of an arbitrary num-
 ber of independent processes synchronized through
 pipeline stages.

 A most common example of data-flow synchro-
 nization is the time loop, shown in Fig. 13.

 We distinguish four configurations, ranked ac-
 cording to increasing complexity and shown in Fig.
 14. If no pipeline stage is present, the data flow
 passes immediately from one SG to the next. With
 a single intervening pipeline stage (Fig. 14[b]), SGB
 takes its input datum from cell c where the datum
 of SGA is deposited. No time sequence is fixed a
 priori between SGA and SGB. As a matter of fact,

 44 Computer Music Journal

This content downloaded from 130.102.42.98 on Sat, 07 May 2016 00:42:45 UTC
All use subject to http://about.jstor.org/terms

 Fig. 10. Example of a po-
 tential change in a totally
 parallel configuration.

 PS PS PS

 PS P S PS

 P PS PS

 PS PS PS

 PS P-PS

 PS PS PS

 SGA can produce its datum without SGB being ac-
 tive, or SGB can be active and SGA inactive. A
 request for data by SGB can also be used to activate
 SGA.

 If an SG is logically decomposed into n sub-SGs,
 n cells are necessary, as shown in Fig. 14(c). Each of
 the SGAS can independently process an output
 datum. According to its.needs, SGB will take its in-
 put datum from cells cl, c2, c3, and/or c4.

 If a queue is placed between the two SGs, SGA
 can theoretically produce an infinitely long se-
 quence of data, which would fill an infinite number
 of cells. According to its needs, SGB uses the ele-
 ments of this sequence in first-in, first-out (FIFO)
 order. In practice, since the total number of cells is
 limited, SGA must stop producing data and tem-
 porarily deactivate itself when the limit of the
 number of available cells is reached. SGA will be re-
 activated when SGB, by taking an input datum,
 makes cells available.

 Fig. 11. Abstraction of
 mixing.

 Fig. 12. Data-flow opera-
 tors: (a) interconnection;
 (b) feedback.

 e-data-flow,

 SG s-data-flow

 e-data-flown

 Modulator

 e

 SGA

 SGA SGB ; e (a)

 S SGB

 SG M SG (b)

 4. Conclusion

 At the present time we are interested in developing
 software adapted to networks of microprocessors.
 For us the elimination of the simulation of these

 networks in software has become a primary goal,
 not only because simulation is obviously less
 efficient but also because we want to make use

 of our special visual terminals. Perhaps a bit para-
 doxically, we feel that further progress in the de-
 velopment of a computer science.dealing with the
 interactive, musical use of computers rests on the
 development of these new visual terminals in all
 cases where several ICs must interact during the
 performance of a single piece in real-time.

 Greussay 45

This content downloaded from 130.102.42.98 on Sat, 07 May 2016 00:42:45 UTC
All use subject to http://about.jstor.org/terms

 Fig. 13. Data stream syn-
 chronization. The output
 datum si+n derives from
 the input datum li, si + n -1

 derives from li- , and so on.

 Fig. 14. Four ways of con-
 figuring SGs with pipeline
 stages. No pipeline stage
 (a). A single pipeline stage
 (b). Multiple stages (c).
 Queue (d).

 Fig. 13. 1i-2 Ii-1 i Si+n-2 Si+n-1 Si+n
 I--- *----+ *----+-----> SGT ---+--) *----+~ *---i-+ *----+-

 n

 Fig. 14.

 (a) (b) (c)

 SA(a) SGA

 S - - - - sequential operator At A2 I A3 A4

 S (b) ET
 4- - - - - cell

 S

 Acknowledgment

 The editors of Computer Music Journal would like
 to express their appreciation to James A. Moorer for
 his help in preparing this manuscript.

 References

 Atkinson, R., and Hewitt, C. 1976. "Parallelism and Syn-
 chronization in Actor Systems." Draft. Cambridge,
 Massachusetts: M.I.T. Artificial Intelligence Laboratory.

 Audoire, L. 1976. Colorix: un peripherique de visualisa-
 tion couleur. M6moire de Maitrise d'Informatique.
 Paris: Universit6 Paris VIII.

 Baker, H. G., Jr. 1977. "List Processing in Real Time on a
 Serial Computer." Working Paper No. 139. Cambridge,
 Massachusetts: M.I.T. Artificial Intelligence Laboratory.

 Bamberger, J. 1976. "Children's Representations of Pitch
 Relations." Memo No. 43. Cambridge, Massachusetts:
 M.I.T. LOGO.

 Battier, M. 1977. "RE COSA MATERIALE et le pro-
 gramme compositionnel ICOSA." Artinfo/Musinfo
 27:21-45.

 Chailloux, J. 1975. "KRWTH." ArtinfolMusinfo 20:1-16.
 . 1976. UER Informatique. RT 17-76a. Paris: Uni-

 versite Paris VIII, Vincennes.
 Dalmasso, G. 1980. "Musique et improvisation: pro-

 cedures de descriptions symboliques d'environments
 dynamiques." Ph.D. disseration, Universit6 Paris VIII.

 Dennis, J. B. 1974. "First Version of a Data-Flow Pro-
 cedure Language." In Colloque sur la programmation,
 ed. B. Robinet. New York: Springer, pp. 362-376.

 Englert, G. G. 1977. "Fragola." Artinfol/Musinfo 22:1-8.
 Greussay, P. 1973. "Descriptions de proc6dures de lec-

 ture." Artinfol/Musinfo 19:1-30.

 46 Computer Music Journal

This content downloaded from 130.102.42.98 on Sat, 07 May 2016 00:42:45 UTC
All use subject to http://about.jstor.org/terms

 . 1978. "Mod1lisation de r6saux de multi-s6quen-
 ceurs." Artinfo/Musinfo.

 Hewitt, C., and Baker, G. 1977. "Laws for Communicat-
 ing Parallel Processes." Working Paper No. 134A.
 Cambridge, Massachusetts: M.I.T. Artificial Intel-
 ligence Laboratory.

 Kahn, G., and McQueen, C. B. 1977. "Coroutines and
 Networks of Parallel Processes." Proc. IFIP 1977.

 Amsterdam: North Holland, pp. 993-997.
 Menard, P. 1974. "Pr6sentation du programme AUTO-

 MUSE." ArtinfolMusinfo 15:13-24.

 Greussay 47

This content downloaded from 130.102.42.98 on Sat, 07 May 2016 00:42:45 UTC
All use subject to http://about.jstor.org/terms

	Contents
	40
	41
	42
	43
	44
	45
	46
	47

	Issue Table of Contents
	Computer Music Journal, Vol. 4, No. 3, Artificial Intelligence and Music Part 2 (Autumn, 1980), pp. 1-79
	Front Matter [pp. 1-1]
	Editor's Notes [p. 2]
	Approximation and Syntactic Analysis of Amplitude and Frequency Functions for Digital Sound Synthesis [pp. 3-24]
	Interview with Marvin Minsky [pp. 25-39]
	Musical Software: Descriptions and Abstractions of Sound Generation and Mixing [pp. 40-47]
	Computer Improvisation [pp. 48-58]
	Reviews
	Review: untitled [pp. 59-61]
	Review: untitled [pp. 61-63]
	Review: untitled [pp. 63-64]
	Review: untitled [pp. 64-65]

	Report from the 1980 Audio Engineering Society Convention in Los Angeles [pp. 66-73]
	Products of Interest [pp. 74-79]
	Back Matter

