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ON THE COMPUTATION OF MODULAR FORMS ON
NONCONGRUENCE SUBGROUPS

DAVID BERGHAUS, HARTMUT MONIEN, AND DANYLO RADCHENKO

Abstract. We present two approaches that can be used to compute modular forms on
noncongruence subgroups. The first approach uses Hejhal’s method for which we improve
the arbitrary precision solving techniques so that the algorithm becomes about up to two
orders of magnitude faster in practical computations. This allows us to obtain high precision
numerical estimates of the Fourier coefficients from which the algebraic expressions can
be identified using the LLL algorithm. The second approach is restricted to genus zero
subgroups and uses efficient methods to compute the Belyi map from which the modular
forms can be constructed.

1. Introduction

Congruence subgroups of the modular group play a significant role in number theory
and have been studied extensively. On the the other hand noncongruence subgroups and
their modular forms are still poorly understood although some progress has been achieved
recently by Chen [12] providing a moduli interpretation of noncongruence modular curves
and Calegari, Dimitrov and Tang proving the unbounded denominator conjecture [10].

Still the efficient computation of modular forms on noncongruence subgroups of the modu-
lar group remains an open problem due to the lack of non-trivial Hecke operators [5,31]. The
computations of the coefficients of the Fourier expansions of noncongruence modular forms
have therefore so far typically been limited to special types of subgroups such as noncon-
gruence character groups [29] and examples of low number field degree and index [2,17,27].
Recent advances have been made by the second author who computed the Hauptmodul for
a few genus zero subgroups of large index [34,35].

The aim of this paper is to present effective numerical methods in order to obtain more
data on modular forms of noncongruence subgroups in a systematic way. The outline of the
paper is as follows: Section 2 provides the necessary mathematical background and notation,
Section 3 describes a numerical method to compute Fourier coefficients of modular forms
for general subgroups that is due to Hejhal [22] and uses modular transformations to obtain
a linear system of equations that can be solved to obtain approximations of the Fourier
coefficients of modular forms of arbitrary weight. While Hejhal’s method is very versatile, its
limitation in practical computations has been that the linear solving involved becomes very
slow when applied to high precision. To overcome this difficulty, we demonstrate in Section
4 that mixed-precision iterative solving techniques can be used to significantly improve the
performance of Hejhal’s method, making the computation of examples that have previously
been out of reach feasible. Finally, in Section 5 we present an alternative approach that is
restricted to genus zero subgroups. For this approach we make use of efficient methods to
compute genus zero Belyi maps and demonstrate how Fourier expansions of modular forms
can be obtained from these.

2. Background and notation

Let SL(2,Z) denote the group of all integer 2×2 matrices with determinant 1. An element

(2.1) γ =

(
a b
c d

)
∈ SL(2,Z) ,

1
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acts on the upper half plane H := {τ ∈ C | Im(τ) > 0} in a standard way via Möbius
transformations

(2.2) γ(τ) :=
aτ + b

cτ + d
.

Note that

(2.3) Im(γ(τ)) =
Im(τ)

|cτ + d|2
> 0 ,

which means that the elements γ(τ) are also on the upper half plane. It is also immediate
to see that γ and −γ act in the same way. For this reason, it is often more natural to work
with the projective group

(2.4) PSL(2,Z) ≃ SL(2,Z)/{±1} .
In the following, we denote PSL(2,Z) by Γ and refer to it as the modular group.

Definition 2.1 (Modular Form). Let f(τ) be a holomorphic function from H to C. Let
G ⩽ Γ be a finite index subgroup of Γ. Then we say that f(τ) is a modular form on G if it
satisfies the functional equation

(2.5) f(γ(τ)) = (cτ + d)kf(τ) ,

for all γ in G.

The number k ∈ 2N is called the weight of f and (cτ + d)k is the so-called automorphy
factor. (More general definitions of modular forms including odd weights and multiplier
system exist but we will not consider them in this work.) Furthermore, we say that a
modular form f is [13]:

(1) weakly holomorphic if f is holomorphic in H but might have poles at the boundary
∂H := Q ∪ {i∞}.

(2) holomorphic if f is holomorphic in H := H ∪ ∂H.
(3) a cusp form if f vanishes at ∂H.

In what follows, when we say modular form we will usually mean holomorphic modular
form. Additionally, weakly holomorphic modular forms of weight zero are often called
modular functions. It is convenient to introduce the slash operator

(2.6) (f |kγ)(τ) := (cτ + d)−kf(γ(τ)) ,

which defines a right action of Γ on the space of complex-valued functions, i.e.,

(2.7) f |kγ1|kγ2 = f |kγ1γ2 .

2.1. Fundamental domains. We define a fundamental domain of a group G ⩽ Γ as fol-
lows:

Definition 2.2 (Fundamental Domain [13, Definition 4.3.1]). A closed set F(G) ⊂ H is
said to be a fundamental domain if

(1) For any point τ ∈ H there is a γ ∈ G such that γ(τ) ∈ F(G).
(2) If for any points τ and τ ′ := γ(τ) we have τ ̸= τ ′ then τ, τ ′ ∈ ∂F(G).

Note that Γ can be generated by the elements

(2.8) S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
.

The matrix S therefore corresponds to the action τ → −1/τ which can be viewed as an
inversion while T corresponds to the action τ → τ + 1, a translation. Moreover, we have
the relations

(2.9) S2 = 1 and (ST )3 = 1 .



ON THE COMPUTATION OF MODULAR FORMS ON NONCONGRUENCE SUBGROUPS 3

A fundamental domain for the modular group is given by the set

(2.10) F(Γ) = {τ ∈ H , |τ | ≥ 1 and |Re(τ)| ≤ 1/2} ∪ {i∞} .
The fundamental domain F(Γ) has three points that play a special role:

(1) i∞: a cusp;
(2) i: an elliptic point of order 2 which has a non-trivial stabilizer S with S2 = 1;
(3) ρ = exp(2πi/3): an elliptic point of order 3 which has a non-trivial stabilizer ST

with (ST )3 = 1 (alternatively we could also choose the point −ρ̄ = exp(πi/3)).

Moreover, since γ(i∞) = a/c, we can see that the cusps are located at P1(Q) = {i∞} ∪ Q.
For a finite index subgroup G ⩽ Γ of index µ, a fundamental domain for G \ H is given by

(2.11) F(G) = ∪µ
i=1γiF(Γ) ,

where γi are right coset representatives of G \ Γ. The suitably defined quotient G \ H (see,
e.g., [13, Theorem 4.4.3]) is a Riemann surface whose genus can be computed using the
formula [13, Proposition 5.6.17]

(2.12) g = 1 +
µ

12
− n(e2)

4
− n(e3)

3
− n(c)

2
,

where n(e2), n(e3) denote the amount of inequivalent elliptic points of order two and three,
respectively, and n(c) denotes the amount of cusp representatives.

Definition 2.3 (Signature). We define the signature ofG ⩽ Γ to be the tuple (µ, g, n(c), n(e2), n(e3)).
Note that a signature does not uniquely specify G!

We call the maps Aj ∈ PSL(2,Z) that map i∞ to the cusp pj on the real line

(2.13) Aj(i∞) = pj ,

and satisfy

(2.14) A−1
j Sj = TN ,

the cusp normalizers, where Sj is the generator of the stabilizer of pj (we use the notation
of Strömberg [48], some authors use the reversed notation) and N denotes the cusp width
at infinity.

2.2. Subgroups of the modular group. Let N be a positive integer. Then we call

(2.15) Γ(N) :=

{(
a b
c d

)
≡
(
1 0
0 1

)
(mod N) and

(
a b
c d

)
∈ Γ

}
,

the principal congruence subgroup of level N. The index of Γ(N) is given by [13, Corollary
6.2.13]

(2.16) [Γ : Γ(N)] =
1

2
N3
∏
p|N

(
1− 1

p2

)
.

Definition 2.4 (Congruence Subgroup). A subgroup G ⩽ Γ is a congruence subgroup of
level N iff it contains Γ(N) for some N ∈ Z+ (i.e., if Γ(N) ⩽ G for some N).

Important examples of congruence subgroups are

(2.17) Γ0(N) :=

{(
a b
c d

)
≡
(
∗ ∗
0 ∗

)
(mod N) and

(
a b
c d

)
∈ Γ

}
,

and

(2.18) Γ1(N) :=

{(
a b
c d

)
≡
(
1 ∗
0 1

)
(mod N) and

(
a b
c d

)
∈ Γ

}
,
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which satisfy

(2.19) Γ(N) ⩽ Γ1(N) ⩽ Γ0(N) ⩽ Γ .

Subgroups that are not congruence are called noncongruence subgroups. It has been proven
by Stothers [45] that noncongruence subgroups are much more numerous than congruence
subgroups (in the sense that the proportion of the latter among all subgroups of index n
goes to 0 as n → ∞). An algorithm to test if a given group G is congruence or not has been
given by Hsu [23].

A useful tool for studying subgroups G ⩽ Γ is the interpretation of the action of G on the
cosets of G \ Γ as an action of the symmetric group Sµ. This theory has been developed by
Millington [33] and its usefulness when performing computations with subgroups of Γ has
first been demonstrated by Atkin and Swinnerton-Dyer [2].

Definition 2.5 (Legitimate Pair, [33]). A pair (σS, σR) with σS, σR ∈ Sµ is called legitimate
if σ2

S = σ3
R = 1 and if the group Σ that is generated by σS and σR is transitive.

Definition 2.6 (Equivalence Modulo 1, [33]). Two legitimate pairs (σS, σR) and (σ′
S, σ

′
R)

are said to be equivalent (modulo 1) if there exists a σ ∈ Sµ such that (σ−1σ′
Sσ, σ

−1σ′
Rσ) =

(σS, σR) and σ(1) = 1 (i.e., that σ fixes 1).

Theorem 2.7 (Millington). There is a one-to-one correspondence between subgroups G of
index µ in Γ and equivalence classes modulo 1 of legitimate pairs (σS, σR). Moreover, n(e2)
and n(e3) are given by the number of fixed elements of σS and σR, respectively, and n(c) is
the number of elements that are fixed by σT = σSσR. Additionally, the cycle structure of σT

reflects the cusp widths of G.

Proof. See [33, Theorem 2] □

The action of Γ on the cosets of G gives rise to a map

(2.20) ϕ : Γ → Sµ ,

which satifies ϕ(x ·y) = ϕ(x) ·ϕ(y) and is hence a homomorphism. Note that the set of coset
representatives γi, i = 1, ..., µ of G satisfies ϕ(γi)(1) = i (see [48] for more details).
Millington’s theorem also provides a method to list all subgroups of a given index by

filtering legitimate pairs into equivalence classes modulo 1. This algorithm has been applied
by Strömberg [48] to calculate representatives of all subgroups in Γ with µ ≤ 17 up to
relabelling (or in other words, conjugation in Γ). Strömberg has released this data in [47].

Example 2.8 (Γ0(5)). Consider the group Γ0(5) (defined as in Eq. (2.17)) with signature
(6, 0, 2, 2, 0). As a legitimate pair for Γ0(5) one can choose σS = (1)(2)(3 4)(5 6) and σR =
(1 2 3)(4 5 6). Following from this, we get that σT = σSσR = (1 2 3 5 4)(6). A set of right
coset representatives can be chosen to be

(2.21)

{(
1 0
0 1

)
,

(
1 1
0 1

)
,

(
1 2
0 1

)
,

(
1 −1
0 1

)
,

(
1 −2
0 1

)
,

(
−2 −1
1 0

)}
,

which can be expressed as words in S and T as follows

(2.22)
{
1, T, T 2, T−1, T−2, T−2S

}
.

A fundamental domain and the corresponding coset labels can therefore be chosen as in
Fig. 1. We can see that this group has two cusps: One of width 5 at i∞ and one of width 1
at −2. Additionally, we can tell from the signature and by looking at σR that Γ0(5) has no
elliptic points of order three. The two elliptic points of order two are located at γ1(i) and
γ2(i) where γj corresponds to the coset representative of label j because 1 and 2 are fixed
by σS.
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Figure 1. A fundamental domain for Γ0(5) corresponding to the legitimate
pair σS = (1)(2)(3 4)(5 6) and σR = (1 2 3)(4 5 6).

2.3. Fourier expansions of modular forms. We have seen in the previous sections that
modular forms are functions on the upper half plane that satisfy certain functional equations.
Additionally we have seen that the cusp widths are always finite and that the modular forms
are periodic with respect to these cusp widths. Modular forms can therefore be expanded
as Fourier series in variable

(2.23) qN := exp(2πiτ/N) = exp(2πi(x+ iy)/N) = exp(2πix/N) exp(−2πy/N) ,

where N denotes the cusp width and τ = x+ iy ∈ H (we will also often use the convention
q := q1). It is important to note that qN decays exponentially as y → ∞. If f is a modular
form and the cusp width at i∞ is given by N , then we can write

(2.24) f(τ) =
∞∑

n=−∞

anq
n
N ,

with ai ∈ C. For congruence subgroups, it is known that there exist bases of modular
forms whose Fourier coefficients are defined over Q or cyclotomic fields. For noncongruence
subgroups the Fourier coefficients are defined over Q̄ and are of the form (see for example
Atkin-Swinnerton-Dyer [2])

(2.25) an = umbn ,

where bn and uN are defined over a number field K which is generated over Q by an algebraic
number v (i.e., K = Q(v)).

Definition 2.9 (Valuation of a modular form). We define the valuation of a modular form
to be the index of the first non-zero Fourier coefficient.

Remark 2.10. By using the valuation of a modular form, many properties immediately follow
from its qN expansion. For example, a modular form can only be holomorphic if its Fourier
expansion starts at n ≥ 0 because negative values of n would lead to poles at i∞ due to
the decay of qN . Following the same argument, cusp forms need to have Fourier expansions
that start with n > 0.

2.4. Spaces of modular forms. We denote the space of holomorphic modular forms of
(even) weight k on G by Mk(G) and similarly define Sk(G) to be the space of cusp forms.
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The dimensions of these spaces can be computed from their signature [13, Theorem 5.6.18]

dim(Mk(G)) = (k − 1)(g − 1) +

⌊
k

4

⌋
n(e2) +

⌊
k

3

⌋
n(e3) +

⌊
k

2

⌋
n(c) ,(2.26)

dim(Sk(G)) = dim(Mk(G))− n(c) + δk,2 .(2.27)

2.5. Hauptmoduls. Subgroups G ⩽ Γ of genus zero have a special type of modular func-
tion called the Hauptmodul (which we denote by jG).

Definition 2.11 (Hauptmodul). Let G be a subgroup of genus zero. Then a Hauptmodul
is any isomorphism

(2.28) jG : G\H → P 1(C) .

Because the modular group Γ has genus zero, it has a Hauptmodul which is referred to
as Klein invariant or modular j-invariant. Its Fourier expansion is given by

(2.29) j(τ) =
E3

4

∆(τ)
= q−1 + 744 + 196884q + 21493760q2 + 864299970q3 + ... .

and its values at the elliptic points are

(2.30) j(i) = 1728 and j(ρ) = 0 .

Because j has negative valuation, one can also see that is has a pole of order 1 at infinity.
We remark that the Hauptmodul can be chosen uniquely up to a constant term. The choice
of 744 for the constant term has historical reasons. For groups G ̸= Γ we will instead set
the constant term to zero and use the normalization

(2.31) jG(τ) = q−1
N + 0 +

∑
n=1

anq
n
N ,

which specifies jG uniquely [2].

Theorem 2.12. Let f be a meromorphic function on H. The following statements are
equivalent:

(1) f is a modular function for Γ of weight 0.
(2) f is a quotient of two modular forms for Γ of equal weight.
(3) f is a rational function of j.

Proof. See [13, Theorem 5.7.3] □

Theorem 2.13. Every modular function on G that is holomorphic outside i∞ can be written
as a polynomial P (jG(τ)).

Proof. See Cox [15, Lemma 11.10 (ii)] for the case of G = Γ (the proof for general G is
analogous). □

3. Hejhal’s method

A general method to compute numerical approximations of the coefficients of modular
forms in an expansion basis has been given by Hejhal [22] (based on an idea of Stark) who
has developed this method to compute Maass cusp forms on Hecke triangle groups. The
basic idea of Hejhal’s method is to expand a modular form (for example in a q-expansion
basis) and to afterwards impose the modular transformation property of the expansion on
a finite set of points. This creates a linear system of equations that can be solved to
obtain numerical approximations of the expansion coefficients. Due to the generality of this
method (in principle the only requirements are a converging expansion basis for the modular
form and a automorphy condition) it has since then been adapted by many authors. For
example, Selander and Strömbergsson [40] generalized the method for fundamental domains
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with multiple cusps to compute some examples of genus 2 coverings and Strömberg used
this method to compute Maass cusp forms for Γ0(N) and non-trivial multiplier systems [46]
as well as Maass cusp forms for noncongruence subgroups [48]. Applications of Hejhal’s
method using arbitrary precision arithmetic have been performed by Booker, Strömbergsson
and Venkatesh [6] who computed the first ten Maass cusp forms of Γ to 1000 digits precision,
Bruinier and Strömberg [9] who computed harmonic weak Maass cusp forms and Voight and
Willis [50] (see also the improved method in KMSV [28]) who computed Taylor expansions
of modular forms.

3.1. The case G = Γ. To illustrate Hejhal’s method [22] we first consider the simplest case
G = Γ for which the fundamental domain only has a single cusp and whose fundamental
domain is given by Eq. (2.10). The point inside F(Γ) with the smallest height (i.e., the
smallest imaginary value) is given by ρ whose height is Y0 =

√
3/2. Now we choose a set

of 2Q points τm that are equally spaced between −1/2 and 1/2 along a horizontal line with
height Y < Y0

(3.1) τm = xm + iY =
1

2Q

(
m−Q+

1

2

)
+ iY, 0 ≤ m ≤ 2Q− 1, Y < Y0 .

Remark 3.1. We will always choose Y = 0.8 · Y0 throughout this paper.

We also refer to the points τm on this horizontal line as a horocycle. Note that because
these points are located below F(Γ), they are all outside F(Γ). Now for each point τm there
exists a map γm ∈ Γ such that

(3.2) τ ∗m = γm(τm) ∈ F(Γ), γm =

(
am bm
cm dm

)
∈ Γ.

We call the maps γm the pullback to the fundamental domain. In the case of the modular
group, finding such a pullback map is straightforward, we simply need to form words in the
generators S → −1/τ and T → τ +1 depending on if |τ | < 1, Re(τ) < −1/2 or Re(τ) > 1/2
and form the matrix products. Afterwards, we expand the modular form in a suitable basis
(which is, in our case, given by powers of q) up to a finite order M0 := M(Y0) so that our
expansion converges inside F(Γ) up to the machine epsilon ϵmachine. The value of M0 can
be guessed in advance by using the asymptotic growth conditions of the coefficients (the
coefficients of cusp forms have asymptotic growth O(nk/2) and for holomorphic modular
forms the coefficients grow like O(nk) [41]). Although such a choice of M0 works well in
practice, it is non-rigorous and there is therefore no guarantee at this point that the result
will be correct. This is one of the reasons why it is difficult to make Hejhal’s method
rigorous. In order to be a modular form, the expansion now needs to (at least numerically)
match the automorphy condition

(3.3) f(τm) ≈
M0∑
n=0

anq(τm)
n !
= (cm · τm + dm)

−kf(τ ∗m) ≈ (cm · τm + dm)
−k

M0∑
n=0

anq(τ
∗
m)

n ,

where q(τ) = exp(2πiτ) (we illustrate this method here for the example of holomorphic
modular forms, but it can obviously be applied analogously for cusp forms or Hauptmoduls).
For numerical reasons it is preferable to work with

(3.4) F (τ) = yk/2f(τ) ,

where y = Im(τ). The function F transforms like

(3.5) F (τm) =
|cm · τm + dm|k

(cm · τm + dm)k
F (τ ∗m) ,

and its automorphy factor hence does not change the order of magnitude. Eq. (3.3) creates a
linear system of equations that can in principle be solved to obtain numerical approximations
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of the expansion coefficients (see for example [2,21]). From a numerical analysis perspective,
the resulting linear system of equations however typically becomes ill-conditioned. A more
numerically stable approach has been given by Hejhal in [22] and uses the Fourier integral
formula

(3.6) anY
k
2 exp(−2πnY ) =

∫ 1
2

− 1
2

F (τ) exp(−2πinx)dx ,

where Y denotes the height of the horocycle. Discretizing this integral to approximate it
numerically gives

(3.7) anY
k
2 exp(−2πnY ) ≈ 1

2Q

2Q−1∑
m=0

F (τm) exp(−2πinxm) ,

where Q > M(Y ) and τm are again given by Eq. (3.1). Hejhal then incorporates the
automorphy condition by replacing F (τm) with the corresponding pullback

anY
k
2 exp(−2πnY ) ≈ 1

2Q

2Q−1∑
m=0

(
|cmτm + dm|
(cmτm + dm)

)k

F (τ ∗m) exp(−2πinxm) ,(3.8)

=

M0∑
l=0

al
1

2Q

2Q−1∑
m=0

(
|cmτm + dm|
(cmτm + dm)

)k

(y∗m)
k
2 exp(2πi(lτ ∗m − nxm)) ,(3.9)

:=

M0∑
l=0

alVn,l ,(3.10)

where

(3.11) Vn,l :=
1

2Q

2Q−1∑
m=0

(
|cmτm + dm|
(cmτm + dm)

)k

(y∗m)
k
2 exp(2πi(lτ ∗m − nxm)) .

Therefore

(3.12) 0 =

M0∑
l=0

alṼn,l ,

with

(3.13) Ṽn,l := Vn,l − δn,lY
k
2 exp(−2πnY ) .

The resulting linear system of equations can be solved numerically for example by imposing
a reduced row echelon normalization and dropping the first row of Ṽn,l. For example for a
one-dimensional space of modular forms we can set a0 = 1 which amounts to solving

(3.14)

 Ṽ1,1 . . . Ṽ1,M0

...
. . .

...

ṼM0,1 . . . ṼM0,M0

 ·

 a1
...

aM0

 =

 −Ṽ1,0
...

−ṼM0,0

 .

The advantage of this method is that the largest entries of each column are now located on
the diagonal. This can be seen in Eq. (3.13): Vn,l depends on the pullbacked points which
have a larger imaginary value (and hence smaller q-values) than the horocycle points located
at height Y . For this reason

(3.15) |Y
k
2 exp(−2πnY )| > |Vn,l| ,

and the largest entries of each column are hence located on the diagonal. This means
that the linear system of equations that results from this improved method is significantly
better conditioned. The precision of the coefficients depends on the diagonal term in Eq.
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(3.13). We can therefore expect the l-th coefficient (where 1 ≤ l ≤ M0) to be correct to

approximately D − log+10

∣∣∣ 1
Y k/2 exp(−2πlY )

∣∣∣ digits precision (this is analogous to Maass cusp

forms, see [6]). The precision loss of higher order coefficients can hence be controlled by
choosing a smaller value of Y (and following from this a larger value of Q).
Once the coefficients al, l = 0, ...,M0 have been computed to reasonable accuracy, ap-

proximations of higher coefficients with l′ > M0 can be obtained from these without solving
any additional linear systems by using (see [22])

(3.16) al′ =

∑M0

l=0 alVn,l

Y
k
2 exp(−2πl′Y )

,

where Y is reduced for larger l′.

Remark 3.2. To check the precision of the coefficients computed with Hejhal’s method heuris-
tically one can repeat the computation with an independent choice of Y . This is especially
crucial for Maass cusp forms because it is not a priori clear if the computed solution corre-
sponds to a true eigenvalue.

3.2. The general case. The general case, including groups that have multiple cusps, has
been worked out by Selander and Strömbergsson [40] (see also Strömberg [46, 48]) and
follows the same ideas but the resulting expressions are more tedious and the pullback maps
more difficult to obtain. If G has multiple cusps then we need to incorporate the Fourier
expansions at all cusps in order to obtain convergence in F(G). Let j = 1, ..., n(c) label the
cusps of G ⩽ Γ.

Definition 3.3. (Width absorbing cusp normalizer) Let Aj denote the cusp normalizer of
cusp j as defined in Eq. (2.13). Let wj denote the width of cusp j. We define the width
absorbing cusp normalizer of cusp j to be the map Nj ∈ PSL(2,R) such that

(3.17) Nj(τ) = Aj(wj · τ) ,
and therefore

(3.18) Nj = Aj · ρj = Aj ·
(√

wj 0
0 1/

√
wj

)
.

By using width absorbing cusp normalizers, the expansion at the j-th cusp is given by

(3.19) (f |kNj)(τ) =
∞∑
n=0

a(j)qn ,

and can hence always be expanded in q = q1 which is useful and simplifies the expressions.

Definition 3.4 (Minimal height of F(G)). We define the minimal height of F(G) to be the
quantity

(3.20) Y0 :=

√
3

2Nmax

,

where Nmax is the largest cusp width of G.

To compute the pullback of τ /∈ F(G) into F(G) we make use of Millington’s theorem
(see Theorem 2.7). The procedure can be described as follows:

(1) Compute the pullback of τ into F(Γ) which creates a word in S, T , T−1.
(2) Insert the corresponding word in S, T , T−1 into the PSL(2,Z) and Sµ representations

to obtain a map γτ ∈ Γ and its permutation στ := ϕ(γτ ) ∈ Sµ.
(3) Let σi := ϕ(γi) ∈ Sµ denote the permutation representations of the coset repre-

sentatives. Then the pullback goes into the (unique) coset of label j for which
στ (σj(1)) = 1.



10 D. BERGHAUS, H. MONIEN, AND D. RADCHENKO

(4) The pullback into F(G) is hence given by γw = γj · γτ ∈ Γ.

Once the pullback w = γw(τ) into F(G) has been found, we need to identify the cusp that
is the closest to the pullbacked point (in the sense that its Fourier expansion converges the
fastest). This gives rise to a function (following [40,46,48])

(3.21) I : H → {1, ..., n(c)} ,

which returns the cusp label k for which the Fourier expansion at the point w converges the
fastest. The complete pullback is therefore given by

(3.22) τ ∗ =
(
N−1

I(w) · γw
)
(τ) .

These pullback routines have been contributed by Strömberg to Psage [43] and have been
used in this project as well.

Hejhal’s method for multiple cusps can be summarized as follows: For each cusp j, we
choose a fixed amount of equally spaced points along a horocycle and compute their pullbacks
into F(G). Afterwards we match the expansion with the cusp whose Fourier expansion on
the pullbacked point converges the fastest. This gives

(3.23) τ ∗m,j =
(
N−1

I(m,j) · γw · Nj

)
(τm) =

(
am,j bm,j

cm,j dm,j

)
(τm) ,

where I(m, j) := I(w). In analogy to Section 3.1 we therefore get

a(j)n Y
k
2 exp(−2πnY ) ≈ 1

2Q

2Q−1∑
m=0

(F |kNj)(τm) exp(−2πinxm) ,

(3.24)

=
1

2Q

2Q−1∑
m=0

(
|cm,jτm + dm,j|
(cm,jτm + dm,j)

)k

(F |kNI(m,j))(τ
∗
m,j) exp(−2πinxm) ,(3.25)

=

M0∑
l=0

a
(I(m,j))
l

1

2Q

2Q−1∑
m=0

(
|cm,jτm + dm,j|
(cm,jτm + dm,j)

)k

(y∗m,j)
k
2 exp(2πi(lτ ∗m,j − nxm)) .(3.26)

For the analogue of Eq. (3.11) we hence get

(3.27) a(j)n Y
k
2 exp(−2πnY ) =

κ∑
j′=1

M0∑
l=0

a
(j′)
l V

(j,j′)
n,l ,

with

(3.28) V
(j,j′)
n,l =

1

2Q

∑
I(m,j)=j′

(
|cm,jzm + dm,j|
(cm,jzm + dm,j)

)k

(y∗m,j)
k
2 exp(2πi(lz∗m,j − nxm)) ,

where
∑

I(m,j)=j′ denotes the sum over all 0 ≤ m ≤ 2Q − 1 for which I(m, j) = j′. We
therefore get

(3.29)

n(c)∑
j′=1

M0∑
l=0

a(j
′)Ṽ

(j,j′)
n,l = 0 ,

where

(3.30) Ṽ
(j,j′)
n,l = V

(j,j′)
n,l − δj,j′δn,lY

k
2 exp(−2πnY ) ,

which we can again solve by imposing a normalization on the expansion at the cusp at
infinity.
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3.3. A block-factored formulation of Hejhal’s method. The matrix V , whose entries
are given by Eq. (3.11), can be written as the matrix product of two matrices (see for
example Voight and Willis [50] who used an analogous factorization for a similar problem)

(3.31) V = J ·W ,

with

(3.32) Jn,m =
1

2Q

(
|cmzm + dm|
(cmzm + dm)

)k

exp(−2πinxm) ,

and

(3.33) Wm,l = (y∗m)
k
2 exp(2πilz∗m) .

Analogously, we can write Ṽn,l whose entries are given by Eq. (3.13) as

(3.34) Ṽ = J ·W −D ,

where D is a diagonal matrix whose entries consist of Y
k
2 exp(−2πnY ). For subgroups with

more than one cusp, V can be factored into a block-factored form. For example for two
cusps, we would get a matrix of the form

(3.35) Ṽ =

(
J (1,1) ·W (1,1) J (1,2) ·W (1,2)

J (2,1) ·W (2,1) J (2,2) ·W (2,2)

)
−
(
D(1) 0
0 D(2)

)
.

The same approach works analogously for more than two cusps. The factorization of the
involved matrices not only simplifies the expressions but can also significantly improve the
performance as we will discuss in the next section.

4. Numerical computation of modular forms

We now discuss how Hejhal’s method can be applied to compute numerical approximations
of Fourier coefficients of modular forms on noncongruence subgroups. Because the matrices
J and W can be efficiently constructed (for example by computing the corresponding powers
through recursive multiplications), the computational bottleneck of Hejhal’s method when
working with a q-expansion basis is given by the linear algebra involved in the construction
of V and the linear solving. For this reason we survey different approaches for this task
and present a new iterative mixed-precision approach that speeds up the linear solving
significantly.

Remark 4.1 (Implementational details). The algorithms discussed in this section have been
implemented as a Sage [44] program. To compute the pullbacks we made use of the routines
available in Psage [43]. For the LLL algorithm we used the implementation of Pari [19].
We also used NumPy [20] and SciPy [49] for double-precision computations. The arbitrary
precision arithmetic has been performed using Arb [25] which is particularly useful in our
application because of its highly optimized linear algebra routines [26].

We plan to make our implementations publicly accessible in the future by contributing
them to the Psage library.

4.1. The classical approach. Hejhal [22] and the majority of previous works constructed
the matrix Ṽ explicitly by performing O(N3) matrix multiplications between J and W and
afterwards used a O(N3) direct solving technique to solve the resulting linear system of
equations. It is out of the question to compute larger examples using arbitrary precision
arithmetic with this approach.
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4.2. The non-preconditioned Krylov approach. To overcome the O(N3) construction
of the matrix Ṽ , Klug-Musty-Schiavone-Voight [28] used a Krylov solving technique which
only requires the computation of matrix-vector-products, which means that Ṽ can be left
in a block-factored form (we remark that Krylov solving techniques are also applied in the
numerical method of [34,35]). The convergence rate of this iterative solving technique can be
improved by scaling each column of Ṽ by the diagonal term which clusters the eigenvalues
closer together. This gives (recall that right-multiplying a matrix by a diagonal matrix
corresponds to scaling its columns by the diagonal entries)

Ṽsc : = Ṽ ·
(
D(1) 0
0 D(2)

)−1

,(4.1)

=

((
J (1,1) ·W (1,1) J (1,2) ·W (1,2)

J (2,1) ·W (2,1) J (2,2) ·W (2,2)

)
−
(
D(1) 0
0 D(2)

))
·
(
D(1) 0
0 D(2)

)−1

,(4.2)

=

(
J (1,1) ·W (1,1) J (1,2) ·W (1,2)

J (2,1) ·W (2,1) J (2,2) ·W (2,2)

)
·
(
D(1) 0
0 D(2)

)−1

−
(
1 0
0 1

)
.(4.3)

The linear system therefore becomes

(4.4) Ṽ ·D−1︸ ︷︷ ︸
=Ṽsc

·D · c︸ ︷︷ ︸
:=c′

= b ,

which we can solve for c′ to compute c = D−1c′.
This approach typically runs faster compared to the classical approach. Its limitation is

however that the iteration count (i.e., the number of iterations until convergence has been
achieved) can become very high for involved problems with large dimensions of Ṽ .

4.3. The mixed precision iterative approach. To reduce the iteration count of an iter-
ative method one typically attempts to find a preconditioner matrix M to instead solve the
linear system of equations

(4.5) M · Ṽsc · c′ = M · b ,

with improved convergence rate. However obtaining such a preconditioner appears non-
trivial for our application because Ṽsc is non-hermitian, non-symmetric and dense. In fact,
we do not even know Ṽ explicitly and, as discussed before, constructing it is a O(N3)
operation so we would be in the same order of magnitude as just applying a direct method
to compute the solution. The key observation to resolve this dilemma is that Ṽsc can be
safely inverted at a low precision. This can be seen from Eq. (4.3): The entries of the block
matrices W decay and become effectively zero from a low precision perspective. Because
J does not change the order of magnitudes, J · W also has decaying columns. However,
by subtracting the unit diagonal matrix we ensure that each column has at least one entry
that is non-zero. This means that if the Fourier expansion order M0 is taken to be very
large, we asymptotically approach the unit matrix which is (and remains) well-conditioned
for inversion. We can therefore set the preconditioner M to a low-precision inverse (or
something similar) of Ṽsc.

Such an approach uses mixed-precision arithmetic which is a relatively recent concept
that arose in HPC (high performance computing). For an overview of different methods and
applications utilizing mixed-precision arithmetic we refer to [1]. The basic concept of mixed-
precision arithmetic is to perform computationally expensive parts of an algorithm in faster
low-precision arithmetic without sacrificing precision of the end result. In the context of
iterative solvers, it has been shown and analyzed that low-precision inverses (of potentially
even highly ill-conditioned matrices) can serve as good preconditioners for iterative methods
[11,37,38]. (In general, inverses are good preconditioners because one approximates the unit
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matrix which has the maximal clustered eigenvalue spectrum. If one knows the inverse to
full precision then the problem can obviously be solved in one iteration but obtaining such
an inverse is more expensive and numerically unstable than solving the problem directly.)
So far, applications of mixed-precision arithmetic have typically replaced double (64-bit)
arithmetic with 32-/16-bit arithmetic which has faster memory bandwidth and vectorization
potential and is supported by specialized hardware such as GPUs and Tensor Cores. The
difference in performance when switching between hardware supported types such as double-
precision and arbitrary precision arithmetic is even bigger: we find that reproducing a
computation performed at double-precision with the same precision using arbitrary precision
arithmetic takes about three orders of magnitude longer. Our approach is therefore to
construct Ṽ explicitly in 64-bit double-arithmetic and to compute an approximate inverse
using a direct method. Because these operations are performed in double-arithmetic their
contribution to CPU-time can be neglected in our examples.

4.3.1. Preconditioned GMRES. As an example of an iterative Krylov subspace solver we
implemented GMRES [39]. To precondition GMRES with a low precision inverse, we first
construct Ṽsc in double-precision (which we will denote by Ṽsc,double) and compute its LU-
decomposition

(4.6) L̄ · Ū = Ṽsc,double ,

where L̄ and Ū denote the L and U factors up to double-precision. To compute the action of
the inverse of Ṽsc,double it is beneficial not to form Ṽ −1

sc,double explicitly which is computationally
expensive, ill-conditioned and destroys potential sparseness. A better approach is to use [11]

(4.7) Ṽ −1
sc,doublex = Ū−1L̄−1x .

The actions of L̄−1 and Ū−1 on a vector can be computed using O(N2) triangular solves.
Although the inverse is never explicitly formed, we will for simplicity still refer to this
approach as computing the inverse. The algorithm for preconditioned GMRES is illustrated
in Algorithm 1. The benefit of this algorithm is that GMRES gains at least 16 digits

Algorithm 1 Algorithm for computing Fourier expansion coefficients using GMRES

1: Compute block-factored form of Ṽsc at full precision
2: Construct Ṽsc,double at double-precision

3: Compute L̄ · Ū = Ṽsc,double at double-precision
4: Cast L̄, Ū to full precision

5: Solve
(
L̄ · Ū

)−1
Ṽsc · a′ =

(
L̄ · Ū

)−1
b at full precision using GMRES

6: Return a = D−1 · a′ at full precision

(assuming Ṽsc,double is well-conditioned) during each iteration. The reason for this upper
bound on the iteration count (at least heuristically) comes from the fact that the inverse
is known to 16 digits precision which means that the solution can be refined to 16 digits
precision during each iteration. This convergence rate is not only very fast but it is also
remarkable that the upper bound on the iteration count is (in principle) independent on the
problem and the size of the matrices involved. (We only say in principle because we assume
here that the inverse of the matrix can be computed to 16 digits precision.) An illustration
of the convergence rates for preconditioned and non-preconditioned GMRES can be found
in Fig. 2.

4.3.2. Mixed precision iterative refinement. Because GMRES needs to form a Krylov sub-
space, the action of Ṽsc on a vector needs to be evaluated at the target precision during each
iteration which is (comparatively) expensive. An alternative iterative algorithm which does
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Figure 2. Comparison of precond. and non-precond. GM-
RES for the application of computing f0 ∈ S4(G) where G
is a noncongruence subgroup with signature (16, 0, 4, 0, 1) gen-
erated by σS = (1 10)(2 14)(3 7)(4 12)(5 16)(6 8)(9 15)(11 13) and
σR = (1 11 14)(2 15 10)(3 8 7)(4 13 12)(5)(6 9 16) to 100 digits precision
(taking M0 = 533). The precond. version reduces the iteration count from 40
to 7 iterations.

not create a Krylov subspace is given by iterative refinement. Iterative refinement (IR) is
a relatively old technique that has first been applied by Wilkinson [51] in 1948 and can be
viewed as Newton’s method on the function r(x) = A ·x− b [16]. In our application, the low
precision inverse can be used to iteratively refine the solution vector during each iteration.
Because we do not form a Krylov subspace we can gradually increase the precision during
each iteration and do not need to perform all iterations at full precision. We therefore
not only switch between double-precision and arbitrary precision arithmetic but also select
different bit precisions when using arbitrary precision arithmetic. This approach therefore
makes even more use of mixed precision and is highlighted in Alg. 2.
Working at lower precisions during the iterations offers performance benefits for two rea-

sons: First, arbitrary precision arithmetic has asymptotic complexity w.r.t. the precision p
given by O(p log(p) log(log(p))) [8, Section 2.3] which means that working at a lower preci-
sion improves the performance of the ring operations. Second, because the matrix W has
decaying columns, many terms can be neglected when performing the matrix-vector product
at a low precision.

If the approximate inverse is computed to 16 digits precision then iterative refinement
gains 16 digits precision during each iteration. Contrary to GMRES, the convergence rate
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Algorithm 2 Algorithm for computing Fourier expansion coefficients using mixed-precision
iterative refinement

1: Compute block-factored form of Ṽsc at full precision
2: Construct Ṽsc,double at double-precision

3: Compute L̄ · Ū = Ṽsc,double at double-precision

4: Use L̄ · Ū to solve Ṽsc · a′ = b at 64-bit
5: for i=0:max iter-1 do
6: Compute r = b− Ṽsc · a′ at (i+ 2) · 16 digits precision
7: Use L̄ · Ū to solve Ṽsc · d = r at 64-bit
8: Compute a′ = a′ + d
9: if converged then
10: break
11: end if
12: end for
13: Return a = D−1 · a′ at full precision

can only be linear which means that the iteration count of IR is larger than or equal to the
one of GMRES.

4.3.3. Precond. GMRES vs. mixed precision iterative refinement. As discussed in the pre-
vious sections, GMRES can have a lower iteration count than IR while the iterations of IR
are on average cheaper because they do not have to be performed at the target precision. It
is therefore interesting to examine which of these tradeoffs is beneficial in practice. For the
examples that we have considered we find that IR typically has lower running times because
the superlinear convergence of GMRES often only becomes noticeable during the last itera-
tions (especially for larger index examples). For this reason, we have used mixed-precision
IR as the numerical solver throughout this work.

4.3.4. Optimizing the action of W . The action of W (given by Eq. (3.33)) can be inter-

preted as the evaluation of a polynomial at different points q∗m times factors (y∗m)
k
2 . It is

a well known result that evaluating a polynomial at different points can be achieved in
O(N · ln(N)2) asymptotic complexity (see for example [18]). This asymptotic growth comes
however with a large constant which makes this algorithm slower in practice than the classi-
cal O(N2) algorithms for the problems that are considered in this work (additionally, these
asymptotically fast algorithms are usually quite ill-conditioned).

For the classical O(N2) algorithms, the most common choice would be Horner’s method
which evaluates a polynomial at a single point using N multiplications and N+1 additions as
well as O(1) storage space. However, because the powers of q∗m decay relatively fast, it is in
practice significantly faster to make use of Arb’s optimized dot-product routines [26] which,
among other technical optimizations, evaluate each term at the lowest possible precision
(note that smaller terms can be evaluated at a lower precision than larger terms without
effecting the precision of the result). Additionally, the dot-product routines neglect all terms
that do not affect the result. This is particularly useful because the iterative refinement
algorithm (see Algorithm 2) starts with significantly lower precisions (starting from 32 digits)
than the target precision which means that the polynomials can on average be truncated
to lower order with many terms being neglected. Recall also that M0 is chosen based on
the lowest point inside the fundamental domain, so quite pessimistically, which means that
the polynomials for many τ ∗m converge faster. We note however that the naive approach of
applying the dot-product, which assembles the entries of matrix W and computes its action
by using the dot-product row-wise, is not ideal for two reasons: First, the construction of
W is comparatively expensive because it requires N2 multiplications at full precision which
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cannot be further sped up. Second, and more importantly, storingW as a matrix requiresN2

storage space in memory which becomes inconvenient for larger problems. For this reason,
we use modular splitting (see for example [8, Section 4.4.3]) for which only some of the
powers of q∗m need to be precomputed and stored. Modular splitting evaluates a polynomial
P (x) by using the relations

(4.8) P (x) =
N∑

n=0

anx
n =

j−1∑
l=0

xlPl(x) =

j−1∑
l=0

xl

(
k−1∑
m=0

ajm+ly
m

)
,

where y = xj. By choosing j and k to be of size O(
√
N), we hence only need to store

O(N3/2) values and can evaluate Pl(x) using dot-products. We remark that we do not use
classical rectangular splitting here because we do not want the terms of Pl(x) to be uniformly
distributed in order to make best use of the dot-product optimizations. We find that using
Arb’s dot product often leads to a speedup that is close to an order of magnitude compared
to a naive Horner scheme.

4.3.5. Optimizing the action of J . It is immediate to see that the entries of J (given by Eq.
(3.32)) are uniform and cannot be truncated when working at a lower precision which makes
matrix-vector multiplication of J very slow compared to W . We note however that J can
be further factored into:

(4.9) J = DL · F ·DR ,

where

(4.10) (DL)n′,m = exp

(
πi(2Q− 1)

2Q
· n′
)

,

(4.11) Fn′,m = exp

(
−2πi

2Q
· n′ ·m

)
,

(4.12) (DR)n′,m =
1

2Q

(
|cmzm + dm|
(cmzm + dm)

)k

exp

(
πiMs(2Q− 1)

2Q

)
exp

(
−2πiMs

2Q
·m
)

.

Here Ms denotes the index of the first coefficient that is non-zero (in general, Ms depends
on the cusp, so we would instead need to write Ms(j), but for the sake of simpler notation,
we assume Ms to be equal for all cusps here) and n′ := n − Ms with the property 0 ≤
n′ ≤ M −Ms. DL and DR are diagonal matrices whose action can be computed in O(N)
operations. The matrix F is similar to the matrix of the classical discrete Fourier transform
(DFT), but with (in general) some missing rows and columns. Nevertheless, we can compute
the action of F through a DFT. To illustrate this, assume that M = 3, 2Q = 4 (obviously,
in practice we require Q > M) and that we have a missing column at m = 2. Then the
action of F on a vector can be written as:

(4.13)

1 1 1

1 (ζ4)
−1 (ζ4)

−3

1 (ζ4)
−2 (ζ4)

−6

 ·

x0

x1

x2

 ,

where ζ4 = exp
(
2πi
4

)
is the 4-th root of unity. This is equivalent to computing:

(4.14)


1 1 1 1

1 (ζ4)
−1 (ζ4)

−2 (ζ4)
−3

1 (ζ4)
−2 (ζ4)

−4 (ζ4)
−6

1 (ζ4)
−3 (ζ4)

−6 (ζ4)
−9

 ·


x0

x1

0
x2

 ,

and selecting the first 3 entries of the output vector. Our strategy for computing the action
of F on a vector is therefore to zero-pad all entries of the input vector for which I(m, j) ̸=
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i, perform a DFT and afterwards select the first M entries of the output vector. The
advantage of using a DFT for computing the action of F is that fast Fourier transform (FFT)
algorithms are available which have asymptotic complexity O(N ln(N)) [14]. Contrary to
the polynomial multipoint evaluation algorithms that were mentioned in Section 4.3.4, the
FFT algorithms typically only have a small asymptotic constant. In practice, we found the
running time to be approximately c · Q ln(Q) where c < 10 if the largest prime factor of
Q is reasonably small (we used the implementation provided by Arb to compute the FFT
which has been contributed by Pascal Molin). Because we have a free choice of Q > M , we
choose Q to be slightly larger than M and with small prime factors to speed up the FFT.
Comparing this to the direct approach of computing the action of J through matrix-vector
multiplications which has complexity O(Q · M0) (the exact operation count also depends
on the number of cusps) it is typically much faster to use FFTs and the bottleneck of the
algorithm becomes the action of W . Additional advantages of factoring J into the form of
Eq. (4.9) are that the memory consumption becomes much lower since we only need to store
the diagonals and 2Q roots of unity, and that we avoid the N2 operation to compute the
entries of J .

4.3.6. Construction of Ṽsc,double. To construct Ṽsc,double, we truncate the columns ofW so that
terms that are effectively zero at double-precision are ignored. Afterwards, we compute the
action of J on the remaining columns of W through FFTs (using NumPy [20]), similarly
to Section 4.3.5. The construction of Ṽsc,double therefore requires O(N2 ln(N)) operations at
double-precision.

4.3.7. Computing the LU-decomposition of Ṽsc,double. The matrix Ṽsc,double is sparse, since
all of its entries that are below the double machine epsilon are neglected. To compute its
LU-decomposition we therefore make use of the sparse linear algebra routines of SciPy [49].
We are unaware of the computational complexities of these routines (these should depend
on sparseness and structure of Ṽsc,double and its LU factors) but in practice they only account
for negligible CPU time.

4.3.8. Performing the LU-solves. As discussed in the previous section, we use the sparse
linear algebra routines of SciPy to compute a LU-decomposition of Ṽsc,double in double
arithmetic. When using this precomputed LU-decomposition to perform the solves inside
the iterative refinement algorithm one needs to be careful not to over-/underflow the double
exponent range which is finite and can be easily exceeded for elements inside the residue
vectors. One way to avoid underflows is to convert the LU-decomposition to 53-bit Arbs
which have unlimited exponent range. Storing the LU-factored matrix as an Arb-matrix is
however quite memory consuming because Arb currently does not offer sparse matrices and
because the memory footprint of a Arb object is higher than that of a double. A preferable
approach is based on the observation that the input vectors for the LU-solves have relatively
uniformly distributed entries. For this reason, we scale all entries by a constant factor 2e to
put them inside the double-range, convert them to doubles, perform the LU-solve in double
arithmetic using SciPy, convert the result back to Arb and scale the result back. This
approach uses significantly less memory and is faster.

4.3.9. Restarting the algorithm. Because the iterative refinement algorithm does not need
to form a Krylov-subspace, it can be restarted without losing convergence. One approach
that we have experimented with gradually increases the values of Q and M0. For example
if a target precision of 500 digits is to be reached, one can first choose Q and M0 so that
convergence is reached up to 100 digits precision. One can then afterwards use these ap-
proximations of the lower coefficients up to 100 digits precision to restart the algorithm with
a larger choice of Q and M0 to refine the residue from 10−100 to 10−250 and afterwards again
to go from 10−250 to 10−500. The performance that one can gain from this approach however
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Digit precision (M0) Classical Non-precond. GMRES Mixed Precision IR
100 (533) 7min15s (1.91GB) 1min38s (1.5GB) 7s (0.32GB)
200 (1043) 1h10min (9.48GB) 15min3s (5.84Gb) 43s (0.47GB)
400 (2061) - 4h25min (29.19GB) 6min19s (0.94GB)
Table 1. Benchmarks for the numerical computation of f0 ∈ S4(G)
where G is a subgroup of signature (17, 0, 3, 1, 2) that is generated
by σS = (1)(2 4)(3 7)(5 10)(6 11)(8 14)(9 15)(12 13)(16 17) and σR =
(1 7 4)(2 11 10)(3 15 14)(5)(6 12 13)(8 17 9)(16).

seems to be quite limited because the bottlenecks are given by the last iterations anyways.
Additionally, each restart creates some extra computations to set up J , W and the precon-
ditioner. Although some restarting configurations exist that are faster than simply starting
with the target values of Q and M0, the performance impact is very minor and finding these
configurations can be inconvenient which is why we have not applied this approach for our
computations.

4.3.10. Performance comparison to previous methods. To examine how the different ap-
proaches perform in practice we ran several benchmarks that numerically compute a modular
forms on a noncongruence subgroups at different precisions. The results of these benchmarks
can be found in Tab. 1. We report the CPU times and peak memory usages of the pro-
gram. All implementations are highly optimized from a technical perspective. The classical
version follows the approach of Section 4.1 (we used Arb’s implementations for the matrix
multiplications and LU decompositions). The non-precond. GMRES version follows the
approach of Section 4.2 with GMRES as a Krylov solver. The mixed precision IR version
uses the mixed precision iterative refinement approach with optimized actions of J and W
that was presented in Section 4.3. The benchmarks where taken on a Intel Xeon E5-2680

v4 @ 2.40GHz CPU and ran on a single thread. As one can see, the mixed-precision al-
gorithm outperforms the other algorithms in all categories and runs more than 40 times
faster than non-precond. GMRES at 400 digits precision while consuming significantly less
memory. For larger examples this ratio becomes even bigger because the IR approach has a
lower asymptotic complexity.

4.3.11. Numerical stability for large examples. Increasing the target precision (and following
from that the values of M0 and Q) does not affect the condition number of Ṽsc,double (up to
some noise), as illustrated in Fig. 3. This seems to be caused by the fact that the additionally
added columns are similar to those of a unit-matrix.

The index and number of cusps of the considered subgroup affect the conditioning more
noticeably. Although large index examples have not been the focus of this work it is there-
fore interesting to examine if they are well-conditioned enough to apply mixed precision
iterative refinement on them as well. For this we consider the subgroup Γ0(120) of signature
(288, 17, 16, 0, 0). (This is obviously a congruence subgroup for which efficient non-numerical
algorithms exist from which we can get exact solutions. This makes it a useful example to
test the numerical stability of the algorithm. We also remark that the numerical method
does not distinguish between congruence and noncongruence subgroups which means that
we can expect the same results to hold for noncongruence subroups.) It is immediate to
see that with an index of 288 and 16 cusps of which the largest one has width 120, Γ0(120)
is significantly larger than the other considered examples. As a test of our algorithm we
performed the numerical computation of f0 ∈ S2(Γ0(120)) to 50 digits precision. To achieve
convergence we take M0 = 2725 which means that the resulting linear system of equations
is of dimension 43600× 43600 which is enormous in the context of arbitrary precision arith-
metic. Still, we found that iterative refinement converges fast as can be seen in Fig. 4.
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Figure 3. Illustration of the condition number of Ṽsc,double for varying target
precisions. For the example we used the cusp form that was considered in
Tab. 1.

Contrary to the other examples, the size of Ṽ reduces the precision gain per iteration to
about 9 digits per iteration instead of 16. We also found that the resulting coefficients have
only been computed to about 44 digits precision instead of 50 which can however obviously
easily be overcome by setting a buffer for large index examples. The computation used 60GB
of memory and took 2h and 30min of CPU time. We also remark that, contrary to the other
computations, we had to use dense linear algebra to perform the LU decomposition because
the sparse routines returned a memory error. We conclude that mixed-precision iterative
refinement can be efficiently applied to large index examples as well.

4.3.12. Overall complexity of the algorithm. Studying the complexity of the mixed-precision
IR algorithm is relatively difficult. First of all, it makes sense to ignore all computations that
can be performed in double arithmetic, because due to their technical optimization, their
contribution can be neglected compared to the parts that use arbitrary precision arithmetic
(at least for the scale of problems that are considered in this work and taking the limit
N → ∞ would lead to conditioning problems at some point anyways). When analyzing
the performance with respect to N (we use N synonymously for Q and M0 because these
are usually proportional to one another), the asymptotic bottleneck both in theory and in
practice is given by the action of W . The complexity of this computation is O(N2) (at
least in practice, as discussed in Section 4.3.4, the theoretical asymptotic complexity is
O(N · ln(N)2)) but comes with a very small constant due to the decaying columns of W
and the relatively small iteration count. We also remark that, contrary to most iterative
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Figure 4. Illustration of the iterative computation of f0 ∈ S2(Γ0(120)) to 50
digits precision using mixed precision IR (taking M0 = 2725).

methods, the iteration count of our method only depends on the precision and is hence truly
independent of N .

A more meaningful quantity would be the bit-complexity of the algorithm. This does
however seem impossible to calculate due to the constantly varying working precisions,
floating point types and decay rates of the dot-product terms.

4.4. Examples. We now illustrate the approach of Section 4.3 for some examples.

Example 4.2. Let G be the (randomly selected) noncongruence subgroup with signature
(16, 1, 2, 0, 1) that is generated by σS = (1 4)(2 5)(3 8)(6 11)(7 10)(9 14)(12 15)(13 16) and
σR = (1)(2 10 11)(3 7 14)(4 8 5)(6 16 15)(9 13 12). Following from this, we get that σT =
(1 8 7 11 16 12 6 2 4)(3 5 10 14 13 15 9) which means that the cusp at infinity has width 9. Note
that dim(S2(G)) = 1. We use the approach of Section 4.3 to compute f0 ∈ S2(G) to 150
digits precision. This computation takes about 5s on a standard CPU. By recognizing a92 as
an algebraic number using the LLL algorithm [30] we find that K = Q(v), where

(4.15) v3 − 6v − 16 = 0 ,

with embedding v = −1.647426...+ 1.463572...i. Choosing
(4.16)

u =

(
33 · 49667 · 1452815993

245 · 77 · 1379
− 34 · 5 · 14543 · 393024407

247 · 77 · 1379
v − 34 · 167 · 9697 · 1862489

251 · 77 · 1379
v2
)1/9

,

and applying the LLL algorithm again we recognize the Fourier expansion to be given by

(4.17) f(q9) = q9 + (822u)q29 + ((−68028v2 − 253920v − 445797)u2)q39 + ... ,
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up to the 23rd order (higher orders can be recognized by increasing the target precision).
Although this result is based on very high heuristic evidence it is not yet formally proven
(it should in principle be possible to prove the result through the curve but we do not carry
this out here).

Example 4.3. A more complicated example is given by the subgroup with signa-
ture (13, 1, 1, 1, 1) that is generated by σS = (1)(2 4)(3 7)(5 10)(6 9)(8 12)(11 13), σR =
(1 7 4)(2 9 10)(3 6 12)(5 8 13)(11) and σT = (1 7 6 10 8 3 4 9 12 13 11 5 2). Computing f0 ∈
S2(G) to 1000 digits precision which takes about 90 minutes of CPU time on a Intel

Xeon E5-2680 v4 @ 2.40GHz we find that K = Q(v), where

(4.18) v10 − 3v9 + 5v8 − 12v7 + 24v6 − 46v5 + 68v4 − 60v3 + 96v2 − 144v + 72 = 0 ,

with embedding v = 1.068141...+0.135042...i and compute the corresponding cusp form up
to the 25th order (the resulting expressions become too large to be displayed here). This
example would not be feasible to compute with the previous methods.

5. Computation of modular forms on genus zero subgroups

The methods of Section 4 can obviously be applied to numerically compute modular
forms on subgroups of arbitrary genus. In this section we discuss a different approach that
is restricted to subgroups of genus zero, for which the field of modular functions is generated
by a single function, called the Hauptmodul (see Section 2.5). The methods described in
this section can be used to obtain rigorous results.

5.1. Computing genus zero Belyi maps.

Theorem 5.1 (Atkin-Swinnerton-Dyer). A necessary and sufficient condition that f(τ) is
a modular function on a subgroup of finite index in Γ is that f(τ) should be an algebraic
function of j and that its only branch points should be branch points of order 2 at which
j = 1728 and branch points of order 3 at which j = 0, and branch points at which j is
infinite.

Proof. See Atkin-Swinnerton-Dyer [2, Theorem 1]. □

In particular, note that j, when viewed as a function on the modular curve X(G) of some
finte index subgroup G ⩽ Γ, gives an example of a Belyi map.

Definition 5.2 (Belyi Map). Let X be a compact Riemann surface. Then a holomorphic
function

(5.1) f : X → P1(C) ,

is said to be a Belyi map if it is unramified away from three points.

Belyi maps inherit their name from a famous theorem by Belyi [4]

Theorem 5.3 (Belyi). A compact Riemann surface X (equivalently an algebraic curve)
over C can be defined over Q if and only if there exists a Belyi map on X.

Proof. See Belyi [3, Theorem 1]. □

Belyi maps and their computation is an interesting subject on their own with numerous
applications in number theory and algebraic geometry, for an overview we refer to the survey
of Sijsling and Voight [42].

Let G be a finite index subgroup of Γ. Then the covering map

(5.2) R : X(G) → X(Γ)
j∼= P1(C) ,
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is a Belyi map, where X(G) = G\H is the modular curve. If G is a genus zero subgroup
then the covering map R(jG) is a rational function in jG, and branches over the images of
the elliptic points and cusps as well. This means that R can be written as

(5.3) R(jG) =
p3(jG)

pc(jG)
= 1728 +

p2(jG)

pc(jG)
.

The ramification structure (i.e., the roots of p2, p3 and pc) can be determined from the cycle
type of σS, σR and σT . Let us illustrate this on an example.

Example 5.4 (Determining ramification structure from permutation triple). Let G be a
noncongruence subgroup with signature (7, 0, 2, 1, 1) corresponding to the permutations σS =
(1)(2 4)(3 5)(6 7), σR = (1 5 4)(2 7 3)(6) and σT = (1 5 2)(3 4 7 6). By definition p2 needs to
be of the form

(5.4) p2(jG(τ)) =
7∏

i=1

(jG(τ)− jG(e2,i)) ,

where we denote e2,i to be the elliptic point of order two, located at coset of index i. Because
some of the values of jG(e2,i) at the elliptic points are equal, we can write this as

(5.5) p2(jG(τ)) = (jG(τ)− jG(e2,1))(jG(τ)− jG(e2,2))
2(jG(τ)− jG(e2,3))

2(jG(τ)− jG(e2,6))
2 .

This means that p2 can be written in the form

(5.6) p2(jG) =
(
j3G + A2j

2
G +B2jG + C2

)2
(jG +D2) ,

where (by Belyi’s theorem) A2, B2, C2, D2 ∈ Q. Analogously, p3 and pc can be factored into

(5.7) p3(jG) =
(
j2G + A3jG +B3

)3
(jG + C3) ,

and

(5.8) pc(jG) = (jG + Ac)
4 ,

where the roots are given by jG(e3,i), resp. jG(ci).

Once the structure of p2, p3 and pc has been determined, we can transform Eq. (5.3) into

(5.9) P (jG) := p3(jG)− p2(jG)− 1728pc(jG) = 0 ,

where P (jG) is a polynomial whose coefficients are defined over symbolic expressions. The
coefficients of P (jG) need to vanish which gives deg(P ) = deg(p3) = deg(p2) polynomial
equations in the unknowns A2, A3, . . . . An additional equation is obtained by expanding
R(jG) in jG(qN) and by asserting that the constant term is equal to 744 if the cusp width
at infinity is equal to one and vanishes otherwise.

One can attempt to solve these non-linear systems of equations directly, for example by
using Gröbner bases [42, Section 2]. This however quickly becomes infeasible for all but the
simplest examples. A much more efficient approach is to use a numerical method to compute
approximations of the evaluation of the Hauptmodul at the elliptic points and the cusps.
These approximations can then be used as starting values for Newton iterations to determine
the unknown coefficients to high precision. Afterwards the LLL algorithm can be applied to
identify the expressions as algebraic numbers. This approach has been suggested by Atkin-
Swinnerton-Dyer [2] and its effectiveness has been demonstrated by the second author [34,35]
who used this approach to compute Belyi maps for genus zero noncongruence subgroups of
large index and degree of the number field. Similar approaches that use approximations of
modular forms as starting values for Newton iterations have been used in [28,36,40].
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5.1.1. Obtaining starting values for Newton’s method. Throughout this work we have com-
puted the starting values for Newton’s method by using the algorithm that is described in
Section 4. The Fourier expansion of the Hauptmodul at infinity can be normalized to be of
the form q−1

N + 0 + a1qN + a2q
2
N + .... The values of the Hauptmodul at the other cusps are

finite which means that its expansions are of the form a0 + a1qNc + ....

Remark 5.5. It is important to note that the q−1
N -terms form the right-hand side of the

linear system of equations and therefore do not enter Ṽ . This means that the largest entries
for each column of Ṽ are still located on the diagonal and hence that the mixed-precision
iterative solving techniques of Section 4 can also be used to compute jG.

For the examples that have been considered in this work, it is sufficient to numerically
compute the Fourier expansion of the Hauptmodul to 50 digits of precision (although com-
putations at lower precision would have probably worked as well). The evaluations of the
Hauptmodul at the elliptic points can then be computed by evaluating the Hauptmodul at
γi(i) and γi(ρ) where γi denotes the coset representative of the corresponding coset (it is
preferred to choose the cusp expansion with the fastest convergence for the evaluation at
these points in order to maximize the precision). The values at the cusps outside infinity
are simply given by the constant terms in the cusp expansions.

5.1.2. Applying Newton’s method. Once the starting values have been obtained the multi-
variate Newton method can be used to improve the precision of these values. For simplicity
we will use x = jG in this section. We also use [xn]P to denote the coefficient of xn in P .
Then the Jacobian of the system of polynomial equations is given by a (µ + 1) × (µ + 1)
matrix (where µ denotes the index of G) that is of the form

(5.10) J(P ) =


∂

∂A2
[x0]P ∂

∂B2
[x0]P · · ·

∂
∂A2

[x1]P ∂
∂B2

[x1]P · · ·
...

...
...

∂
∂A2

[xµ]P ∂
∂B2

[xµ]P · · ·

 .

Let X [m] ∈ Cµ be the vector containing the numerical approximations of the unknowns
A2, B2, . . . at the m-th iteration. Then we can use the update steps

(5.11) X [m+1] = X [m] − [J(P (X [m]))]−1P (X [m]) ,

to iteratively increase the precision of the approximations of X. As is standard with New-
ton’s method, this procedure achieves quadratic convergence.

We remark that from a numerical perspective it is preferable to perform the update steps
by solving the linear system of equations

(5.12) J(P (X [m])) · d[m] = P (X [m]) ,

instead of computing the matrix inverse of the Jacobian (see the discussion in Section 4.3.1).
Analogously to the iterative refinement, the update steps are then given by

(5.13) X [m+1] = X [m] + d[m] .

We used Arb’s LU-decomposition to solve Eq. (5.12) (i.e., a direct solving technique). For
large index examples it might be preferable to perform this solving iteratively, for example
by using preconditioned GMRES (see Section 4.3.1).

As an additional implementation detail we remark that instead of computing the entries
of the Jacobian matrix through symbolic computation of the partial derivatives and their
evaluations by plugging in the corresponding approximations of the variables it is instead
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preferable to compute the columns of the Jacobian through univariate polynomial multipli-
cation which has been used by the second author in [34,35]. To illustrate this, suppose that
P is of the form

(5.14) P = (a0 + a1x+ a2x
2 + ...)ka · (b0 + b1x+ b2x

2 + ...)kb · ...+ ... ,

then

(5.15)
∂

∂ai
P = kax

i(a0 + a1x+ a2x
2 + ...)ka−1 · (b0 + b1x+ b2x

2 + ...)kb .

Constructing this polynomial by using multiplications of univariate polynomials over C
(for which we used Arb’s polynomial implementation) then yields in a polynomial whose
coefficients correspond to a column of J , since

(5.16)
∂

∂ai
[xj]P = [xj]

(
∂

∂ai
P

)
.

By applying this procedure for all unknowns (and potentially reusing terms for optimiza-
tion), all entries of J can be assembled efficiently.

5.1.3. Identifying the Belyi map. Once the coefficients of the Belyi map have been computed
to sufficient precision, the LLL algorithm can be used to identify K and u.

Example 5.6. Continuing the example of this section we find that the Belyi map is given
by

R(x) =
(x2 + 444ux− 148284u2)3(x+ 516u)

(x+ 462u)4
,

= 1728 +
(x− 996u)(x3 + 1422ux2 + 822204u2x+ 185029704u3)2

(x+ 462u)4
,

(5.17)

where u = (2/823543)1/3 which means that K = Q.

We can verify that the result of the Belyi map is correct by confirming that Eq. (5.9)
holds for the recognized polynomials.

5.2. Computing Fourier expansions of the Hauptmodul from the Belyi map. The
result of the Belyi map can be used to explicitly compute Fourier expansions of the Haupt-
modul.

5.2.1. Computing Fourier expansions at infinity. We have seen that

(5.18) j = R(x) =
p3(x)

pc(x)
,

which we hence need to solve for x = jG. To do this we work with the reciprocal

(5.19)
1

j
=

1

R(x)
=

pc(x)

p3(x)
=:

1

R(1/x̃)
=

pc(1/x̃)

p3(1/x̃)
,

where we set x̃ := 1/x. Expanding 1/R(1/x̃) as a power series in x̃ results in

(5.20) N

√
1

j
= N

√
1

R(1/x̃)
=: s(x̃) ,

where N denotes the width of the cusp at infinity and the roots denote the roots of the
power series. (We remark that in order to identify the correct embedding of the N -th root
we compared the embeddings to the result of the numerical method of Section 4.) The
power series s(x̃) has valuation one and we can hence compute the reversion

(5.21) x̃ = s−1( N
√

1/j) ,
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to get

(5.22) x = 1/s−1( N
√

1/j) .

Substituting the q-expansion of N
√
1/j (which is a power series in qN) then gives the q-

expansion of jG at infinity.

5.2.2. Computing Fourier expansions at other cusps. To compute the Fourier expansion at
a cusp ̸= i∞ we perform the transformation

(5.23) x 7→ x+ jG(ci) := x̃ ,

where jG(ci) denotes the evaluation at the cusp. Then

(5.24) N

√
1

j
= N

√
1

R(x̃)
=: s(x̃) ,

where N denotes the width of the considered cusp (not at infinity) and

(5.25) x = jG(ci) + s−1( N
√

1/j) .

5.2.3. Computing Fourier expansions over number fields. To perform computations over
number fields we introduce the number field L = Q(w) over which the coefficients of the
Belyi map and the Fourier expansions are defined. If the cusp width at infinity is equal
to one then K = L. Otherwise we choose L to be the number field generated by u. The
advantage of this choice of L is that one can efficiently convert its elements into u-v-factored
expressions (and vice versa).

Once the Belyi map has been recognized explicitly over L, the expansions at infinity
can be computed by performing the arithmetic of Section 5.2.1 over L. For this we used
the generic routines provided by Sage [44]. The advantage of this approach is that the
Fourier coefficients of the Hauptmodul are rigorous. Note that expansions of cusps outside
infinity cannot in general be computed over L because they are defined over number fields
Q(v1/Nc)Q(w) where Nc denotes the cusp width of the considered cusp outside infinity.

5.2.4. Computing Fourier expansions over C. To compute Fourier coefficients of the Haupt-
modul over C (more precisely, using arbitrary precision arithmetic) we use Arb [25] to
perform the computations of sections 5.2.1 and 5.2.2. The bottleneck of these computations
is the reversion of power series. We found that series reversion in Arb is significantly faster
than in Sage [44] or Pari [19]. Arb has implemented the algorithm of [24] which decreases
the asymptotic complexity from O(N3) to O(N1/2M(N) + N2), where M(N) denotes the
complexity of polynomial multiplication. Arb also provides implementations of the fast
power series composition algorithms of [7] which we use for the substitutions.

We note however that the approach of sections 5.2.1 and 5.2.2 can be very ill-conditioned
which means that one might have to use a higher working precision than the target precision.
This seems to be caused by the fact that the reversed series s−1 can have very large coef-
ficients which makes the substitution ill-conditioned. We are unaware of a transformation
that improves the conditioning so the best we could come up with is an approach where we
choose the working precision sufficiently large in order to overcome the ill-conditioning. We
first compute s−1 to low precision (typically to 64-bit, but not in double precision because
the exponents might over/underflow). The size of the resulting coefficients gives an estimate
of the required precision. If the computation fails at the estimated precision, we attempt it
again using a higher precision. The interval arithmetic of Arb is very useful for this since
it shows if the working precision had been sufficiently high. While this strategy obviously
always leads to correct results, it is not very elegant and it would be useful to find a way to
rewrite the problem so that all computations can be done at the target precision.
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5.3. Constructing modular forms and cusp forms from the Hauptmodul. We have
seen in the previous section how the Fourier expansion of the Hauptmodul can be computed
from the Belyi map. In this section we discuss how complete bases of Sk and Mk can be
constructed from this result.

By Theorem 2.13 every modular function on G that is holomorphic outside infinity can
be written as a polynomial in the Hauptmodul jG. Since jG is a modular function (i.e.,
weight zero form), its derivative j′G(τ) := 1

2πi
∂
∂τ
jG(τ) is a (weakly holomorphic) modular

form of weight two. Higher weight forms can be constructed by computing powers of j′G(τ)
and the monomial (j′G(τ))

k/2 is therefore of weight k. If f is a holomorphic modular form of
weight k, then f(τ)/(j′G(τ))

k/2 is a (meromorphic) modular function which has poles at the
zeros of j′G(τ)

k/2, which are located at the elliptic points and cusps other than infinity. To
make this modular function holomorphic outside infinity we cancel its poles by multiplying
it with the polynomial

(5.26) B(jG(τ)) = Be(jG(τ)) ·Bc(jG(τ)) ,

that is designed to cancel out all the poles up to the correct order. Because jG is a modular
function on G, multiplying a modular form by a polynomial in jG does not destroy the
modularity.

Note that j′G(τ) has zeros of order one at the cusps that are not infinity. Therefore, we
may take

(5.27) Bc(jG(τ)) =
∏
c ̸=i∞

(jG(τ)− jG(c))
αc ,

with

(5.28) αc = k/2 .

At the elliptic points, j′G(τ) has zeros of order nei − 1, where nei denotes the order of the
elliptic point which is either 2 or 3. Following from this, we construct

(5.29) Be(jG(τ)) =
∏
e

(jG(τ)− jG(e))
βe ,

with

(5.30) βe =
⌊k(ne − 1)

2ne

⌋
.

(Note that we need to divide by the order of the elliptic point since (jG(τ)−jG(e)) has a zero
of order ne, see for example [15, pp. 227–228].) By construction, f(τ)/(j′G(τ))

k/2 ·B(jG(τ))
is a modular function that is holomorphic outside infinity and hence by Theorem 2.13

(5.31) f(τ)/(j′G(τ))
k/2 ·B(jG(τ)) = P (jG(τ)) .

We now use Eq. (5.31) to construct modular forms with prescribed valuations at the cusps
which can be used to construct bases of Sk andMk. These constructed forms have valuations
at the cusps that are equivalent to those of a reduced row echelon basis and are therefore
linearly independent. From Eq. (5.31) we get that

(5.32) f(τ) = (j′G(τ))
k/2 · P (jG(τ))

B(jG(τ))
.

In order to get a basis of forms of Mk, the i-th form fi should have valuation i at infinity,
where i = 0, 1, . . . . Note that jG(τ) and j′G(τ) both have a pole of order 1 at infinity (i.e.,
valuation −1 in terms of qN). We therefore get the desired behavior at infinity by choosing
Pi(jG(τ)) to be a monomial

(5.33) Pi(jG(τ)) = jG(τ)
deg(B)−k/2−i .
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The construction of cusp forms fi ∈ Sk works similarly. In this case fi should have valua-
tion 1 at all cusps outside infinity and valuation i+ 1 at infinity. We hence get

(5.34) deg(Pi) = deg(B)− k/2− i− 1 .

In order to impose vanishing at the cusps outside infinity we simply need to multiply by the
factors (jG(τ)− jG(c)). Let n(c) denote the number of cusps of G. Then we get

(5.35) Pi(jG(τ)) =
∏
c ̸=i∞

(jG(τ)− jG(c)) · jG(τ)deg(B)−k/2−i−1−(n(c)−1) .

Example 5.7 (Constructing cusp form from Hauptmodul). Continuing with the example
from this section, suppose that we would like to construct f0 ∈ S4(G). By applying the
result of Section 5.2, we compute the q-expansion of the Hauptmodul

(5.36) jG(τ) = q−1
3 + 148932u2q3 + 35666932u3q23 + 7392301056u4q33 + . . . .

The space S4(G) is one-dimensional and we get

f(τ) = (j′G(τ))
2 · P (jG(τ))

B(jG(τ))
(5.37)

= (j′G(τ))
2 · (jG(τ) + 462u)

(jG(τ) + 462u)2(jG(τ)− 996u)(jG(τ) + 516u)
,(5.38)

which yields in the expansion

(5.39) f(τ) = q3 + 18uq23 − 8640u2q33 − 1823860u3q43 + . . . .

The approach presented in this section can be used to explicitly compute modular forms
and cusp forms over L which means that the results are rigorous. An additional advantage
from a performance perspective is that, once the Fourier expansion of the Hauptmodul has
been computed, the remaining forms can be obtained without additional expensive solving
or series reversion. We note however that the division of power series can be ill-conditioned
when working over C for the problems involved. For this reason it is useful to make use
of Arb’s interval arithmetic in order to assert that the coefficients have been computed to
sufficient accuracy. Once a basis of forms has been constructed, linear algebra can be used
to transform the basis into reduced row echelon form.

Remark 5.8. It would be interesting to examine the practicality and effectiveness of an
approach where higher genus Newton methods (see for example [36,40]) are used to compute
the curve from which the modular forms can then be constructed.

6. Conclusion

We have shown how modular forms on general noncongruence subgroups of moderately
large index can be computed efficiently. We are currently working on applying the presented
algorithms to create a database of modular forms and cusp forms on noncongruence sub-
groups and plan to release this to the LMFDB [32]. We remark that the improved solving
techniques that were presented in Section 4.3 should also be beneficial in the computation of
Maass cusp forms, Taylor expansions of modular forms and other examples of modular forms
at arbitrary precision arithmetic. We also hope that our demonstration of the effectiveness
of the usage of mixed-precision arithmetic in the context of arbitrary precision arithmetic
might inspire future work.
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[27] I. Kiming, M. Schütt, and H. A. Verrill. Lifts of projective congruence groups. J. Lond. Math. Soc. (2),
83(1):96–120, 2011.

[28] M. Klug, M. Musty, S. Schiavone, and J. Voight. Numerical calculation of three-point branched covers
of the projective line. LMS Journal of Computation and Mathematics, 17(1):379–430, 2014.

[29] C. Kurth and L. Long. On modular forms for some noncongruence subgroups of SL2(Z). II. Bull. Lond.
Math. Soc., 41(4):589–598, 2009.

[30] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coefficients.
Math. Ann., 261(4):515–534, 1982.

[31] W.-C. W. Li, L. Long, and Z. Yang. Modular forms for noncongruence subgroups. Q. J. Pure Appl.
Math., 1(1):205–221, 2005.

[32] LMFDB Collaboration. The L-functions and modular forms database. http://www.lmfdb.org, 2022.
[Online; accessed 22 March 2022].

[33] M. H. Millington. Subgroups of the Classical Modular Group. Journal of the London Mathematical
Society, s2-1(1):351–357, 01 1969.

[34] H. Monien. The sporadic group j2, hauptmodul and belyi map, 2017.
[35] H. Monien. The sporadic group co3, hauptmodul and belyi map, 2018.
[36] M. Musty, S. Schiavone, J. Sijsling, and J. Voight. A database of Belyi maps. In Proceedings of the

Thirteenth Algorithmic Number Theory Symposium, volume 2 of Open Book Ser., pages 375–392. Math.
Sci. Publ., Berkeley, CA, 2019.

[37] S. M. Rump. Approximate inverses of almost singular matrices still contain useful information. Technical
Report 90.1, Hamburg University of Technology, 1990.

[38] S. M. Rump. Inversion of extremely ill-conditioned matrices in floating-point. Japan Journal of Indus-
trial and Applied Mathematics, 26:249–277, 2009.

[39] Y. Saad and M. H. Schultz. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsym-
metric Linear Systems. SIAM Journal on Scientific and Statistical Computing, 7(3):856–869, 1986.
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