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THE D 6 R 4 INTERACTION AS A POINCAR É SERIES, AND A RELATED SHIFTED CONVOLUTION SUM

We complete the program, initiated in a 2015 paper of Green, Miller, and Vanhove, of directly constructing the automorphic solution to the string theory

The construction is via a type of Poincaré series, and requires explicitly evaluating a particular double integral. We also show how to derive the predicted vanishing of one type of term appearing in f 's Fourier expansion, confirming a conjecture made by Chester, Green, Pufu, Wang, and Wen motivated by Yang-Mills theory.

Introduction

Many quantities of interest in type IIB string theory are naturally automorphic functions on an arithmetic quotient of a symmetric space, such as SL(2, Z)\SL(2, R)/SO [START_REF] Bossard | 1/8-BPS Couplings and Exceptional Automorphic Functions[END_REF]. For example, the coefficients of the low energy expansion of the 4-graviton scattering amplitude are functions on the coset space G/K, where G denotes the real points of the (algebraic) duality group and K is a maximal compact subgroup of G. Furthermore, U -duality implies that the scattering amplitude should obey transformation rules under a discrete group Γ. For example, in 10 space-time dimensions G = SL(2, R) and the coefficients in the low energy expansion are modular functions. Furthermore, BPS symmetry implies some of the lower order coefficients are in fact eigenfunctions of the laplacian, making them automorphic forms. By now many examples are known and have been well-studied, for example [START_REF] Bossard | 1/8-BPS Couplings and Exceptional Automorphic Functions[END_REF][START_REF] Chester | Modular Invariants in N = 4 Super-Yang-Mills Theory[END_REF][START_REF] Dorigoni | Modular graph functions and asymptotic expansions for Poincaré series[END_REF][START_REF] Dorigoni | Poincaré series for modular graph forms at depth two, Part I. Seeds and Laplace systems[END_REF][START_REF] Dorigoni | Poincaré series for modular graph forms at depth two, Part II. Iterated integrals of cusp forms[END_REF][START_REF] Green | Eisenstein series for higher-rank groups and string theory amplitudes[END_REF][START_REF] Green | SL(2, Z)-invariance and D-instanton contributions to the D 6 R 4 interaction[END_REF][START_REF] Green | Automorphic properties of low energy string amplitudes in various dimensions[END_REF].

A good example is the R 4 term in the low energy expansion of maximally supersymmetric string theory. In 10 dimensions, the coefficient function for this term is given by

E (1,0) (z) = 2ζ(3)E 3/2 (z) , (1.1)
where E s (z) is the non-holomorphic Eisenstein series for z = x + iy in the complex upper half plane H ∼ = SL(2, R)/SO(2), Γ = SL(2, Z), and B is the subgroup of upper triangular matrices in SL(2, R). In this case, E s (z) is an eigenfunction for the laplacian ∆ = y 2 ∂ 2 x + ∂ 2 y and hence E (1,0) is an automorphic form.

However, BPS protection only carries so far and some of the most intriguing and intricate coefficients are not automorphic forms themselves, but instead related to them 1 in a nonlinear way. In this paper, we will revisit the E (1,0) term studied in [START_REF] Hoker | On the modular structure of the genus Type II superstring low energy expansion[END_REF][START_REF] Green | Two loops in eleven dimensions[END_REF][START_REF] Green | SL(2, Z)-invariance and D-instanton contributions to the D 6 R 4 interaction[END_REF][START_REF] Green | Duality and higher derivative terms in M-theory[END_REF][START_REF] Klinger-Logan | Differential equations in automorphic forms[END_REF][START_REF] Pioline | D 6 R 4 amplitudes in various dimensions[END_REF], which mathematically amounts to the solution to the inhomogeneous automorphic differential equation (1.3) (∆ -12)f (z) = -2ζ(3)E 3/2 (z) 2 .

In [START_REF] Green | SL(2, Z)-invariance and D-instanton contributions to the D 6 R 4 interaction[END_REF], Green, Miller, and Vanhove give the full Fourier expansion for the solution f (z). However, this solution, though explicit, was not computed directly -rather, it was correctly guessed and subsequently verified. Instead, the appendices of [START_REF] Green | SL(2, Z)-invariance and D-instanton contributions to the D 6 R 4 interaction[END_REF] describe three potential approaches to solving (1.3) directly, each with their own difficulties to extracting the full Fourier expansion for f (z).

Given the abundance of automorphic differential equations generalizing (1.3) it is desirable to be able construct a solution via a method, rather than to rely on guesswork [START_REF] Ahlén | D 6 R 4 curvature corrections, modular graph functions and Poincaré series[END_REF][START_REF] Chester | Modular Invariants in N = 4 Super-Yang-Mills Theory[END_REF][START_REF] Dorigoni | Modular graph functions and asymptotic expansions for Poincaré series[END_REF][START_REF] Dorigoni | Poincaré series for modular graph forms at depth two, Part I. Seeds and Laplace systems[END_REF][START_REF] Dorigoni | Poincaré series for modular graph forms at depth two, Part II. Iterated integrals of cusp forms[END_REF][START_REF] Gerken | All-order differential equations for one-loop closed-string integrals and modular graph forms[END_REF]. In what follows, we resolve the issue that arose in the first of these three approaches, namely the Poincaré series construction in [START_REF] Green | SL(2, Z)-invariance and D-instanton contributions to the D 6 R 4 interaction[END_REF]Appendix A]. The obstacle there to obtaining the explicit form of the Fourier expansion for f was the difficulty of computing the integral presented in (A.40) there, i.e., the a = 3/2 case of (2.6) below. In Section 2, we generalize this Poincaré series method to equations of the form

(∆ -λ)f (z) = -E a (z) 2 . (1.4)
Specifically, the methods outlined are applicable to the cases when a is a half-integer or even integer and with specific choices of eigenvalue λ. In Section 4, we explicitly compute the complicated integral [12, (A.40)] (equivalently, (2.6)) which arose in the case of a = 3/2 and λ = 12. The method outlined in Section 4 extends (at least experimentally) to the Poisson summation integrals that arise for other half-integer values for a.

The method outlined in Section 4, yields the same Fourier expansion found in [START_REF] Green | SL(2, Z)-invariance and D-instanton contributions to the D 6 R 4 interaction[END_REF]:

(1.5) f (z) = n∈Z f n (y)e 2πinx ,
where 

f n (y) = δ n,0 f (y) + α n K 7/2 (2π|n|y) (1.6) + n 1 +n 2 =n (n 1 ,n 2 )̸ =(0,0) i,j=0,1 M i,j n 1 ,n 2 (π|n|y)K i (2π|n 1 |y)K j (2π|n 2 |y) , in which f , M i,j n 1 ,n
α n = n 1 +n 2 =n α n 1 ,n 2 ,
where α 0,0 = 0,

(1.8) α n 1 ,-n 1 = 8σ 2 (|n 1 |) 2 21n 6 1 π 2 y 3 for n 1 ̸ = 0, α n,0 = α 0,n = 64σ 2 (|n|)(n 2 π 4 -90ζ(3)) 135|n| 5/2 π for n ̸ = 0, (1.9) and α n 1 ,n 2 = sgn(n 1 + n 2 ) 128πσ 2 (|n 1 |)σ 2 (|n 2 |) 45n 2 1 n 2 2 |n 1 + n 2 | 7/2 n 5 1 + n 5 2 + 15n 4 1 n 2 + 15n 1 n 4 2 (1.10) -80n 3 1 n 2 2 -80n 2 1 n 3 2 + 60n 2 1 n 2 2 (n 1 -n 2 ) log n 1 n 2
for n ̸ = 0 and n 1 n 2 ̸ = 0. Each α n 1 ,n 2 arises from the homogeneous solution to a differential equation, or from the integral [12, (A.40)]; however, the sum (1.7) is of greater interest. Based on ideas from the AdS-CFT correspondence and Yang-Mills theory, Chester, Green, Pufu, Wang, and Wen made the surprising conjecture in [4, Section C.1(a)] that (1.11)

α n = n 1 +n 2 =n α n 1 ,n 2 = 0
for each n ̸ = 0. In other words, they conjectured that the total sum of the Fourier coefficients in (1.7) corresponding to the homogeneous solution to (1.3) vanishes. This is not at all apparent from the formulas above, from which even the convergence of the sum is not manifest. In Section 5 we provide a formal proof of this vanishing conjecture of Chester, Green, Pufu, Wang, and Wen, based on formal (but nonrigorous) manipulations of Dirichlet series.

Solution to

(∆ -λ)f = -E 2 a
In this section, we outline the Poincaré series method for finding solutions of the automorphic differential equation

(∆ -λ)f = -E 2 a (2.1)
for special values of a, recapping [START_REF] Green | SL(2, Z)-invariance and D-instanton contributions to the D 6 R 4 interaction[END_REF]Appendix A]. Using the definition of the Eisenstein series, one expands

(2.2) E a (z) 2 = (m 1 ,n 1 )∈S (m 2 ,n 2 )∈S |m 1 n 2 -n 1 m 2 | -2a T m 1 z + n 1 m 2 z + n 2 ,
where

S := {(0, 1)} ⊔ {(c, d) ∈ Z × Z | c > 0 & gcd(c, d) = 1}, and
T (x + iy) = σ(x/y) := ((x/y) 2 + 1) -a (terms in (2.2) with m 1 n 2 = n 1 m 2 are replaced with an appropriate limit). This is a consequence of the identities Re(γz)

Im(γz) = n 1 n 2 + m 2 n 1 x + m 1 n 2 x + m 1 m 2 (x 2 + y 2 ) y(det γ) and (n 1 n 2 + m 2 n 1 x + m 1 n 2 x + m 1 m 2 (x 2 + y 2 )) 2 + (y(detγ)) 2 = |m 1 z + n 1 | 2 |m 2 z + n 2 | 2 , where γ = m 1 n 1 m 2 n 2 .
In terms of u = x/y the differential equation (2.1) transforms to

d du (1 + u 2 ) d du -b h a,b (u) = -(u 2 + 1) -a . (2.3)
There is an explicit solution to this differential equation satisfying the boundary conditions that h a,b (u) = O(|u| -2a ) for large values of u = x/y. In terms of that solution we define F (x + iy) := h a,b ( x y ) so that (∆ -b)F = -T . Summing over S, the solution to (2.1) is given by the sum

f (z) = (m 1 ,n 1 )∈S (m 2 ,n 2 )∈S |m 1 n 2 -n 1 m 2 | -2a F m 1 z + n 1 m 2 z + n 2 , (2.4)
which is absolutely convergent since h a,b is bounded by a constant multiple of σ, hence F is bounded by a constant multiple of T , and the sum in (2.4) converges for Re(a) > 1 since (2.2) does.

The Fourier modes

(2.5) fn (y) = n 1 +n 2 =n fn 1 ,n 2 (y)
of the solution f (z) = n∈Z fn (y)e 2πinx can be derived as in [12, Appendix A] by writing

f (z) = Σ 0,0 (z) + Σ 0,1 (z) + Σ 1,0 (z) + Σ 1,1 (z)
where

Σ 0,0 (z) = lim (m 1 n 2 -n 1 m 2 )→0 |m 1 n 2 -n 1 m 2 | -2a F m 1 z + n 1 m 2 z + n 2 , Σ 0,1 (z) = ∞ m 2 =1 (n 2 ,m 2 )=1 |m 2 | -2a F 1 m 2 z + n 2 , Σ 1,0 (z) = ∞ m 1 =1 (n 1 ,m 1 )=1 |m 1 | -2a F (m 1 z + n 1 ), Σ 1,1 (z) = ∞ m 1 =1 (n 1 ,m 1 )=1 ∞ m 2 =1 (n 2 ,m 2 )=1 |m 1 n 2 -n 1 m 2 | -2a F m 1 z + n 1 m 2 z + n 2 ,
and applying Poisson summation. Note that the limit in Σ 0,0 is well-defined. In terms of the customary notation e(x) = e 2πix it is straightforward to see

Σ 0,1 (z) = Σ 1,0 (z) = n∈Z Σ 0,1 n (y)e(nx) and Σ 1,1 (z) = n 1 ∈Z n 2 ∈Z Σ 1,1 n 1 ,n 2 (y)e((n 1 + n 2 )x),
while inputting Ramanujan sums as in [12, (A.28)] gives the formula

Σ 0,1 (z) = ∞ m 2 =1 1 m 2a 2 n 2 ∈(Z/m 2 Z) * n∈Z e n(x + n 2 m 2 ) y h(ny) = 1 ζ(2a) n∈Z e(nx)n 1-2a σ 2a-1 (|n|)y h(ny) .
Note that in the case of a = 3/2 and λ = 12 studied in [START_REF] Green | SL(2, Z)-invariance and D-instanton contributions to the D 6 R 4 interaction[END_REF], both h and h are explicitly solved.

However, the term Σ 1,1 is harder because double-Poisson summation gives the more complicated formula

Σ 1,1 (z) = n 1 ,n 2 ∈Z σ 2a-1 (|n 1 |)σ 2a-1 (|n 2 |) |n 1 n 2 | 2a-1 ζ(2a) 2 y e((n 1 + n 2 )x) I(n 1 , n 2 ; y) , where (2.6) 
I(n 1 , n 2 ; y) := R 2 h r 1 r 2 +1 r 2 -r 1 |r 2 -r 1 | 2a e(-(n 1 yr 1 + n 2 yr 2 )) dr 1 dr 2
is the key integral in this approach, as it determines the general Fourier modes via the formulas f0,0 (y) = Σ 0,0 (y) + 2 Σ 0,1 0 (y) + Σ 1,1 0,0 (y) fn,0 (y) = f0,n (y) = Σ 0,1 n (y) + Σ 1,1 n,0 (y) for n ̸ = 0 (2.7)

n 1 ̸ =0,n f n 1 ,n-n 1 (y) = 1 ζ(2a) 2 y n 1 ̸ =0,n σ 2a-1 (|n 1 |)σ 2a-1 (|n -n 1 |) |n -n 1 | 2a-1 I(n 1 , n -n 1 ; y)
as in [12, (A.44)]. However, in [START_REF] Green | SL(2, Z)-invariance and D-instanton contributions to the D 6 R 4 interaction[END_REF] Green, Miller and Vanhove were unable to compute the integral I(•, •; y), instead resorting to guessing the solutions for the Fourier coefficients. In the next two sections we explicitly compute (2.6) for a = 3/2, thereby completing the Poincaré series approach and providing a method for computing I for a ∈ 1 2 Z >0 .

Solutions h to (2.3)

Euler's method of variation of parameters gives solutions to (2.3) of the form

h a,b (u) =P b -(iu) u 1 i(1 - √ 4b + 1)(k 2 1 + 1) -a Q b -(ik 1 ) 2b P b + (ik 1 )Q b -(ik 1 ) -P b -(ik 1 )Q b + (ik 1 ) dk 1 + Q b -(iu) u 1 i(1 - √ 4b + 1)(k 2 2 + 1) -a P b -(ik 2 ) 2b P b -(ik 2 )Q b + (ik 2 ) -P b + (ik 2 )Q b -(ik 2 ) dk 2 (3.1) + c 1 P b -(iu) + c 2 Q b -(iu), where b + := 1 2 √ 4b + 1 + 1 , b -:= 1 2 √
4b + 1 -1 , and P n and Q n are Legendre functions of the first and second kind. The latter are defined for integral values of n (the main case of interest in this paper) as

P n (x) := 1 2 n ⌊ n 2 ⌋ ℓ=0 (-1) ℓ n ℓ 2n -2ℓ n x n-2ℓ (3.2) and Q n (x) := 1 2 P n (x) ln 1 + x 1 -x - n k=1 1 k P k-1 (x) • P n-k (x). (3.3)
The last two terms of (3.1) are solutions to the homogenous part of (2.3). In [12, (A.7)], h(u) is given explicitly for a = 3/2 and b = 12 as

(3.4) h(u) = 7 + 44u 2 + 40u 4 3 √ 1 + u 2 - 16 3π 
4 3 + 5u 2 + u(3 + 5u 2 ) arctan(u) .
Note that the first term

7+44u 2 +40u 4 3 √ 1+u 2
already solves (2.3), but the second term is necessary to ensure the boundary condition h(u) = O(|u| -3 ).

3.1.

Half-integer a. We next examine the more general case where a ∈ 1 2 Z and evaluate h a,b (u). When b + and b -are integers, the denominators of the integrands of h a,b in (3.1) are constant: for n ∈ Z >0 , the Wronskian becomes

P n (x)Q n-1 (x) -P n-1 (x)Q n (x) = 1 n ,
and one can compute the integrals in (3.1) using trigonometric substitution. In that case h a,b will have a form similar to that of (3.4):

Proposition 3.1. For n ∈ Z ≥0 , let a = n + 1 2 and b = (2n + 1)(2n + 2). Then all solutions to equation (2.3) have the form ). In fact, c 1 and c 2 may be chosen so that this solution matches (3.4) when a = 3/2. Notice that even for a ̸ = 3/2 the solution (3.5) already has a form similar to that of (3.4). Specifically, h a,b (u) for a ∈ 1 2 Z >0 is a linear combination of arctan u, polynomials in u, and polynomials in u 3.2. Integer a. The case when a ∈ Z >0 results in two different forms of h a,b depending on whether a is even or odd. Choosing b = a(a -1) again forces the Wronskian to be a constant. However, computing the integrals in (3.1) yields different types of solutions (arising from different trigonometric identities) depending on whether a is odd or even.

h a,b (u) = c 1 P 2n+1 (iu) + c 2 Q 2n+1 (iu) + Q 2n+1 (iu) n k=0 A k (1 + u 2 ) -k+ 1 2 -2 -k+ 1 2 + P 2n+1 (iu) n k=0 B k arctan u (u 2 + 1) k-1 2 - π 2 k+ 3 2 + 2n+1 k=0 C k u 2 1 + u 2 k+ 1 - 1 2 k+1/2 , ( 3 
For specific choices of even values of a, computing the integrals in (3.1) yields h a,b (u) of a similar form to that when a = n + 1 2 (i.e., a linear combination of polynomials in u, 1 √ 1+u 2 , and arctan u). In fact when, a is even it appears one can find a formula for h a,b (u) as a rational function satisfying the bound h a,b (u) = O(|u| -a ), which is still adequate for absolute convergence for positive even integers a. The lack of the arctan u factor in the case when a is even allows for the integral I to be computed directly, without resorting to the method outlined in Section 4.

When a is odd, however, computing the integrals in (3.1) results in the appearance of factors of arctan 2 u, making the computation of I more difficult. Our method below appears to require some modifications in order to work; for example, the integration by parts method applied in the next section runs into trouble with these arctan 2 u terms.

The integral I

In this section we show how to explicitly compute the integral (2.6) for a = n + 1 2 and b = (2n + 1)(2n + 2), illustrated with the example of (a, b) = ( 32 , 12) studied in [START_REF] Green | Eisenstein series for higher-rank groups and string theory amplitudes[END_REF]. Recall that for this choice of a and b the integral is

I(n 1 , n 2 ; y) := R 2 h r 1 r 2 +1 r 2 -r 1 |r 2 -r 1 | 3 e(n 1 yr 1 + n 2 yr 2 ) dr 1 dr 2 ,
with h given by (3.4). The main tool will be a seven-fold integration by parts (in general, a (4a + 1)-fold integration by parts) which removes the arctan(u) term completely. To wit, define

H(r 1 , r 2 ) := h r 1 r 2 +1 r 2 -r 1 |r 2 -r 1 | 3
and the differential operator (4.1)

Df := ∂ ∂r 1 f + ∂ ∂r 2
f.

Then D 7 (e(-y(n 1 r 1 + n 2 r 2 ))) = 128i • e(-y(n 1 r 1 + n 2 r 2 ))(n 1 + n 2 ) 7 π 7 y 7 ,
and seven-fold integration by parts yields the formula

(4.2) I(n 1 , n 2 ; y) = - 1 128i(n 1 + n 2 ) 7 π 7 y 7 R 2 D 7 H(r 1 , r 2 )e(-y(n 1 r 1 + n 2 r 2 )) dr 1 dr 2
(there are no boundary terms because of the decay conditions). To compute the integral we separate out terms in the integrand depending on whether or not they are smooth at r 1 = r 2 . Namely, we write

D 7 H(r 1 , r 2 ) 128i(n 1 + n 2 ) 7 π 7 = T 1 (r 1 , r 2 ) + T 2 (r 1 , r 2 ) ,
where direct calculation shows

T 1 (r 1 , r 2 ) = |r 1 -r 2 | (1 + r 2 1 ) 7 (1 + r 2 2 ) 7 p 1 (r 1 , r 2 ) (4.3) T 2 (r 1 , r 2 ) = - 3 π(1 + r 2 1 ) 15/2 (1 + r 2 2 ) 15/2 p 2 (r 1 , r 2 ), (4.4) 
with p 1 (r 1 , r 2 ) and p 2 (r 1 , r 2 ) explicitly-computable polynomials, and examine their respective contributions to the total integral. In particular certain complicated terms such as the arctangent from (3.4) disappear through this seven-fold differentiation.

4.1. The first term T 1 . Let

I 1 (n 1 , n 2 , y) := - 1 y 7 R 2 |r 1 -r 2 | • p 1 (r 1 , r 2 ) (1 + r 2 1 ) 7 (1 + r 2 2 ) 7 • e(-y(n 1 r 1 + n 2 r 2 )
)dr 1 dr 2 . After changing variables r 1 → r 1 + r 2 and then breaking up the integration into two ranges depending on the sign of r 1 , we write

4 y n 2 1 n 2 2 I 1 (n 1 , n 2 , y) = R 2 3r 4 1 (r 1 + 2r 2 ) • p 1 (r 1 , r 2 ) • e(-y(n 1 (r 1 + r 2 ) + n 2 r 2 )) πn 2 1 n 2 2 (r 2 2 + 1) 7 y 8 |r 1 | 3 ((r 1 + r 2 ) 2 + 1) 7 dr 1 dr 2 = R ∞ 0 3r 1 (r 1 + 2r 2 ) • p 1 (r 1 , r 2 ) • e(-y(n 1 (r 1 + r 2 ) + n 2 r 2 )) πn 2 1 n 2 2 (r 2 2 + 1) 7 y 8 ((r 1 + r 2 ) 2 + 1) 7 dr 1 dr 2 + R ∞ 0 3r 1 (2r 2 -r 1 ) • p 1 (-r 1 , r 2 ) • e(-y(n 1 (r 2 -r 1 ) + n 2 r 2 )) πn 2 1 n 2 2 (r 2 2 + 1) 7 y 8 ((r 1 -r 2 ) 2 + 1) 7 dr 1 dr 2 ,
where (r 1 + 2r 2 ) • p 1 (r 1 , r 2 ) := p 1 (r 1 + r 2 , r 2 ).

Assume n 1 + n 2 ̸ = 0 and change the order of integration, so that the r 2 -integrals can be computed by shifting the contours up or down depending on whether n 1 + n 2 is negative or positive. After picking up poles this results in the expression (4.5) and

4 y n 2 1 n 2 2 I 1 (n 1 , n 2 , y) = ∞ 0 6 k=3 2πc k e -2π(n 1 +n 2 )y π k+2 y k+2 n 2 1 n 2 2 (n 1 + n 2 ) k+1 N (n 1 , n 2 ) • A k (r 1 )r -k
A k (r 1 ) =    1 2 e -2iπn 1 r 1 y + 1 2 e 2iπn 1 r 1 y + 1 2 e -2iπn 2 r 1 y + 1 2 e 2iπn 2 r 1 y for k odd 1 2 ie -2iπn 1 r 1 y -1 2 ie 2iπn 1 r 1 y + 1 2 ie -2iπn 2 r 1 y -1 2 ie 2iπn 2 r 1 y for k even.
This integral converges, but the integrals

∞ 0 A k r -k 1 dr 1 do not. We instead evaluate ∞ 0 A k r -k 1 e -ϵr 1 r s 1 dr 1
which is holomorphic for Re(s) > 6 and Re(ϵ) > 0, and calculate the full sum by analytic continuation. Namely, we multiply the integrand in (4.5) by e -εr 1 r a 1 to get

6 k=3 2πc k e -2π(n 1 +n 2 )y π k+2 y k+2 n 2 1 n 2 2 (n 1 + n 2 ) k+1 N (n 1 , n 2 ) ∞ 0 A k r -k 1 e -ϵr 1 r a 1 dr 1 = e -2πy(n 1 +n 2 ) N (n 1 , n 2 ) π 7 n 2 1 n 2 2 y 8 (n 1 + n 2 ) 7 6 k=3 π 6-k c k Γ(a -k + 1)(n 1 + n 2 ) 6-k A k (a, ϵ)
where

A k (a, ϵ) =            i k-1 2 ℓ=1 (2πn ℓ y + iϵ) k-1 (ϵ -2iπn ℓ y) -a +(2πn ℓ y -iϵ) k-1 (ϵ + 2iπn ℓ y) -a , k odd, i k-1 2 ℓ=1 (ϵ -2iπn ℓ y) k-1-a + i(2πn ℓ y -iϵ) k-1 (ϵ + 2iπn ℓ y) -a , k
even. Not all of the terms in this sum are holomorphic at a = ϵ = 0, but the full sum is and evaluates there to give

I 1 (n 1 , n 2 , y) = 2e -2πy(n 1 +n 2 ) 45π 2 y 2 (n 1 + n 2 ) 7 N (n 1 , n 2 ) × (n 1 + n 2 ) -94n 2 1 n 2 2 + 14n 3 1 n 2 + n 4 1 + 14n 1 n 3 2 + n 4 2 + 30n 2 1 n 2 2 (n 1 -n 2 ) log(-in 1 y) + log(in 1 y) -log(-in 2 y) -log(in 2 y) .
This indeed matches the homogeneous part of the solution found by Green, Miller and Vanhove in [START_REF] Green | SL(2, Z)-invariance and D-instanton contributions to the D 6 R 4 interaction[END_REF] and given by the α n 1 ,n 2 term in [12, (2.40)]. Explicitly,

(4.7) 4 y|n 1 | 2 |n 2 | 2 σ 2 (|n 1 |)σ 2 (|n 2 |)I 1 (n 1 , n 2 , y) = α n 1 ,n 2 √ yK 7/2 (2π|n 1 + n 2 |y)
for y > 0, n 1 + n 2 ̸ = 0 and α n 1 ,n 2 as in [12, (2.40)].

4.2.

The second term T 2 . We write p 2 (r 1 , r 2 ) as 12 a,b=0 d(a, b)r a 1 r b 2 for some coefficients d(a, b). The integral

I 2 (n 1 , n 2 , y) = 3 πy 7 R 2 p 2 (r 1 , r 2 ) • e(-y(r 1 n 1 + r 2 n 2 )) (1 + r 2 1 ) 15/2 (1 + r 2 2 ) 15/2
dr 1 dr 2 can be evaluated using the function

(4.8) K(ξ) := R 1 (1 + r 2 ) 15/2 e -2πirξ dr = 256π 7 |ξ| 7 K 7 (2π|ξ|) 135135
and its derivatives using the formula

∂ k ∂ξ k e(-rξ) (1 + r 2 ) 15/2 = (-2πi) k r k e(-rξ) (1 + r 2 ) 15/2 . (4.9) Assume n 1 ̸ = 0, n 2 ̸ = 0 and n 1 + n 2 ̸ = 0. The change of variables n 1 → ξ 1 y , n 2 → ξ 2 y
along with (4.8)-(4.9) together give

I 2 (n 1 , n 2 , y) = 3 πy 7 R 2 p 2 (r 1 , r 2 ) e(-r 1 ξ 1 -r 2 ξ 2 ) (1 + r 2 1 ) 15/2 (1 + r 2 2 ) 15/2 dr 1 dr 2 (4.10) = 3 πy 7 12 a,b=0 d(a, b) R r a 1 e(-r 1 ξ 1 ) (1 + r 2 1 ) 15/2 dr 1 • R r b 2 e(-r 2 ξ 2 ) (1 + r 2 2 ) 15/2 dr 2 (4.11) = 3 πy 7 12 a,b=0 d(a, b) (-2πi) a+b • ∂ a K ∂ξ a 1 (ξ 1 ) • ∂ b K ∂ξ b 2 (ξ 2 ). (4.12) Using the derivative formula K ′ ν (z) = 1 2 (-K ν-1 (z) -K ν+1 (z)) as well as the recurrence K ν (z) = K ν-2 (z) + 2(ν-1) z K ν-1 (z) , all K-Bessel
functions arising can be expressed in terms of combinations of K 0 and K 1 . Applying the change of variables ξ i → yn i we find that (4.10) equals (4.13) 8n

1 n 2 3y 5 (n 1 + n 2 ) 7 × -n 4 1 1 -16π 2 n 2 2 y 2 -n 3 1 14n 2 -40π 2 n 3 2 y 2 + 2n 2 1 n 2 2 8π 2 n 2 2 y 2 + 47 -4π 2 n 5 1 n 2 y 2 -2n 1 n 3 2 2π 2 n 2 2 y 2 + 7 -n 4 2 y 5 (n 1 + n 2 ) × sgn(n 1 y)sgn(n 2 y)K 1 (2π|n 1 y|)K 1 (2π|n 2 y|) + -n 3 1 30 -98π 2 n 2 2 y 2 + 2n 2 1 n 2 19π 2 n 2 2 y 2 + 15 + 27π 2 n 4 1 n 2 y 2 -19π 2 n 5 1 y 2 -15π 2 n 1 n 4 2 y 2 -π 2 n 5 2 y 2 n 2 y 4 π × sgn(n 1 y)K 1 (2π|n 1 y|)K 0 (2π|n 2 y|) + -π 4 y 5 (n 1 + n 2 ) 2 13n 2 1 n 2 + n 3 1 -65n 1 n 2 2 + 19n 3 2 -30π 2 n 2 2 y 3 (n 2 -n 1 ) × n 1 y π 3 sgn(n 2 y)K 0 (2π|n 1 y|)K 1 (2π|n 2 y|) + 5n 2 1 4π 2 n 2 2 y 2 -3 + 8π 2 n 3 1 n 2 y 2 -2π 2 n 4 1 y 2 + 2n 1 n 2 4π 2 n 2 2 y 2 + 15 -n 2 2 2π 2 n 2 2 y 2 + 15 2n 1 n 2 y 5 (n 1 + n 2 ) × K 0 (2π|n 1 y|)K 0 (2π|n 2 y|)
Our computation shows that I 2 matches the principal part of the solution found in [START_REF] Green | SL(2, Z)-invariance and D-instanton contributions to the D 6 R 4 interaction[END_REF]. Specifically, when n 1 ̸ = 0, n 2 ̸ = 0 and n 1 + n 2 ̸ = 0,

4 y|n 1 | 2 |n 2 | 2 σ 2 (|n 1 |)σ 2 (|n 2 |)I 2 (n 1 , n 2 , y) = f P n 1 ,n 2 (y) ,
where f P n 1 ,n 2 is given in [12, (2.35)] and I 2 computed as above. In other words, our computation matches the principal part of the original solution in regions (iii) and (iv).

Note that when n 1 = 0 and n 2 = 0, T 2 can be computed directly and is 0. Similarly, when just one of n 1 = 0 or n 2 = 0, the integral without the exponential may be computed directly while the integral with the exponential may be computed as above.

When n 1 + n 2 = 0 (but n 1 ̸ = 0, n 2 ̸ = 0), one can use a limiting argument to make this match the solution provided in the 2015 paper in region (v). The other cases of n 1 = 0 or n 2 = 0 are given as limits as well.

A conjecture of Chester, Green, Pufu, Wang and Wen

The solution to the differential equation (1.3) was computed in [START_REF] Green | SL(2, Z)-invariance and D-instanton contributions to the D 6 R 4 interaction[END_REF] and above here in terms of instanton/anti-instanton pairs. In particular, the solution involves a K 7/2 -Bessel function term for the homogeneous solutions, which is manifestly nonzero for particular pairs α n 1 ,n 2 in (1.8)-(1.10). However, when summed together to give the Fourier modes of the solution itself, they give a rather complicated expression. Chester, Green, Pufu, Wang and Wen have conjectured, based on ideas from the AdS-CFT correspondence and Yang-Mills theory, that this total sum actually vanishes [START_REF] Chester | New Modular Invariants in N = 4 Super-Yang-Mills Theory[END_REF].

We present a mathematical calculation which explains the vanishing in (1.11). However, our explanation falls short of a proof because it involves manipulations of divergent series. We will use these to derive the equivalent statement (5.1)

m+n=r mn̸ =0 α m,n = - m+n=r mn=0 α m,n = -α 0,r -α r,0 .
First, the desired identity (1.11) can be more succinctly stated in terms of

α m,n = 45|m + n| 5/2 128π α m,n = σ 2 (|m|)σ 2 (|n|) g 2m m + n + g 2n m + n for m, n ̸ = 0, where g(x) = 60x log |x| -60 log |x| -60 + 24 x + 4 x 2 .
In terms of α m,n , note that (1.9) gives

α r,0 = α 0,r = σ 2 (r) r 2 ζ(2) + 60ζ ′ (-2) since ζ(2) = π 2 6 and ζ ′ (-2) = ζ(3) 4π 2 . Thus (1.11) is equivalent to (5.2) m+n=r mn̸ =0 α m,n = -2σ 2 (r) r 2 ζ(2) + 60ζ ′ (-2) .
We will explain how

(5.3) A r := c,d>0 (cd) 2 ad-bc=r ab̸ =0 g 2ad r + g 2bc -r = -2σ 2 (r) r 2 ζ(2) + 60ζ ′ (-2) .
which is equivalent to (5.2) by reindexing the sum. The rest of this section is devoted to a formal manipulation of divergent series to demonstrate (5.3). We stress at the outset that although parts of this argument can be made rigorous, appropriately and correctly normalizing all the divergences involved is beyond the scope of this paper. Let 

(1. 2 )

 2 E s (z) = γ∈(B∩Γ)\Γ Im(γz) s , Re(s) > 1 ,

. 5 )

 5 where A k , B k and C k are absolute constants, and c 1 , c 2 ∈ C are arbitrary.In practice, for a = 2n+1 2 and b = (2n + 1)(2n + 2) with n ∈ Z ≥0 , c 1 and c 2 in (3.5) may be chosen so h a,b (u) = O(|u| -2n-1

√ u 2

 2 +1 . This form allows us to use the method outlined in Section 4 to compute the associated integral I in (2.6) when a = 2n+1 2 and b = (2n + 1)(2n + 2).

1 dr 1 where c 3 =

 113 -8/3, c 4 = 16, c 5 = 40, c 6 = -40, (4.6) N (n 1 , n 2 ) = 15 + 2(n 1 + n 2 )πy[15 + 4(n 1 + n 2 )πy(3 + (n 1 + n 2 )πy)]

(5. 4 )c 2 ( 1 ),π 2 c 2 d 2 eLemma 5 . 1 .

 421251 T r (c, d) := ad-bc=r,ab̸ =0 d 2 T r (c, d) . To analyze T r (c, d) for fixed c, d > 0 we pick a solution a = a * , b = b * to ad -bc = r with |b * | minimal. The general solution to ad -bc = r can be parameterized as (5.6) a = a * + m (c, d) c, b = b * + m (c, d) d, m ∈ Z, since (a -a * ) d (c,d) -(b -b * ) c (c,d) = 0 forces these coefficients a -a * and b -b * of the coprime integers d (c,d) and c (c,d) to have that form. Our next goal is to perform Poisson summation on T r (c, d) over m ∈ Z (in terms of the parametrization in (5.6)), keeping in mind that the conditions that neither a nor b vanish may constrain m. Vanishing of a (resp. b) in the equation ad -bc = r forces c (resp. d) to divide r. We break into four cases: Both c|r and d|r: In this case there is a solution to ad -bc = r with a = 0, as well as a solution with b = 0. Thus b * = 0, hence a * = r d , implying that the term with m = 0 must be excluded as well as the term with m = -r(c,d) cd and g(-2bc r ) = g(2) (note this m is in fact an integer). (2) d|r but c ∤ r: In this case again b * = 0, but no solution with a = 0; thus only m = 0 is excluded. (3) c|r but d ∤ r: Only the term g(2), corresponding to the value of -2bc r at the solution to ad -bc = r with a = 0, is omitted. (4) Both c ∤ r and d ∤ r: Here neither a nor b ever vanishes and no m ∈ Z is excluded. Let x c,d := -b(c,d) d , and y c,d := 2cd r(c,d) . Formal Poisson summation over m ∈ Z shows n∈Z g(y c,d (n + x c,d )) = -30y c,d π Im Li 2 (e(x c,d )) -60 log |1 -e(x c,d )| -24πi y c,d 1 + e(x c,d ) 1 -e(x c,d ) c,d ) (e(x c,d ) -1) 2 , (5.7) for x c,d / ∈ Z. This can be seen from the formal integral computation that the function x → |x| s-1 sgn(x) η , η ∈ {0, 1}, has Fourier transform |r| -s sign(-r)G η (s), where G 0 (s) = 2(2π) -s Γ(s) cos(πs/2) and G 1 (s) = 2i(2π) -s Γ(s) sin(πs/2), then applying Poisson summation (to this function and its s-derivatives), and finally invoking the customary calculus of treating the r = 0 expression for the Fourier transform as zero (which is valid for Re(s) ≪ 0). When x c,d ∈ Z we instead use the limiting case which can be seen more directly by noting that g(x)+g(-x) = 8 -15 log(|x|) + 1 x 2 -15 . It follows that T r (c, d) = 60 log cd r(c, d)π + 60 + r 2 π 2 (c, d) 2 3(cd) 2 -g(2)δ c|r (5.9) for d|r, and (5.10) T r (c, d) = -g(2)δ c|r -60cd r(c, d)π Im Li 2 (e(x c,d )) -60 log |1 -e(x c,d )| -12r(c, d)πi cd 1 + e(x c,d ) 1 -e(x c,d ) -4r 2 (c, d) 2 (x c,d ) (e(x c,d ) -1) 2 for d ∤ r. Next define the double Dirichlet series L r (s, w) := c,d>0 c -s d -w T r (c, d) = d≥1 L d,r (s) d w where L d,r (s) := c>0 c -s T r (c, d) so that A r = 2L r (-2, -2). We first formally compute L d,r (s) using the following Lemma. For Re(s) sufficiently large one has c≥1 log |(c, d)| c s = ζ(s) ℓ|d Λ(ℓ)ℓ -s

  [START_REF] Bossard | 1/8-BPS Couplings and Exceptional Automorphic Functions[END_REF] , and α n are polynomials in y and 1

	y as defined in [12, Section 2.2].
	Explicitly, each α n can be expressed as
	(1.7)
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where Λ is the von Mangoldt function and v p (n) denotes the valuation of n at prime p.

Proof. The first formula directly follows from the identity log |(c, d)| = l|(c,d) Λ(l) and changing the order of summation in the resulting double sum. To prove the second formula, we note that the Dirichlet series on the left has multiplicative coefficients, and so it suffices to prove that

which is easily verified after multiplying both sides by (1 -p -s-k ). □ From (5.9) and the above Lemma, it follows that 

When this is evaluated at s = -2, the Hurwitz zeta-functions for c and d -c combine together to give vanishing of the sum, and (5.11) is established as claimed.