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ON THE GONCHAROV DEPTH CONJECTURE AND POLYLOGARITHMS OF DEPTH TWO

We prove the surjectivity part of Goncharov's depth conjecture. We also show that the depth conjecture implies that multiple polylogarithms of depth d and weight n can be expressed via a single function Li n-d+1,1,...,1 (a 1 , a 2 , . . . , a d ), and we prove this latter statement for d = 2.

The number n = n 1 + • • • + n d is called the weight of the multiple polylogarithm, and the number d is called its depth. Goncharov suggested an ambitious conjecture, giving a necessary and sufficient condition for a sum of polylogarithms to have certain depth. In §3 we show that the Goncharov depth conjecture would have the following remarkable corollary.

Conjecture 1. Any multiple polylogarithm of weight n ≥ 2 and depth d ≥ 2 can be expressed as a linear combination of multiple polylogarithms Li n-d+1,1,...,1 and products of polylogarithms of lower weight.

We expect that there exists a presentation where all the arguments are Laurent monomials in N √ a 1 , . . . , N √ a d for sufficiently large N. We show that Conjecture 1 is true for d = 2.

Theorem 2. For every 0 < k < n ∈ N there exists N ∈ N such that the multiple polylogarithm Li k,n-k (x, y) can be expressed as a linear combination of functions

Li n-1,1 ( N √ x r N √ y s , N √ x t N √ y u ) for r, s, t, u ∈ Z
and products of classical polylogarithms, where each appearance of N √ z denotes any N th root of z.

Here is an example of this type of identity in weight four and depth two

Li 2,2 (x, y) = -4 Li 3,1 - √ x √ y , y -4 Li 3,1 √ x √ y , y + 4 Li 3,1 - √ y √ x , x + 4 Li 3,1 √ y √ x , x + Li 3,1 (x, y) -Li 3,1 (y, x) -Li 3,1 y x , x - 1 2 Li 4 (xy) + Li 1 (x) Li 3 (y) .
In §2 we give an elementary proof of Theorem 2. In §3 we recall the statement of Goncharov's depth conjecture and prove a part of it (Theorem 5). Next, we show that the depth conjecture implies Conjecture 1.
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Proof of Theorem 2

We define L(x, y | t 1 , t 2 ) to be the following generating function

L(x, y | t 1 , t 2 ) := k,l>0 Li k,l (x/y, y)t k-1 1 t l-1 2 = m,n>0 x m y n (m -t 1 )(m + n -t 2 )
.

The key observation used in the proof of Theorem 2 is the following identity.

Proposition 3. For any integers α, β, γ > 0 with γ = α + β and any x, y with |x|, |y| < 1 we have

(1)

X α =x,Y β =y, Z γ =xy 1 γ L(X, Y | αβt, 0) - 1 α L(Z, Y | γβt, 0) + 1 β L(Z, X | -γαt, 0) = L(xy, x | -αt, βt) + 1 γt k≥2 Li k (xy)(βt) k-1 .
Proof. Note that

X α =x Y β =y L(X, Y | t 1 , t 2 ) = m,n>0 αβx m y n (mα -t 1 )(mα + nβ -t 2 )
.

From this we calculate that the LHS of ( 1) is equal to

m,n>0 βx m y n (m -βt)(mα + nβ) - βx m y m+n (m -βt)(mα + (m + n)β) + αx m+n y m (m + αt)((m + n)α + mβ) = m=n>0 βx m y n (m -βt)(mα + nβ) + m>n>0 βx m y n (m -βt)(mα + nβ) + αx m y n (n + αt)(mα + nβ) = 1 γt n>0 (xy) n n -βt - (xy) n n + m>n>0 x m y n (m -βt)(n + αt) = 1 γt k≥2 Li k (xy)(βt) k-1 + L(xy, x | -αt, βt) . □
Proof of Theorem 2. Expanding both sides of (1) as a power series in t and comparing the coefficients of t n-2 we see that for any integers α, β > 0 the function

U α,β n (x, y) := k+l=n, k,l>0 Li k,l (y, x)(-α) k-1 β l-1
is expressible in terms of Li n-1,1 and Li n . Since the matrix ((-i) k-1 (n -i) n-d-1 ) n-1 i,k=1 is invertible (its determinant is of Vandermonde type), each individual function Li k,l (y, x) for k + l = n can be written as a rational linear combination of the functions U 1,n-1 n (x, y), U 2,n-2 n (x, y), . . . , U n-1,1 n (x, y), and hence it also can be expressed in terms of Li n-1,1 and Li n , as claimed. □

Surjectivity part of the Goncharov depth conjecture

To state the Goncharov depth conjecture we recall the definition of the Lie coalgebra L • (F) of (formal) polylogarithms with values in a field F ( [1], see also Assume that ∆ = 1≤i≤j ∆ ij for ∆ ij : L i+j (F) -→ L i (F) ∧ L j (F). The truncated cobracket is a map ∆ : L(F) -→ 2 L(F) defined by the formula ∆ = 2≤i≤j ∆ ij . In other words, ∆ is obtained from ∆ by omitting the component L 1 (F) ∧ L n-1 (F) from the cobracket. Denote by coLie • (V ) the cofree graded Lie coalgebra cogenerated by a graded vector space V . By [4, Proposition 4.1], the iterated truncated cobracket ∆ [d-1] vanishes on D d-1 L • (F) and defines a map

∆ [d-1] : gr D d L ≥2 (F) -→ coLie d n≥2 B n (F) . (2) 
Conjecture 4 (Goncharov, [3, Conjecture 7.6]). A linear combination of multiple polylogarithms has depth less than or equal to d if and only if its d-th iterated truncated cobracket vanishes. Moreover, the map ∆ [d-1] for d ≥ 1 is an isomorphism.

We prove the surjectivity part of Conjecture 4.

Theorem 5. Assume that the field F is quadratically closed. Then the map

∆ [d-1] : gr D d L ≥2 (F) -→ coLie d n≥2 B n (F) is surjective. Proof. It is easy to see that ∆ [d-1] Li L n-d ; 1,...,1 (a 1 , . . . , a d ) = n1+n2+•••+n d =n ni≥2 Li L n1 (a 1 ) ⊗ • • • ⊗ Li L n d (a d ).
Recall that if F contains all degree r roots of unity then classical polylogarithms Li n (a) satisfy the following distribution relations:

Li L n (a r ) = r n-1 ζ r =1
Li L n (ζa) .

It follows that for any

s ∈ N ∆ [d-1]   x 2 s =a d Li L n-d ; 1,...,1,1 (a 1 , . . . , a d-1 , x)   = n1+n2+•••+n d =n ni≥2 2 -s(n d -1) Li L n1 (a 1 ) ⊗ • • • ⊗ Li L n d (a d ) = 2≤n d ≤n-2d+2 n1+n2+•••+n d-1 =n-n d ni≥2 Li L n1 (a 1 ) ⊗ • • • ⊗ Li L n d-1 (a d-1 ) ⊗ 2 -s(n d -1) Li L n d (a d ) .
From the properties of the Vandermonde determinant it follows that for every n d ≥ 2 the element

n1+n2+•••+n d-1 =n-n d ni≥2 Li L n1 (a 1 ) ⊗ • • • ⊗ Li L n d-1 (a d-1 ) ⊗ Li L n d (a d )
lies in the image of ∆ [d-1] . Continuing in a similar fashion, we conclude that for every n 1 , . . . , n d ∈ N

the element Li L n1 (a 1 ) ⊗ • • • ⊗ Li L n d (a d )
lies in the image of ∆ [d-1] . From here the statement follows. □
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 1 Introduction Multiple polylogarithms are multivalued functions of variables a 1 , . . . , a d ∈ C depending on positive integer parameters n 1 , . . . , n d ∈ N. In the polydisc |a 1 |, |a 2 |, . . . , |a d | < 1 polylogarithms are defined by power series Li n1,n2,...,n d (a 1 , a 2 , . . . , a d ) = 0<m1<m2<•••<m d a m1 1 a m2 2 . . . a m d d m n1 1 m n2 2 . . . m n d d .
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 4 §2.1]). The Lie coalgebra L • (F) is positively graded by weight; the component of weight n is generated over Q by formal symbols Li L n0 ; n1,...,n d (a 1 , . . . , a d ) for n 0 ∈ Z ≥0 , n 1 , . . . , n d ∈ N with n 0 + n 1 + • • • + n d = n and a 1 , . . . , a d ∈ F × , which are subject to (mostly unknown) functional equations for polylogarithms. The cobracket ∆ : L • (F) -→ 2 L • (F) was discovered by Goncharov ([1], [2], [3]); the definition was inspired by properties of mixed Hodge structures related to multiple polylogarithms. The Lie coalgebra L • (F) is filtered by depth; denote by D d L • (F) the subspace spanned by polylogarithms of depth not greater than d; let gr D d L • (F) be the associated graded space. The subspace D 1 L • (F) spanned by classical polylogarithms Li L n (a) is denoted by B n (F).
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Assume that Goncharov's depth conjecture holds. It follows from the proof of Theorem 5 that L • (F) is generated by functions Li n-d ; 1,...,1 (a 1 , . . . , a d ). Shuffle relations for multiple polylogarithms imply that Li L n-d ; 1,...,1 can be expressed via Li L 0 ; n-d+1,...,1 (corresponding to the function Li n-d+1,...,1 ) and functions of lower depth, so Conjecture 4 implies Conjecture 1.

Theorem 5 has the following striking corollary.

Corollary 6. Let F be a quadratically closed field. Assume that Conjecture 4 holds for d = 1. Then it holds for all d ≥ 1 and the Lie coalgebra L ≥2 (F) with cobracket ∆ is cofree.

Proof. It is sufficient to prove that ( 2) is an isomorphism: Conjecture 4 and cofreeness of L ≥2 (F) would follow from the spectral sequence of the filtered complex • (L ≥2 (F)); the filtration on the complex is induced by the depth filtration on L ≥2 (F). We argue by induction on d; the base case d = 1 is a tautology. Suppose that for k ≤ d -1 the map ∆ [k-1] is an isomorphism. By Theorem 5, it is sufficient

By the induction assumption, (3) implies that ∆(x) vanishes in