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Abstract: Mutations in GPR179 are one of the most common causes of autosomal recessive complete
congenital stationary night blindness (cCSNB). This retinal disease is characterized in patients by
impaired dim and night vision, associated with other ocular symptoms, including high myopia.
cCSNB is caused by a complete loss of signal transmission from photoreceptors to ON-bipolar
cells. In this study, we hypothesized that the lack of Gpr179 and the subsequent impaired ON-
pathway could lead to myopic features in a mouse model of cCSNB. Using ultra performance liquid
chromatography, we show that adult Gpr179−/− mice have a significant decrease in both retinal
dopamine and 3,4-dihydroxyphenylacetic acid, compared to Gpr179+/+ mice. This alteration of the
dopaminergic system is thought to be correlated with an increased susceptibility to lens-induced
myopia but does not affect the natural refractive development. Altogether, our data added a novel
myopia model, which could be used to identify therapeutic interventions.

Keywords: CSNB; myopia; ON-bipolar cells; GPR179; refractometry; dopamine

1. Introduction

Myopia is the most common ocular dysfunction worldwide with an alarming rise in
prevalence, especially in Southeast Asia [1–4]. It is characterized by an abnormal increase
in the axial length of the eye during refractive development (i.e., emmetropization process),
leading to a disturbed far-sight but normal near-sight [1,2,5]. Previous studies of myopic
patients and animal models have expanded the knowledge of mechanisms implicated in
the onset and progression of myopia, but many cellular and molecular processes are still
poorly understood. Myopia can be divided according to the refractive error of a patient
between low myopia (≤−0.5 D) and high myopia (≤−6.00 D). High myopia can be a cause
of blindness and lead to other ocular diseases such as glaucoma, retinal detachment and
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cataract [6,7]. Many studies have shown that exposure to outdoor light inhibits myopia
onset and progression in both humans [7–14] and experimental animal models [15–20]. To
date, many models from different species have been proposed to study myopia. Although
larger animal models more similar to humans—such as monkeys and tree shrews—would
be of interest, technical and ethical issues hinder their development and use. In contrast, the
generation of mouse models is manageable but displays pros and cons. On the one hand,
both the genetics and environment can be controlled and modified. On the other hand, the
small size of the murine eye leads to difficulties in manipulation and interpretation of results
during intraocular injection and ocular measurements [21–24], and to difficulties defining
an end point for the emmetropization process. It was shown that one diopter change in
refractive error corresponds to an increase of 5.4–6.5 µm in axial length of C57BL/6 mouse
eyes [25,26] as opposed to the 280 µm to 400 µm changes in human children and adults,
respectively [27,28]. Therefore, in small animals, it is necessary to induce myopia in order
to measure detectable refractive errors until a technology overcomes this issue. Myopia
induction can be performed using lens-induced myopia (LIM) or form deprivation myopia
(FDM) protocols, both of which have been validated in mice and chickens [22,29–34].

Although the precise molecular mechanisms of refractive error onset and inhibi-
tion remain to be elucidated, previous work has highlighted the impact of the retinal
content of the neurotransmitter dopamine (DA) and its receptors upon refractive devel-
opment and myopia [35–40]. Indeed, in the retina, DA is synthesized by dopaminergic
amacrine cells (DACs), its secretion is regulated by light conditions [41–44] and it requires
a functional ON-pathway [29,45]. The retinal level of the DA degradation metabolite, 3,4
dihydroxyphenylacetic acid (DOPAC) is a commonly used marker of DA release and the
DOPAC/DA ratio is considered a marker of DA turnover. It was shown that DA and
DOPAC levels are reduced in a variety of myopia experimental models including FDM and
LIM [17,43,44,46–48] and experimentally increased retinal DA levels inhibit the develop-
ment of FDM and LIM in amphibians [42], mammals [43,44] and avian [48,49], and vice
versa [38,40].

Several inherited retinal diseases are associated with high myopia (syndromic my-
opia) [7] including cCSNB [50] where patients display high myopia with a median error of
−7.4 D [50,51]. cCSNB is a group of genetically heterogeneous and non-progressive retinal
disorders. Its main clinical features consist of an impairment of dim light vision, often asso-
ciated with other ocular signs such as high myopia, nystagmus and/or strabismus [50–56].
cCSNB is characterized by a normal a-wave but a severe or complete loss of the b-wave
under scotopic conditions and altered b-waves under photopic conditions, as measured
with electroretinography. Such abnormal electroretinograms are directly caused by the
dysfunction of the ON-BC pathway [50,52,56,57]. To date, mutations causing cCSNB in
patients were found in NYX, TRPM1, GRM6, GPR179 and LRIT3 genes [50,58–67]. Animal
models mimicking those mutations already exist and have been extensively characterized:
Nyx (also known as nob (no b-wave)) Grm6, Trpm1, Gpr179 or Lrit3 [29,62,68–86]. Previous
studies have shown that nob mice (carrying a null mutation in Nyx, which causes a loss of
function of nyctalopin) display a higher susceptibility to FDM than wild-type littermates.
The retinas of ungoggled nob mice also have a lower level of light-induced DOPAC and
an overall decrease in both DOPAC and DA levels compared with wild-type mice [29].
Similar results were found in mice lacking Grm6 [45]. Interestingly, a mouse model with
cone dysfunction (Gnat2−/−) also displayed a higher susceptibility to FDM, but the levels of
retinal DOPAC or DA were unchanged [87]. Despite the fact that all the mutated genes in
cCSNBs seem to affect the same pathway, and that patients and all animal models display
ON-bipolar cell (ON-BC) transmission defects as shown by electroretinography (for review,
see [50]), some differences have been noticed. Lrit3−/− mice exhibit a slight decrease in
thickness of the inner nuclear layer [77], while such an observation was absent in retinas of
Gpr179−/− mice [74].

All proteins encoded by cCSNB-related genes are involved in synaptic transmission
between photoreceptors and ON-BCs [50]. In this study, we decided to focus our experi-
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ments on the Gpr179−/− cCSNB mouse model [74]. GPR179 is an orphan G-protein coupled
receptor located at the dendritic tips of ON-BCs [75]. It was shown to interact with the
presynaptic transmembrane protein pikachurin and the post synaptic RGS11/9 complex to
modulate the activation of TRPM1 channel which is the final actor in the mGluR6-mediated
cascade leading to the depolarization of ON-BCs [50,82].

In the mammalian retina, detection of light increments and decrements is mediated by
the ON and OFF pathways, respectively. In a functional ON pathway, ON-BCs convey the
visual information from photoreceptors to ON-retinal ganglion cells (ON-RGCs) in two
different ways according to the origin of their input. ON-cone bipolar cells (ON-CBCs)
receive direct input from cone photoreceptors and synapse onto ON-RGCs. At low light
intensity, rod-bipolar cells (RBCs) receive their input from rods and synapse onto AII
amacrine cells (AII-ACs) which, in turn, activate ON-CBCs via gap junctions and inhibit
OFF-cone bipolar cells (OFF-CBCs) through inhibitory synapses. ON-CBCs then synapse
onto ON-RGCs. In a functional OFF pathway, OFF-CBCs convey the visual information
from cone photoreceptors (but also from a minority of rods) to OFF-retinal ganglion cells
(OFF-RGCs). Ultimately, RGCs indirectly drive the visual information to the visual cortex
through the optic nerve and thalamus [88,89]. In addition to these signaling pathways,
the activity of ACs is noteworthy since DACs receive input from AII-ACs and CBCs and
some subtypes of most major classes of retinal neurons harbor dopamine receptors (D1R
to D4R) [90]. As functional GPR179 is necessary for a proper ON signaling, and as DACs
receive indirect excitatory input from ON-BCs, one might expect that the loss of GPR179
could cause a reduced activity of DACs and thus, a reduction in DA release.

The aim of our study was to monitor whether the lack of GPR179 in a novel model
of cCSNB [74] has an impact upon DA turnover and induced-myopia. We measured the
retinal DA and DOPAC levels, the natural refractive development and the sensitivity to
LIM induction in Gpr179−/− mice in order to improve our understanding of the role of
cCSNB molecules and the ON signaling cascade upon retinal function and myopia onset
and progression.

2. Results
2.1. Measurement of Retinal Levels of DA and DOPAC

To determine whether the loss of Gpr179 induces a change in dopamine metabolism
and activity, we quantified the levels of DA and DOPAC in the retinas of adult (post-natal
day 80, P80) Gpr179+/+ and Gpr179−/− mice after 4 hours of light adaptation
(Figure 1) at 50 lux. Gpr179−/− retinas display a significant decrease in DA (Figure 1A)
compared with wild-type littermates. Mean DA levels were 3022 ± 214 fmoles/retina in
Gpr179+/+ compared with 1310 ± 135 fmoles/retina in Gpr179−/−. Similarly, Gpr179−/−

retinas display a significant decrease in DOPAC (Figure 1B) compared with wild-type
littermates. Mean DOPAC levels were 844 ± 38 fmoles/retinas in Gpr179+/+ compared with
413± 25 fmoles/retinas. No difference in the DOPAC/DA ratio was observed in Gpr179−/−

compared to Gpr179+/+ (Figure 1C). These results indicate that mice lacking Gpr179 exhibit
disturbances in dopamine metabolism.
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Figure 1. Retinal levels of DA and DOPAC. Quantification of DA (A), DOPAC (B) and the
DOPAC/DA ratio (C) in light-adapted adult Gpr179+/+ and Gpr179−/− retinas. Data are expressed
as Mean ± SEM. ns: not significant, **: p ≤ 0.01, ***: p < 0.001.
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2.2. Kinetics of Refractive Development

In order to establish whether the loss of Gpr179 and the resulting dysfunctional ON-
BC pathway could lead to change in natural refractive development, we measured the
refractive state of both eyes of Gpr179+/+ and Gpr179−/− mice from 3 to 9 weeks of age
(Figure 2). In both genotypes tested, we observed a hyperopic shift from 3- to 6-weeks-old,
starting from 0 to +1 D at 3-weeks-old and reaching +3 D to +4 D at 6-weeks-old. From
6- to 9-weeks-old a plateau was reached at +3 to +4 D for both genotypes. Overall, no
significant change in the refractive state was observed between Gpr179−/− mice and their
wild-type littermates, therefore loss of GPR179 did not induce any measurable change of
refractive development.
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Figure 2. Natural refractive development. Measurement of the refractive state of Gpr179+/+ and
Gpr179−/− mice across age. Data are expressed as Mean ± SEM.

2.3. Assessment of Sensitivity to Myopia Induction

To test whether the loss of GPR179 could affect the susceptibility to environmentally-
induced myopia, we generated a LIM protocol in Gpr179+/+ and Gpr179−/− mice from P21
to P42 and measured the mean interocular shift (called myopic shift when negative) at
different time points: P21 (Figure 3; 0-week post-goggling), P35 (2 weeks post-goggling)
and P42 (3 weeks post-goggling). At 0-week, no myopic shift was observed in Gpr179+/+

nor in Gpr179−/− mice and no difference of myopic shift between the two genotypes
was measured. At 2 weeks post-goggling, we recorded a significant difference in the
myopic shift between Gpr179+/+ and Gpr179−/− mice. Myopic shift reached −7.0 ± 0.9 D in
Gpr179+/+ and −10.9 ± 0.8 D in Gpr179−/− mice (p < 0.01). At 3 weeks post-goggling, the
difference in the myopic shift between Gpr179+/+ and Gpr179−/− mice increased compared
to week 2. The myopic shift in Gpr179+/+ mice slightly increased to −8.3 ± 0.6 D while it
reached −16.1 ± 0.8 D in Gpr179−/− mice (p < 0.001). Overall, these data demonstrate an
impact of the loss of GPR179 upon the sensitivity to lens-induced myopia.

Int. J. Mol. Sci. 2023, 24, 219 5 of 14 
 

 

D in Gpr179−/− mice (p < 0.001). Overall, these data demonstrate an impact of the loss of 
GPR179 upon the sensitivity to lens-induced myopia. 

 
Figure 3. Lens-induction of myopia. Measurement of the kinetics of mean interocular shift between 
the goggled and ungoggled eyes of Gpr179+/+ and Gpr179−/− mice. Data are expressed as Mean ± SEM. 
**: p ≤ 0.01, ***: p < 0.001. 

3. Discussion 
For the last two decades, the impact of ON-pathway defects upon refractive devel-

opment and myopia onset has raised attention. Although the detailed mechanisms of nor-
mal and myopic refractive development are still unclear, the development of new induc-
tion protocols and the extensive use of transgenic models, that allow for the manipulation 
of both environmental and genetic factors, help resolve the signaling cascades involved. 
To date, many factors have been proposed to trigger or stop the growth of the eyeball and 
thus, to impact refractive development [39,43,91–96]. Among them, the dopaminergic sys-
tem is the most characterized [17,47,90,97]. In this study, we report for the first time the 
presence of myopic features in the Gpr179 mouse model [74]. 

Our experiments revealed drastic decreases of both DA and DOPAC levels in the 
light-adapted retinas of Gpr179−/− mice compared to their wild-type littermates (Figure 1). 
DA is reduced in Gpr179−/− mice by two-thirds while DOPAC is halved. Functional 
GPR179 is necessary for a normal ON signaling, and DACs receive indirect excitatory in-
put from ON-BCs. Furthermore, stimulation of the ON pathway induces the release of DA 
via the activation of DACs [42,90,98]. Thus, it has been hypothesized that defects in ON-
BCs signaling could impact DA release [29,45,99]. Our results are in line with previous 
studies addressing this hypothesis [29,45] Still, some differences with previous findings 
are noteworthy. Here, both DA and DOPAC levels are reduced in Gpr179−/− mice while 
only DOPAC was found to be decreased in Grm6−/− mouse retinas [45]. In the retinas of 
nob mice, both DA and DOPAC levels were lower than in wild-type mice [29]. A disparity 
in tested ages was proposed to explain some of the observed differences as an impact of 
age upon retinal DA and DOPAC levels has been reported [100]. Our results are consistent 
with this explanation since both Gpr179−/− and nob [70] mice were 12 weeks old but mice 
lacking Grm6 [45] were 16 weeks old. Another explanation could involve the lighting con-
ditions used for light adaptation [17] which may have been different in the previous stud-
ies [29,45] compared to ours. A more interesting explanation might be that although both 
GRM6 and GPR179 are necessary for ON-BC signaling and are thought to be expressed in 
all ON-BCs and similarly localized to their dendritic tips, it is not known if the physiolog-
ical consequences of their absence are the same. Indeed, the light responses of retinal gan-
glion cells (downstream of ON-BCs) are different in mice with different Grm6 mutant 

Figure 3. Lens-induction of myopia. Measurement of the kinetics of mean interocular shift be-
tween the goggled and ungoggled eyes of Gpr179+/+ and Gpr179−/− mice. Data are expressed as
Mean ± SEM. **: p ≤ 0.01, ***: p < 0.001.



Int. J. Mol. Sci. 2023, 24, 219 5 of 14

3. Discussion

For the last two decades, the impact of ON-pathway defects upon refractive develop-
ment and myopia onset has raised attention. Although the detailed mechanisms of normal
and myopic refractive development are still unclear, the development of new induction
protocols and the extensive use of transgenic models, that allow for the manipulation of
both environmental and genetic factors, help resolve the signaling cascades involved. To
date, many factors have been proposed to trigger or stop the growth of the eyeball and thus,
to impact refractive development [39,43,91–96]. Among them, the dopaminergic system is
the most characterized [17,47,90,97]. In this study, we report for the first time the presence
of myopic features in the Gpr179 mouse model [74].

Our experiments revealed drastic decreases of both DA and DOPAC levels in the
light-adapted retinas of Gpr179−/− mice compared to their wild-type littermates (Figure 1).
DA is reduced in Gpr179−/− mice by two-thirds while DOPAC is halved. Functional
GPR179 is necessary for a normal ON signaling, and DACs receive indirect excitatory
input from ON-BCs. Furthermore, stimulation of the ON pathway induces the release of
DA via the activation of DACs [42,90,98]. Thus, it has been hypothesized that defects in
ON-BCs signaling could impact DA release [29,45,99]. Our results are in line with previous
studies addressing this hypothesis [29,45] Still, some differences with previous findings are
noteworthy. Here, both DA and DOPAC levels are reduced in Gpr179−/− mice while only
DOPAC was found to be decreased in Grm6−/− mouse retinas [45]. In the retinas of nob
mice, both DA and DOPAC levels were lower than in wild-type mice [29]. A disparity in
tested ages was proposed to explain some of the observed differences as an impact of age
upon retinal DA and DOPAC levels has been reported [100]. Our results are consistent with
this explanation since both Gpr179−/− and nob [70] mice were 12 weeks old but mice lacking
Grm6 [45] were 16 weeks old. Another explanation could involve the lighting conditions
used for light adaptation [17] which may have been different in the previous studies [29,45]
compared to ours. A more interesting explanation might be that although both GRM6
and GPR179 are necessary for ON-BC signaling and are thought to be expressed in all
ON-BCs and similarly localized to their dendritic tips, it is not known if the physiological
consequences of their absence are the same. Indeed, the light responses of retinal ganglion
cells (downstream of ON-BCs) are different in mice with different Grm6 mutant alleles [83],
thus it is possible that DACs are differentially affected in Grm6−/− and Gpr179−/− mice.

Our light adaptation was mesopic. Thus, one can hypothesize that residual ON or
OFF activation could affect DA metabolism since DACs receive inputs from ON and, to a
lesser extent, from OFF pathways [90]. This hypothesis seems unlikely as (1) all the cCSNB
mouse lines tested display a similar loss of ON-pathway function [70,74,86]. (2) To our
knowledge OFF responses have not been characterized in the Gpr179−/− mouse line, but
other studies show that the OFF pathway is globally unaltered in cCSNB patients [50,101]
and mouse models [77,102]. (3) Experiments performed in a Vsx1−/− mouse, a model with
dysfunctional OFF bipolar cells [103], revealed no impact of the OFF pathway defect upon
refractive development and myopia onset [104] nor on dopamine metabolism in adult
Vsx1−/− retinas [99].

The DOPAC/DA ratio is unchanged in Gpr179−/− compared to Gpr179+/+ (Figure 1C).
Several studies have noted the impact of an altered DOPAC/DA ratio upon sensitivity to
myopia induction [29,43,45,105]. In our study, both DOPAC and DA levels are reduced in
Gpr179−/− mice by similar levels, leading to an unchanged DOPAC/DA ratio. Overall, our
results are in line with the hypothesis of a defective ON-pathway causing a reduction of
retinal dopamine.

Strikingly, comparing the natural refractive development of Gpr179+/+ and Gpr179−/−

mice, we found no difference in the refractive state between the two genotypes across
age. Previous studies performed on other cCSNB models display variable results: Nyx−/−

mice become more hyperopic than wild-type littermates [29], while Grm6−/− mice display
a more myopic development [45]. Furthermore, both Gpr179+/+ and Gpr179−/− mice
are more myopic in general than some genetic mouse models [29,30,45], but similar to
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others [17,104,106,107]. Both genetic [104,108] and environmental [17,107] factors can
influence refractive development. We used the same mouse background strain, C57BL/6J
as others [29,45,104,108], but as mentioned above, lighting conditions can differ between
laboratories. One study also found an impact of circadian rhythm upon axial length [109],
with a range of 20 µm difference between the maximum and the minimum, which would
cause a theoretical change in refractive state of about 4–5 D. In the present study, we did
not consider this potential cause of variability. Another cause of disparity could be the
use of eye drops and the absence of anesthetics in our experimental paradigm. It was
shown that intra-peritoneal injection of ketamine/xylazine could induce a hyperopic shift
in mice [110]. We tested the use of isoflurane inhalation instead but found the same issue as
with ketamine/xylazine anesthesia (data not shown). However, the time course of refractive
development follows the same pattern as in other studies: a hyperopic shift followed by a
plateau reached at 6 weeks of age [29,45,104]. Many studies have noted the difficulty of
measuring myopia in small animals because of the small eye artifact [29,45,111]. Our data
confirm that measurement of myopia in small animals often requires an induction protocol.

By developing a 3-week-long lens-induced myopia protocol, we found a substantial
increase of the myopic shift in Gpr179−/− mice compared to wild-type littermates (Figure 3).
Consistent with previous findings with cCSNB models, this myopic shift is significant at
2 weeks post-goggling [29,45], but continues to increase until 3 weeks. Surprisingly, this
myopic shift is also much larger in Gpr179+/+ mice than in the control mice used in those
previous studies. As mentioned before, we used the same mouse strain, but the lightning
environment might have had an impact. However, the most relevant cause of difference
could be found in the induction protocol. We used a −25 D lens as opposed to monocular
deprivation and started the induction one week earlier than in the studies mentioned above.
Our results are in line with previous studies from other groups showing that starting the
induction at P21 [46] or P24 [112] instead of P28 causes a more substantial increase in
myopic shift.

We need to elucidate whether the myopic shift induced by our LIM protocol directly
leads to a decrease in retinal levels of DA and/or DOPAC in wild-type and in Gpr179−/−

mice. Interestingly, recent studies showed that injecting DA agonists suppresses FDM in
several animal models [48,113,114]. In addition, induction of FDM seemed to decrease
retinal levels of DA in guinea pigs [115], chickens [116] and primates [91] but not in wild-
type mice [117]. This may be at least partly explained by the fact that most mice used in
myopia studies are melatonin-deficient mice (i.e., C57BL/6J mice). Melatonin is released by
photoreceptors, is implicated in circadian rhythm, and seems to inhibit dopamine release.
Dopamine and melatonin act in opposite ways, interacting with each other to form an
inhibitory feedback loop [118]. In support of the notion that melatonin is required for
FDM-related retinal DA changes, a recent study showed that melatonin-proficient mice
(i.e., CBA/CaJ) display reduced retinal levels of DA during FDM [119]. Similarly, this may
explain a part of the residual dopamine release in the retinas of cCSNB mouse models
observed in our study and by others [29,45]. Further experiments are required to determine
whether the causal link between DA metabolism and sensitivity to myopia induction is
unidirectional or bidirectional in mice. Mechanisms implicated in LIM-mediated myopic
shift seem to be less dependent on DA metabolism than those mediated by FDM [43, 47],
but are clearly not independent either. This can be explained by the loss of the timing cue
of lighting occurring during FDM but not during LIM [47].

It is noteworthy that injecting L-AP4 in chicken eyes causes a hyperopic shift in
ungoggled eyes but does not have an impact on form-deprived ones [120,121]. L-AP4 is an
agonist of group III metabotropic glutamate receptors. In the retina, it stimulates mGluR6
and whether it causes the ON-BCs to be constitutively hyperpolarized remains unknown.
To our knowledge, there is still little evidence on the resting state of ON-BCs in cCSNB
models. Whole-cell patch-clamp recordings of RBCs from nob mice retinal slices revealed
small holding currents, indicating that channels were mostly closed or absent [122]. Further
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studies focusing on the differential effect of L-AP4 upon ungoggled eyes and form-deprived
ones might be of interest to decipher the mechanisms leading to myopia in cCSNBs.

Altogether, our results indicate that the loss of GPR179 induces disturbances in the
dopaminergic system. The ON-pathway defect due to the lack of GPR179 does not have
any measurable impact upon refractive development but increases the sensitivity to LIM.
Overall, our data strengthen the hypothesis that ON-pathway deficiency can be associated
with myopia onset through alteration of dopaminergic signaling. This work validates
the potential use of cCSNB models to study myopia. Thus, we think they can be used
to identify new genes related to myopia in cCSNB. For instance, by performing RNAseq
studies upon cCSNB models and patients, we may find genes implicated in syndromic
and/or common myopia.

4. Material and Methods
4.1. Animal Care and Ethical Statement

All animal procedures were performed according to the Council Directive 2010/63EU
of the European Parliament and the Council of 22 September 2010, on the protection of
animals used for scientific purposes, with the National Institutes of Health guidelines and
with the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research. They
were approved by the French Minister of National Education, Superior Education and
Research. Mouse lines and projects were registered as following: refractometry: APAFIS
#27474 2020100110251857 v5. Mice were kept in 12:12 hour light:dark cycles with mouse
chow and water ad libitum.

4.2. Polymerase Chain Reaction (PCR) Genotyping

DNA was extracted from mouse tails with 50 mM NaOH after incubation at 95 ◦C for
30 min. Wild-type and mutant allele were amplified independently using a polymerase
(HOT FIREPol, Solis Biodyne, Tartu, Estonia), a common forward primer: mGpr179_EF
(5′-CTGCCCCCACAGAATGTTCCCA-3′) and two specific reverse primers: mGpr179_Er2
(5′-CACCGCCTCTTTACTCTGCCCA-3′) for the wild-type allele and mGpr179_Kr (5′-
GGGCAAGAACATAAAGTGACCCTCC-3′) for the mutant allele. The following PCR
program was used: 15 min at 95 ◦C for denaturation, 35 cycles of 45 sec at 95 ◦C, 1 min
at 60 ◦C, and 1.3 min at 72 ◦C. A final extension for 10 min at 72 ◦C was performed. This
generates the following amplicons: PCR using mGpr179_EF and mGpr179_Er2 primers
amplifies a product of 146 base pairs (bp) for the wild-type allele and no product for the
mutant allele, PCR using mGpr179_EF and mGpr179_Kr primers amplifies no product
for the wild-type allele and a 303 bp product for the mutant allele. PCR products were
separated by electrophoresis on 2% agarose gels, stained with ethidium bromide, and
visualized using a documentation system (Molecular Imager® Gel DocTM XR+ System,
Bio-Rad, Hercules, CA, USA).

4.3. DA and DOPAC Measurements

After 4 hours of light adaptation in a light controlled room at 50 lux, mice were
sacrificed at 12 pm by CO2 inhalation followed by cervical dislocation. Retinas were
isolated, frozen in liquid nitrogen and stored at −80 ◦C. Amounts of DA and DOPAC
were quantified with ultra performance liquid chromatography (UPLC) with coulometric
detection adapted from [123]. The UPLC equipment consisted of a system (Ultimate
3000, Thermo Fisher Waltham, MA, USA) in isocartic mode with two working electrodes
(Coulochem III, Thermo Fisher, Waltham, MA, USA). Analytes were separated on a C18
column (150 mm × 4.6 mm, 3 µm particle size, BDS Hypersil, Thermo Fisher, Waltham,
MA, USA), maintained at 40 ◦C, with a mobile phase (Thermo Fisher Test). Briefly, tissue
samples were crushed for 30 s (Ultraturax, IKA, Staufen, Germany) in 0.2 M perchloric acid
containing EDTA and ascorbic acid (0.2 µM each). After centrifugation at 25,000× g for
30 min at 4 ◦C, the supernatants were passed through a 10 kD cutoff filter (Nanosep, Port
Washington, NY, USA) at 12,000× g, for 10 mins at 4 ◦C. Finally, 50 µL of the ultrafiltrates
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were injected. The two serial coulometric electrodes with applied potentials −100 and
350 mV were used for the measurements of DA and DOPAC.

Statistical analyses were performed using Prism 9.1.2, GraphPad (GraphPad v7 Soft-
ware Inc., La Jolla, CA, USA). Statistical significance was measured with a non-parametric
two-tailed Mann–Whitney test.

4.4. Lens-Induced Myopia

To induce myopia, P21 mice were anesthetized by isoflurane inhalation (5% induction,
2% maintenance). The scalp was cut to expose 1.2 cm of the skull in the rostrocaudal
axis. Two intracranial screws were implanted on both left and right sides of the skull at
y = −2 mm from the bregma. A homemade goggle frame was placed on the skull and fixed
using dental cement (FujiCEM™, Phymep© Cat #900903, Paris, France). This goggle frame,
adapted from X. Jiang et al.; 2018 [46], was built in resin using a 3D printer. The −25 D
lenses were stuck on the frame using glue (vetbond™, Phymep©, Paris, France). Stitches
were used to avoid displacement of lens by mice. The −25 D lens was always placed in
front of the right eye.

4.5. Refractometry

After a dark adaptation for 30 min, eye drops were used to dilate the pupils: 0.5%
mydriaticum© (Théa, Clermont Ferrand, France), 5% neosynephrine (Europhta, Monaco).
The mice were placed on a homemade restraining platform in front of an eccentric infrared
photorefractometer calibrated as described previously [32]. Calibration was verified using
lenses of increasing power, from −10 D to +10 D placed in front of a mouse eye. The mouse
was positioned so that the first Purkinje image was in the center of the pupil. The data
were then recorded using software designed by F. Schaeffel [32]. We collected two data
sets per animal, one per eye, each data set consisted of 90 measures, each of which was
the mean of 10 successful measurements (in total: 1800 points/animal). For refractive
development experiments, the measurements were performed once per week, every week
from 3- to 9-weeks-old and the mean refractive state of both eyes was used for statistical
analysis. To evaluate the sensitivity to myopia induction, the difference between goggled
and ungoggled eye (referred to as interocular shift) measured at post-natal day 21 (P21,
day of surgical procedure), P35 (14 days after surgery) and P42 (21 days after surgery) was
used for statistical analysis. Only the mice displaying less than 2 D of interocular shift at
P21 were used for the induction protocol. Statistical analyses were performed using Prism
9.1.2, GraphPad (GraphPad v7 Software Inc., La Jolla, CA, USA). Statistical significance
was measured with a two-way ANOVA test.
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