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The presence of air gaps in magnetic modeling problems is well known. When the air gap is thin, its numerical treatment is
complex because the integrals arising on the model lead to inaccuracy. This paper presents an air gap model for thin air gaps
using the magnetostatic volume integral method for linear and non linear problems. The thin air gap is considered as a face region
with a numerical treatment to improve the accuracy. An application to an academic case and a current transformer is reported to
validate the model.

Index Terms—Volume integral method, air gap, magnetostatics, facet element.

I. INTRODUCTION

VOLUME integral method (VIM) is a powerful approach
to solve magnetic problems. Contrary to the finite el-

ement method (FEM), only the active regions have to be
discretised, thus avoiding to mesh the air. The VIM started in
1970s with the magnetic moment method, based on uniform
magnetization on each element [1] but it wasn’t until the
last decade that it became more popular as a result of three
main improvements: advanced integral formulations such as
[2] [3] (H-conforming formulations) or [4] (B-conforming
formulation), matrix compression algorithms such as the fast
multipole method (FMM) [5] or hybrid cross approximation
(HCA) [6] and the increase of computers RAM memory.
A VIM based on facet elements for linear and non linear
problems [4] is considered in this paper.

A frequent feature of magnetic problems is the presence
of air gaps, that can be very thin, arising for example when
two parts are welded. Modeling air gaps presents difficulties,
there are two options to do it. The first is to not mesh the
air gap, then the proximity of the two air gap faces leads to
inaccurate integral computations of Green’s kernel. The second
option is to mesh the air gap as a volume element, this case is
more accurate than not meshing the air gap but it also leads
to difficult integral calculations on the mesh elements of the
air gap because the two air gap faces are very close.

A third alternative is presented in this paper: a VIM model
of thin air gaps considered as a face region. It avoids the
numerical treatment difficulty that arises when the air gap
is not meshed. It also allows to avoid a thin mesh of the
air gap volume region that is computationally expensive,
meshing only the face of the air gap and keeping the precision
of computations. This strategy has already been done on a
FEM approach for a B-conforming formulation [7] and a H-
conforming formulation [8], [9]. Nevertheless, for the VIM
case, special attention has to be given to the integral equations
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that model the air. The face air gap development is applied to
an academic case and an industrial example and it is compared
with a converged volume air gap model to show its accuracy.

This paper is organised as follows: section II explains the
volume integral formulation using B-facet elements, section III
describes the face air gap model developed for the previous
formulation, section IV presents two applications of the face
air gap model and finally a conclusion in section V completes
the paper.

II. VOLUME INTEGRAL FORMULATION

We consider Maxwell’s equations under magnetostatics as-
sumptions in a domain composed of a ferromagnetic region
Ω and coils. The volume magnetostatic integral equation in
terms of induction B [4] is:

νB +
1

4π
∇(

∫
Ω

((ν0 − ν)B) ·∇(
1

r
)dΩ) = H0 (1)

where ν is the reluctivity of the ferromagnetic region that de-
pends on B, ν0 is the vacuum reluctivity, ∇ is the differential
operator, r is the distance between the integration point and
the observation point and H0 is the source field created by
source currents.

Interpolating B with facet elements (Whitney 2-form [10])
and applying a Galerkin projection with facet functions as in
[4], the resulting discretized integral system reads

(R+ L){Φ} = {∆φ}+ {S} (2)

where Φ is the magnetic flux across each facet of the mesh,
∆φ is the difference of magnetic potential of two mesh
elements, S is a term coming from the external sources, R
is the finite element matrix

Rij =

∫
Ω

wi · νwjdΩ (3)

where wi is the facet shape function of element i and L is the
integral full matrix
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where si is the surface of the facet element i, δν is the
reluctivity jump between two adjacent elements that have a
shared facet, Γ is the ensemble of facets of the problem and
Γext refers only to the facets that are on the boundary of the
ferromagnetic region. Let us notice that for the non linear case
the hypothesis of ν being constant at each mesh element is
considered, which is already true for tetrahedral mesh elements
because in that case B is constant at each element. The non
linear resolution of the system is carried out with the Newton-
Raphson method.

In practice, eq. (2) is a representation of the problem with
an equivalent electric circuit approach expressed with a dual
mesh as in Fig. 1 [12], where the branches of the dual mesh
correspond to the facets of the primal mesh and the nodes
of the dual mesh are the elements of the primal mesh. Then
R matrix can be seen as the internal reluctance matrix for the
magnetic material and L matrix as the one taking into account
flux in air region. To solve the problem, either the Kirchhoff’s
nodal rule or the Kirchhoff’s mesh rule can be used. This
procedure ensures the free divergence of B.

Fig. 1: Primal mesh and dual mesh of a region.

In order to speed the computations, a matrix compression
technique needs to be used, such as FMM [5] on matrix L. To
that aim, we apply an iterative solver with GMRES that can
be accelerated with the use of a preconditioner of type LU on
the finite element matrix R.

III. FACE AIR GAP MODEL

Let us consider the following assumptions:
• Thickness of the air gap is small compared to the dimen-

sion of the other elements.
• Flux leakage from the external faces of the air gap is null.
• Flux inside the air gap is perpendicular to the air gap. We

can assume this because the permeability of the material
is much higher than the permeability of the vacuum and
the air gap is thin.

Due to these assumptions, the air gap can be considered as a
face region instead of a volume region (Fig. 2). The equivalent
magnetic circuit can be built adding the air gap contribution
to matrices R and L (eqs. (3) and (4)). For the finite element
matrix R, an additional reluctance on the mesh branches that
cross the air gap is considered, given by µ0e

s , where e is the

Fig. 2: Equivalent magnetic circuit of a device for an air gap
as volume region (left) and as face region (right).

thickness of the air gap, s is the surface of the facet element
and µ0 is the vacuum permeability. This can be seen as the
relutance of a parallelepiped of surface s and depth e. For
matrix L, since the air gap is characterized by having two
regions that are near, the evaluation on two parallel faces Γ1

and Γ2 that are in front of each other and separated by a
distance equal to the thickness of the air gap (Fig. 3) is given
by:
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(5)

Fig. 3: Air gap representation.

where Γ1j are the facet elements j that are on face Γ1 and
minus sign between the two previous terms comes from the
orientation of the faces, going from Γ1 to Γ2. Now, expressing
ν1 and ν2 as ν1 = νavg +

δν
2 , ν2 = νavg − δν

2 where νavg =
ν1+ν2

2 and δν = ν1−ν2

2 , the previous expression becomes:
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(6)
The latter equation shows that when the air gap is thin r1

and r2 are almost the same value and then the difference
between the two large terms involving r1 and r2 can lead
to inaccuracy. This happens when the air gap is meshed as a
volume element and when it is not meshed at all. Nevertheless,
when it is meshed as a volume element the inaccuracy is
only given on matrix L whereas if there is no air gap mesh,
inaccuracy is given on both matrices R and L.



For the face air gap model, the first term can be approxi-
mated as:
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using a first order Taylor expansion
1
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+ 1
r2

= 2
r + ε(O2) ≈ 2

r , where ε(O2) is a term of
order two.

The second term is approximated as:
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given that ∇( 1
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Assembling the previous information, matrix L can be
written as:
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(9)

We observe that the first term of L corresponds to (4),
which doesn’t consider the air gap, being the second term
the additional contribution given by the air gap.

When the thickness of the air gap is small the correction of
R matrix is enough to model the air gap behaviour. Otherwise,
the additional correction to L matrix must be considered.

IV. APPLICATIONS

A. Academic case

The proposed air gap model is applied to a magnetic part
(linear isotropic material with permeability µr = 1, 000) with
an air gap and a coil of 1,000 turns and 1A of imposed current
as Fig. 4 shows.

Fig. 4: Academic case geometry.

In order to validate the face region air gap method, the
calculation of the magnetic flux through the coil following
[11] is compared with the values obtained when the air gap is
considered as a volume region. We create a mesh with enough
number of elements to have a converged solution on the air gap
volume model so that it will be the reference. This mesh has
42,334 tetrahedral elements in the magnetic region and around
1,900 elements in the volume air gap (varying depending on
the air gap size). We will mesh the face air gap region with

Fig. 5: Flux through coil.

Fig. 6: Relative difference for different air gap thickness.

126 elements. Results for three different air gap thicknesses
of 20µm, 30µm and 50µm are given in Fig. 5 and 6.

In Fig. 5 and 6 VIM volume refers to the model considering
the air gap as a volume region, VIM face RL the model when
the air gap is a face region with the contribution of R matrix
and L matrix and VIM face R for a face air gap model only
with the contribution of R. The relative difference (A,B) at
each point is the value obtained in A case minus the value
obtained in B case over the value obtained in B case.

Figure 6 shows that the relative difference between the air
gap as a volume region and the air gap as a face region using
the contribution of matrices R and L is very low, inferior
to 0.2% and it is stable for the three air gaps tested. The
difference between the air gap as a volume region and the
air gap as a face region using only the contribution of matrix
R remains inferior to 2% for the three air gaps tested, but it
increases as the air gap thickness enlarges.

The conclusion for this application is that adding the contri-
bution to both matrices R and L provides more accurate and
more stable results.

B. Industrial case

The second validation case is a current transformer com-
posed of two coils and a ferromagnetic region with a non
linear material that follows an isotropic analytic saturation of
arc tangent type with two coefficients, µr =100 and saturation
magnetization = 1.2T as Fig. 7 shows.

The air gap is produced when welding the magnetic part,
which is opened in order to introduce the coil inside the device,
thus producing and air gap on a face region of the current
transformer.



Fig. 7: Geometry of magnetic region (light blue), primary
coil (dark blue) and secondary coil (yellow).

The primary coil has 1 turn and an imposed current of 10A,
the secondary coil has 980 turns and no current imposed. In
order to validate the face region air gap method, we follow
the same method as the academic case, comparing the flux
through the secondary coil for a model of a volume air gap
with a converged mesh (reference) and the face air gap model.
The converged mesh has 39,165 tetrahedral elements in the
magnetic region and around 500 elements in the volume air
gap. The face air gap region has 160 elements. Results for
three different air gap thicknesses of 20µm, 30µm and 50µm
are given in Fig. 8 and Fig. 9.

Fig. 8: Flux through secondary coil.

Fig. 9: Relative difference for different air gap thickness.

Figure 9 shows that the face and volume models provide
closer results for thin air gaps, increasing the difference when
the air gap is thicker . It is also exhibited that the contribution
of both matrices R and L presents lower relative difference to

the volume model than considering the contribution of matrix
R only.

In terms of computation time of the problem, the face air
gap model is less time consuming than the volume air gap
model, taking around 180 seconds to solve the face air gap
model (R and L contributions) and roughly 330 seconds for
the volume one. The time difference might be due to the
higher number of mesh elements in the volume air gap region
compared to the number of elements of the face air gap region.

This application provides a second validation of the VIM
face air gap model.

V. CONCLUSION

A model of thin air gaps using the VIM is proposed. It
considers the air gap as a face region with a given thickness,
avoiding the integration difficulties that produces not meshing
the air gap or meshing it as a volume region. It is made for a
B-facet volume integral formulation for linear and non linear
magnetostatic problems [4].

It adds new terms on matrices R and L of the system
that defines the problem, showing that for thin air gaps the
contribution on matrix R can be enough, but for thicker air
gaps both contributions are needed.

An application to an academic case and an industrial case
are shown for different air gap thicknesses, keeping the accu-
racy of the model more thoroughly when the air gap is thinner.
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